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ABSTRACT Hyperspectral data for the 3D domain is relatively difficult to acquire. Existing hyperspectral
datasets are unsuitable for 3D research, suffer from issues of severe data scarcity, and a lack of
multi-perspective images of the same object, etc. To address these challenges, data augmentation with limited
data is essential. In this study, we applied neural rendering method (such as Neural Radiance Field) to
hyperspectral images for dataset augmentation. We conducted experiments on novel view synthesis for
hyperspectral images from 360-degree multi-perspectives, demonstrating that our method can generate
high-quality hyperspectral images from various perspectives. Through experiments involving key points
extraction and 3D reconstruction, we validated the efficacy of generating a substantial volume of high-quality
hyperspectral images from a restricted set of varying perspectives. These results contribute to addressing the
challenges associated with data augmentation.We also conducted experiments of neural radiance fields in the
hyperspectral data domain under different network parameters and training conditions to find the appropriate
settings.

INDEX TERMS Dataset augmentation, hyperspectral image, NeRF, novel view synthesis.

I. INTRODUCTION
Hyperspectral images contain optical information across
multiple spectral bands, far surpassing RGB images in
terms of information content. Spectral imaging (see e.g. [2],
[3], [4], [5]) combining with AI [6], [7] can give many
interesting applications such as remote sensing [8], [9] and
detection [10], [11].

In recent years, the 3D field has witnessed the emergence
of many excellent technologies, which have been applied
to image-based 3D reconstructions or novel view synthesis.
3D reconstruction based on multi-view images, including
Structure from Motion (SfM) [12], Neural Radiance Fields
(NeRF) [1], and their subsequent developments, brings
objects and scenes abundant in two-dimensional images
into the realm of three dimensions. The development of
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image-based 3D technologies has driven progress in various
fields like pose estimation [13], [14], [15], 3D modeling
[14], [16], [17], and AR&VR [16], and it continues to have
enormous growth potential.

The combination of hyperspectral data with 3D offers
significant application prospects. Most research in 3D and
deep learning [14] currently focuses on data captured by RGB
cameras, while hyperspectral images for 3D have not received
enough attention. The primary reason is that, compared to
RGB cameras, acquiring hyperspectral cameras is challeng-
ing, and capturing hyperspectral images is more difficult.
For instance, many hyperspectral cameras obtain different
spectral bands through filtering light waves of different
wavelengths, which require much more times captures than
RGB cameras. Additionally, due to the significant reduction
in light intensity caused by filtering, longer exposure times
are needed to capture than RGB cameras. Consequently, col-
lecting hyperspectral images requires much more time than
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RGB images. Spectrometer-based hyperspectral cameras can
only image one line at a time, which results in slow capture
speeds and presents issues related to stability and stitching, all
of which affect image quality. Spatial encoding hyperspectral
cameras, while capable of fast imaging, have lower spatial
and spectral resolutions [18].

While these issues do not directly limit the application of
hyperspectral images in the 3D domain, they severely affect
the richness of hyperspectral datasets. Currently, we have
not found suitable publicly available datasets for multi-view
3D research. This situation indirectly results in a lack of
attention to hyperspectral data in the 3D domain. For instance,
pose detection requires a large amount of data from different
perspectives for training, SfM needs enough images from
various perspectives to obtain a dense key point cloud, and
neural radiance fields, due to the challenges of capturing
a 360-degree hyperspectral dataset, have remained focused
on face forward rendering. So far, compared to 3D research
using RGB data, 3D research based on hyperspectral data is
relatively scarce.

We propose a 3D data augmentation method based on
hyperspectral data. With a limited amount of hyperspectral
data, we use a neural rendering technology, hyperspectral
neural radiance field, adapted from neural radiance field
(NeRF) [1] technology for data augmentation, obtaining
high-quality hyperspectral data from multiple perspectives to
meet the needs of 3D-related research. Data augmentation
primarily requires that the generated dataset be of high
quality, preserving most of the three-dimensional structural
information without distortions or confusions. This is funda-
mental for conducting 3D research. Additionally, it should
retain most of the high-frequency details, such as text and
shadows, which could be beneficial for subsequent tasks.
Finally, the intensity of light in different spectral bands should
be correctly preserved to satisfy the needs for hyperspectral
information in subsequent tasks. Currently, there is limited
research on NeRF in the hyperspectral domain [19], and
it has primarily focused on face forward rendering rather
than 360-degree multi-perspective rendering. The number
of hyperspectral channels and resolution is also inadequate
to meet the requirements of data augmentation scenarios.
Through numerous experiments, this paper demonstrates that
NeRF-based hyperspectral data augmentation can meet the
data augmentation requirements under suitable parameters.

A. MAIN CONTRIBUTIONS
Main contributions of this paper are listed below:

1. This paper experimentally verifies that NeRF can be
used for dataset augmentation of hyperspectral data through
novel view synthesis.

2. This paper is the first to conduct experiments on
360-degree multi-view synthesis of hyperspectral data using
NeRF technology.

3. This paper extends the processing capabilities of NeRF
for hyperspectral data to 34 channels and a resolution
of 640×480, surpassing previous work in this area.

4. This paper adjusts and experiments with factors such as
dataset size and NeRF neural network parameters to obtain
the optimal configuration for the current task.

II. RELATED WORK
In this section, the paper will introduce existing rele-
vant research, primarily divided into the following parts:
3D methods like Neural Radiance Fields (NeRF) [1] and
Stereo fromMotion (SfM), Hyperspectral 3D reconstruction.

A. NERF AND SFM
Neural Radiance Fields primarily work on novel view
synthesis. NeRF [1] is currently the most effective method
in this field, with their proposal and subsequent research
receiving considerable attention. Methods related to Neural
Radiance Fields use a certain number of images from
different perspectives as input. After training the neural
network, they can generate images of objects from any
perspective. This method has gained attention because the
generated images closely match the original images, allowing
for realistic rendering of object details, shadows, lighting,
and color information. Neural Radiance Fields do have some
issues, such as requiring consistency in input information
like lighting and object pose among the different perspective
images to ensure correct convergence. Training also takes
a considerable amount of time, as does rendering. Neural
Radiance Fields have seen numerous derivative works, such
as NeRF in real world outdoor scenes [20], which aim to
address inconsistencies in information across different time
scenarios. There are also efforts to improve NeRF’s training
speed [21], [22], support for dynamic scenes [23], [24], image
resolution [25], model reconstruction [26], etc.

SfM is a more traditional kind of 3D reconstruction
method. Despite its long history, it still holds a crucial posi-
tion in the 3D domain. SfM also generates 3D information
of objects from different viewpoints. Common methods in
this field are based on key point recognition and matching
for 3D reconstruction. Traditional key point recognition
methods like LIFT [27], SIFT [28], etc., have been tested over
the years. With the increased application of deep learning
methods, key point recognition based on deep learning
has received much attention in recent years, for example,
Superpoint [29], and has made significant contributions to
this field. There are also other methods like Time-Domain
methods [30] in this area.

B. HYPERSPECTRAL-BASED 3D
Despite the vibrant development in the 3D domain, hyper-
spectral data have not received as much attention as RGB
images. In the domain of 3D reconstruction based on
SfM, articles like the one by Ma et al. [31] and others
have contributed to key point recognition and matching
for hyperspectral images. They trained neural networks on
hyperspectral images and obtained far more key points than
RGB images, resulting in denser point clouds and higher
reconstruction accuracy. However, the issue of discrete key
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points has not been completely resolved, as discussed later.
This method still faces challenges in correctly handling
surfaces lacking texture in new viewpoint images.

Another related field is active 3D hyperspectral imaging.
This method requires the use of additional equipment to
project onto the target, enabling the hyperspectral camera
to acquire three-dimensional information, as discussed in
articles such as those by Luo et al. [32] and others. While this
method allows end-to-end acquisition of three-dimensional
information, it has higher equipment requirements and usage
conditions compared to fully image-based methods.

In the field that combines hyperspectral and NeRF, only
one paper [19] was found that describes a method for
NeRF reconstruction of cross-band images. This paper
proposed a method designed for tackling 14 different types of
channels, including RGB images, 10-channel hyperspectral
data, and single-channel near-infrared image data. Using
NXDC method proposed by themselves, they trained NeRF
for face forward scene rendering and achieved good results.
However, their method is limited to face forward scenes,
which means it only captures narrow perspectives of the
object from the front, and it cannot be directly extended to
images from all 360 degree perspectives, which is essential
for data augmentation task. Additionally, their hyperspectral
image resolution is only 254×510, with 10 channels. There
is no evidence to suggest that their method can achieve the
same quality of reconstruction for high-resolution (640×480)
full visible spectrum hyperspectral data (with more than
30 channels). A new method is necessary to accomplish data
augmentation task.

This paper aims to fill the gaps in the above research,
confirming the effectiveness of Neural Radiance Fields in
hyperspectral images and further demonstrating that using
this method for multi-perspective dataset augmentation of
hyperspectral images is effective.

III. METHOD OF NOVEL VIEW SYNTHESIS BASED ON
NEURAL RENDERING
The method used in this paper involves extending the neural
radiance field into the hyperspectral domain. It trains the
neural networkwith a certain number of hyperspectral images
taken from different perspectives to obtain a model capable
of rendering images from any viewpoint. By rendering a
significantly greater number of high-quality hyperspectral
images than the original data, it augments the hyperspectral
dataset. This section will be divided into two modules,
including details of the NeRF technology we employed
and information about the hyperspectral images used in the
experiments.

A. NOVEL VIEW SYNTHESIS BASED ON NEURAL
RADIANCE FIELDS
NeRF [1] is a neural network-based novel view synthesis
technology. Its purpose is to train a neural network to
implicitly represent the three-dimensional distribution den-
sity and color information of the target object. Based on this

three-dimensional distribution information, it samples rays
from corresponding perspectives, rendering images from any
viewpoint using a camera model.

Neural Rendering: Specifically, we first define a neural
network structure, which consists of 8 fully connected
layers and corresponding output layers for distribution
density and intensity in different channels. The input to
the neural network is a series of coordinates, which are
processed through the neural network to obtain spatial density
distribution and color information at each coordinate. When
generating an image from a particular viewpoint, pixel values
are rendered pixel by pixel. The value of each pixel is
determined by the density distribution and color information
at a series of coordinates sampled along the ray defined by
the camera model, using the following formula:

C(r) =

N∑
i=1

Ti(1 − exp(−σiδi))ci,Ti = exp(−
i−1∑
j=1

σjδj) (1)

Here, C(r) represents the color information of the pixel
corresponding to the ray r, which is a three-dimensional
vector in RGB images, or has a dimension equal to the
number of hyperspectral channels in hyperspectral images.
ci represents the color information of the material at the
i-th sampling point, with a dimension matching the number
of hyperspectral channels. Ti indicates the probability that
light from the camera center can reach this point without
obstruction at the i-th sampling point. σi represents the
spatial density distribution function at the i-th sampling point,
and δi represents the distance interval at the i-th sampling
point. The formula shows that each pixel is rendered based
on the spatial density distribution and color information
at the corresponding sampling points along its ray path.
To generate a complete image, every pixel needs to be
rendered sequentially.

Position Encoding: NeRF [1] doesn’t directly input three-
dimensional coordinates into the neural network when deal-
ing with input coordinates. Instead, it uses position encoding:

γ (p)= (sin(20πp), cos(20πp), .., sin(2L−1πp), cos(2L−1πp))

(2)

In this equation, p is the coordinate value of a given point,
L is the frequency level. This is because neural networks
tend to prioritize fitting low-frequency data and may not fit
high-frequency data well. Position encoding improves the
network’s ability to represent high-frequency data effectively,
thereby enhancing the training of the neural network. In our
experiment, the value of L for the position encoding used
during training is 10.

Training: During neural network training, pixels of training
sample images are sampled, and a series of coordinate values
on the rays generated by the camera model are input into
the neural network. This yields density distribution and color
information at the corresponding coordinates. As a result, the
neural network’s output value for that pixel is obtained. Loss
functions are computed based on the difference between this
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value and the ground truth value, and error backpropagation
is used for training. In this paper uses hyperspectral data to
train the neural network. The color information output by the
neural network is adjusted to 34 channels to render values for
34 different channel images.

Network Structure: The main body of NeRF’s neural
network consists of fully connected layers. In the following
experiments, the parameter adjusted in the network structure
is the number of neurons in the fully connected layers,
which is referred to as its width. Extensive experiments were
conducted to evaluate the image quality of the neural network
output for various widths.

B. RELEVANT DETAILS OF HYPERSPECTRAL IMAGES
The hyperspectral images used in this paper have 34 channels
with wavelengths distributed from 420nm to 750nm at 10nm
intervals. The image resolution is 640×480. The images
were captured in advance [31]. The experiment required
capturing hyperspectral images from various perspectives
of the same target. An electric turntable was chosen for
stable image capture. Although using turntable does not
completely adhere to NeRF’s acquire of a stationary object
and lighting environment with only the camera revolving
around it, it does not significantly impact the main part of
the target, as we shall see. Like many hyperspectral image
capturing methods, the approach used in this experiment
requires capturing images for each channel separately. Due
to the low light transmission after filtration, each channel
requires an extended exposure time to capture clear images.
This can result in several minutes of imaging time for a
complete hyperspectral image from a single perspective.
Even so, the results in the near-infrared and ultraviolet parts of
the spectrummay still appear darker. Hence, using a turntable
to automate photography rather than holding cameras by
hands was the only viable choice.

We chose the scene used in the experiments from various
experimental scenarios, and this scene has a wide range
of features, allowing us to evaluate the effect of NeRF on
hyperspectral data augmentation under various conditions.
First, the images contain rich high-frequency information,
which is well-represented in various frequency bands. This
can demonstrate whether this method can preserve image
details. Second, the images include smooth areas with
textures missing, which are challenging for traditional SfM
methods to model. A specific comparison will be made
in the results section. The image comparisons can also
demonstrate whether our method yields good results in
dealing with regions lacking texture. Finally, the upper part
of the images contains inconsistent information due to the
change of lighting conditions, such as shadows that do not
move with the object. The experiment will verify whether
a small amount of inconsistent content can lead to the loss
of a large amount of image information and will assess
the method’s robustness using hyperspectral images, further
demonstrating its resistance to spatial interference, which is
essential when capturing long-duration hyperspectral images.

IV. EXPERIMENT AND RESULT
A. EXPERIMENT DESIGN OF HYPERSPECTRAL DATASET
AUGMENTATION BASED ON NOVEL VIEW SYNTHESIS
In the results section, we conducted a total of four series of
experiments to demonstrate the effectiveness of our method
in dataset augmentation and to explore the outcomes of
training with different parameters. Ultimately, we determined
the parameter settings suitable for dataset augmentation
tasks. In this section, we first present the experimental
results of the hyperspectral NeRF (Neural Radiance Fields).
We then validate the effectiveness of our method for dataset
augmentation through SfM (Structure from Motion) three-
dimensional reconstruction experiments. Finally, we investi-
gate its performance under different dataset sizes and network
widths.

The data used to train the model in this experiment was col-
lected using a hyperspectral camera, which captures images
in variouswavelength bands ranging from 420 to 750nm,with
a 10nm interval, resulting in a total of 34 spectral channels.
The images captured by the 8-bit camera have a resolution
of 640×480 pixels, and in this experiment, we used the
original resolution for training. A 100w LED light source
was used during the collection of hyperspectral images. The
dataset we use includes a total of 48 perspective images,
with each perspective distributed around the target object
in a full circle, and the minimum angle between any two
perspectives was 6 degrees, with some perspectives having
a 12-degree separation. In total, 48 different perspectives
of hyperspectral images were previously captured, and they
were subsequently divided into training and test sets for later
training. The training parameters in this experiment were set
with a batch size of 32,768 for ray sampling, with a network
width varies from 8 to 512, and with a training set size of 12,
24, 36, 40, 42 to test the performance. When the network is
512 wide, our GPU ran out of memory, so we have to half
the batch size to 16,384, which lowers the performance a
little bit. Other parameters were consistent with NeRF [1].
The model was trained for at most 200,000 epochs on an
NVIDIA 2080TI 11G GPU, with each training session taking
approximately 2-17 hours, depending on different width of
networks.

B. EXPERIMENTAL RESULTS OF HYPERSPECTRAL NERF
In the results section, this paper will show the effects of
dataset augmentation with the neural radiance field under
different conditions. First, we will assess the model’s gener-
ation performance in training with 34-channel hyperspectral
images at 42 different perspectives to show the performance
of our method. Next, we will examine the impact of varying
training set sizes on the results, followed by an analysis of
the influence of different network width. After we find the
best parameters for dataset augmentation, an experiment on
SfM reconstruction will finally be conducted to demonstrate
the applicability of NeRF in dataset augmentation within the
hyperspectral domain.
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FIGURE 1. Some of our training results. For each perspective, images of
34 channels are generated, corresponding to 34 spectrum ranges (the
central wavelengths are 420nm, 430nm, . . . , 750nm) with a band width
of 10nm.

FIGURE 2. Comparison between the generated images (Generated) and
the ground truth (GT) at 600nm wavelength. Full images (left top) and
zoom-in images (left bottom and right) are illustrated. In most regions,
there is no significant difference between the generated images and the
ground truth.

1) DATA AUGMENTATION OF HYPERSPECTRAL IMAGES
WITH NERF
This study initially investigates the applicability of NeRF in
the field of hyperspectral images. In this experiment, to get
the best performance of hyperspectral NeRF, we trained
a neural network by inputting hyperspectral images from
42 different perspectives. In this experiment, we selected
6 different perspectives as a test set. To assess data
augmentation, the neural network rendered a total of
120 images from different perspectives, each separated by
3 degrees. Some of the training results are shown in Fig.1,
while details are shown in Fig.2.

From the perspective of image details, the quality of
the generated images is quite high, preserving most of the
fine details, including text, shadows, and channel intensities.
Although smaller text appears slightly blurry, and some
reflections on the right side were not fully restored, overall,
there are no significant differences between the generated
images and the original images.

The quality of images needs to be quantified using
standardized metrics, and the commonly used metric is the

FIGURE 3. PSNR value of generated images from different perspectives
(LEFT), and the corresponding generated images at 600nm wavelength
(RIGHT). SSIM values of the corresponding images are given in the
appendices.

TABLE 1. Comparison of results from different methods [1].

Peak Signal-to-Noise Ratio (PSNR). We measure the quality
of the results by calculating the PSNR value between the
rendered result images and the corresponding perspective
images in the test set.

PSNR = 10 × log10
MAX2

I

MSE
(3)

MAXI in this equation means the maximum value of the
current image format, for example 256 in 8-bit images. In this
paper, image data are normalized with a maximum value of 1,
so PSNR = −10log10(MSE). Larger PSNR value means
better quality for images in most cases. The experimental
results are shown in the Fig.3.

In this section, six different perspectives generated during
the experiment are selected for presentation. The average
PSNR value obtained by comparing images generated by
the neural network with real images (GT) is 31.67. The
PSNR values from different perspectives exhibit a minor
fluctuation within ±1 around the average PSNR of the
6 generated images, and all of them have PSNR values
above 30, indicating their high quality.

The image results for each perspective are as shown
in Fig.3. The generated images at all perspectives exhibit
consistent reproduction of both the subject and fine details.
The fluctuations in PSNR values among different perspective
images are primarily due to inconsistencies in the top
background of the images, leading to incorrect convergence,
and improper handling of reflections in certain areas by the
neural network.

Given the absence of examples for full 360-degree
reconstruction of hyperspectral images in previous research,
we compare our results with the results of synthetic RGB
images in NeRF.

Table 1 contains PSNR values for the results mentioned
above.When compared to NeRF’s 360-degree RGB synthesis
results, the PSNR value for hyperspectral synthesis is the
highest, but it does not significantly surpass the NeRFmethod
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under RGB conditions. However, the hyperspectral NeRF
synthesis results far outperform those of non-NeRF methods.

Since no previous results can be found in 360-degree
dataset augmentation for hyperspectral images using NeRF,
we compare our results with previous RGB view synthesis
results as a comprehensive practice. Although RGB images
have only 3 channels while hyperspectral images in the
present paper have 34 channels, a comparative PSNR of
our images shows that our method generated high quality
hyperspectral images as NeRF did for RGB images. For both
RGB images and hyperspectral images, PSNR values are first
computed for each channel and then the mean values across
channels are calculated. The meaning of this metric does not
change with the total number of channels.

For dataset augmentation, the quality of reconstructed
images is of paramount importance, requiring the preserva-
tion of pattern details, shadows, and other distinct features.
In this regard, methods based on NeRF exhibit a significant
advantage over other approaches.

Currently, the primary methods for novel view synthesis,
apart from NeRF, are based on 3D reconstruction, such as
SfM (stereo from motion) methods. In previous paper [31] of
T.Ma et al., 3D reconstruction work based on deep learning
key point matching outperformed traditional non-deep learn-
ing key point extraction results. We compare the results of
this experiment with those from Ma et al. [31], as shown
in Fig.4.

In Fig.4, (a) and (b) represent results generated by the SfM
method, after key point extraction and dense reconstruction.
(c) shows the results rendered by the method used in this
experiment, and (d) is the original image. Several advantages
of our research method compared to the images generated
after SfM reconstruction are evident.

Firstly, results generated by SfM methods based on key
points exhibit a noticeable grainy texture. This is due to the
sparse nature of their key points. Even if efforts are made to
densify the results through interpolation and other methods,
since the key points are too sparse, a significant amount
of details of the original objects are lost, as we can see
in Fig.4 (a) and (b). In contrast, the method based on
neural radiance fields has a distinct advantage in this regard.
A comparison between (a1) and (c1) shows that the results
reconstructed in our paper (c1) significantly enhance details,
making it possible to clearly identify text and patterns below,
which are lost in (a1).

Secondly, our method can accurately model smooth,
textureless regions, whereas SfMmethods based on key point
matching struggle due to the difficulty of capturing sufficient
key points in such areas and issues related to incorrect
matches, leading to sparsity and substantial noise. In (a1),
there is a hollow section in the upper text and the middle
of the pattern below (depicted in blue). When rendering
new perspective images, it’s challenging to find appropriate
pixel fillings, resulting in a background color display. This
is caused by the failure to capture key points. In contrast, the
images rendered by our model are consistent with the original

image, displaying a smooth white surface, a feature that is
maintained across all 34 hyperspectral channels.

Furthermore, our experimental model demonstrates a high
degree of robustness in the presence of inconsistencies in
the background. During the training of the neural network,
if different perspectives’ images exhibit inconsistencies,
it can lead to the neural network’s inability to find the
object’s three-dimensional spatial distribution that satisfies
all perspective images, resulting in the convergence to
incorrect results. This experiment shows that even when
inconsistencies exist in the background, the image of themain
target remains unaffected.

The results above demonstrate that our method not only
accurately preserves the correct 3D view information for the
object across all channels but also precisely retains details
such as shadows and text, making it suitable for use as an
augmented dataset.

2) IMPACT OF TRAINING SET IMAGE QUANTITY ON
RECONSTRUCTION RESULTS
In this section, we conducted an experimental study on the
influence of different training set sizes on hyperspectral
reconstruction results. In this experiment, the width of the
neural network was uniformly set to 256. The total size of
the dataset collected for this experiment is 48, and the sizes
of the training sets were set to 12, 24, 36, 40 and 42 images,
respectively. The perspectives used in the training sets were
evenly distributed, whereas images from other perspectives
were used as the test set to assess the quality of the training
results. The reconstruction results of models trained with
different training set sizes are shown in Fig.5.

Results in Fig.5 indicate that when the training set size is
greater than 24 different perspectives, there is no significant
difference in the training results, and their PSNR values all
exceed 30. However, when the training set is reduced to
12 different perspectives, there is a noticeable decrease in the
quality of the training results. The comparison of different
generated images is shown in the following Fig.6.

In Fig.6, results of rendering images from similar perspec-
tives to the training set are presented for different training set
sizes. When the model is trained with training sets containing
42, 40, 36 different perspectives, the image outputs closely
match the real images, with only slight blurriness in the upper
background due to inconsistencies in the environment during
capture, as seen in the comparisons for 42-a, 40-a, and the
ground truth (GT).When the training set size is reduced to 24,
most parts in the image remains consistent with ground truth,
and the text is clearly readable. But when the training set
size is reduced to 12, the entire image exhibits distortion
and blurriness, making it impossible to recognize the text.
Performance like this is obviously not qualified to be used
for data augmentation.

These observations align with the description based on
PSNR values in Fig.5. When the training set size is greater
than or equal to 24, the PSNR values remain above 30, with
sufficient clarity to read text. However, when the training set
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FIGURE 4. (a)-(c) Comparison of the results from different methods, (d) ground truth (GT) images at 600nm wavelength. SfM method results have lower
quality then results from our method.

FIGURE 5. Table: Impact of different training set sizes on the performa-
nces PSNR and difference (LEFT); Mean PSNR as the training set size
increase (RIGHT). SSIM of the corresponding training set sizes are in
appendices.

size is reduced to 12, the PSNR value drops to around 20,
indicating a significant overall decline in image quality,
resulting in widespread blurriness and a foggy distribution
in the images. The experimental results also reveal that if
the training set contains two perspectives with significant
angular differences, the model’s performance in generating
images between these two widely spaced perspectives is
worse compared to generating images between perspectives
with smaller differences in the training set.

These experimental results indicate that in the case
of using hyperspectral images, NeRF is sensitive to the
dataset size and distribution. When the training set is
relatively small and the perspectives between the two training
perspectives are large, the neural network’s representation of
the 3D distribution significantly differs from the true values,
resulting in bad performance. Based on the experiments, it is
evident that in order to generate images qualified for data
augmentation, the minimum number of captured perspectives
should be at least around 24, and these perspectives should be
evenly distributed between 0 and 360 degrees.

3) IMPACT OF NEURAL NETWORK PARAMETER QUANTITY
ON RECONSTRUCTION RESULTS
The objective of this experimental section is to investigate
the effect of the number of parameters on the reconstruction
of hyperspectral images by adjusting the network width
used in the NeRF neural network. The basic structure of
the NeRF neural network is a fully connected network,
and the number of parameters in this network is primarily
determined by the network width (the number of neurons in
the hidden layers). This experiment selected neural networks
with different widths, such as 512, 256, 128, 64, and 32, and
conducted experiments using a training set of 24 images. The
experimental results are listed in Fig.7.

The experimental results in Fig.7 indicate that PSNR shows
an increasing trend with the increase in neural network width,
as expected. Even though hyperspectral images contain
significantly more information than RGB images, NeRF does
not require larger number of parameters to process them.
Even when the neural network width is as low as 32, the
PSNR value is around 30, which suggests that the main
structure of the image is correct. However, a substantial
amount of detailed information is lost, which can also be
observed from the comparison with 32-1 in Fig.7. As the
number of neural network parameters increases, details in
the images continuously improve, but as the neural network
width approaches 256, the effect enhancement tends to
saturate.

The experiment demonstrates that network width has
a significant impact on the PSNR of generated images.
Considering that the influence of neural network width on
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FIGURE 6. Comparison of images generated by different training set sizes at 600nm wavelength. The left bottom shows the ground truth (GT). The
training set size increases from 12 to 42 different perspectives. Numbers under the top row of the figure indicate the training set size (42 means
42 perspectives of images was used to train the network). Images on the bottom are zoom in of the images on the top.

FIGURE 7. Comparison between the images generated by different
network widths (from 2 to 512 neurons per layer) at 600nm wavelength.
The PSNR plot for each network width is shown (UPLEFT). The example
images of each network width from 2 to 512 are shown (UPRIGHT). Some
details are shown by zoom in images of the example images (from 16-1
to 256-1) in the bottom row.

TABLE 2. Growth of parameter number vs PSNR growth.

the number of parameters in the fully connected layer is
quadratic, an increase in network width results in a significant
decrease in training speed. When the width exceeds 256,
increasing the neural networkwidth has a limited effect on the
performance improvement, and their relationship is given in
Table 2. The data corresponding to a network width of 32 are
selected as the baseline, and the other data are compared
to it.

From the information in Table 2, it is evident that as the
neural network width increases, the improvement in NeRF’s
novel view synthesis tends to saturate. Furthermore, in cases
of excessive width, it is prone to lead to overfitting of the
neural network. In our case this phenomenon is significant
only when the width is set to 512, still indicating that further
increasing the neural network width does not bring any
benefit.

The experimental results demonstrate that, even though
hyperspectral image channels are several times greater than
ordinary RGB images, due to the expressive capabilities of
fully connected layers, NeRF neural networks can maintain
good training results within a significant parameter range.
Among them, the width of 256 provides the optimal
performance, and it is recommended to choose this width
for dataset augmentation. When the number of hyperspectral
image channels changes, this optimal parameter may also
change accordingly.

4) EFFECT OF DATASET AUGMENTATION ON SFM 3D
RECONSTRUCTION
For images that are suitable for 3D related tasks, consistent
spacial features are required. 3D reconstruction datasets
should contain highly consistent multi perspective images of
the same object. It is hard to achieve this for hyperspectral
images because it’s much slower to obtain hyperspectral
imaging as compared with RGB images. To demonstrate the
effectiveness of dataset augmentation in 3D related tasks,
consistent features of the object in the generated images shall
be shown. Thus an experiment is conducted with the best
fitting parameters introduced above, to show that images
generated by our method can preserve enough local features
for key point recognition and 3D reconstruction.
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FIGURE 8. Comparison of 3D reconstruction results before and after
dataset augmentation. (a) Result before augmentation. (b) Results after
Augmentation. (c) Details and comparison.

In this experiment, we choose 24 perspectives images as
original data set. Hyperspectral NeRF with network width
256 is trained with the original data set for augmentation,
which generates 120 images with different perspective.
This experiment conducts 3D reconstruction using both the
original data (24 perspective images) and the augmented
data (120 perspective images) with traditional key point
recognition method. Sparse and dense reconstructions are
carried out using COLMAP [33], [34], and the results are
shown in Fig.8:

In Fig.8a, the result of reconstruction without dataset
augmentation is shown. In the original 24 images, a total
of 1202 key points are found. Even after subsequent dense
reconstruction, it is evident that the key points extracted
are relatively sparse. Not only are the smooth surfaces not
adequately modeled, but also only a small fraction of the
feature-rich objects is captured.

Fig.8b displays the results of reconstruction using
120 images after dataset augmentation. In this experiment,
we find over 6000 key points in total. After dense
reconstruction, the key point density is higher, and the
primary features of all objects have been correctly captured.
Only some points on the smooth surface are missing.
The results have significantly improved compared with the
previous version.

Local spatial features are extremely important in key point
collection and recognition tasks, which are typical kinds of
3D works, broadly used in areas like computer vision, slam,

3D reconstruction, etc. Number of key points collected can
illustrate whether the local features of the object are preserved
well enough for 3D related tasks.

The experiment demonstrates that a large number of
high-quality hyperspectral images generated by the hyper-
spectral NeRFmethod in this paper reserves adequate amount
of local features, and can bring substantial improvements to
works in the 3D domain when used for dataset augmentation.

C. DISCUSSION
The purpose of this paper is to demonstrate the suitability
of NeRF for 360-degree multi-view reconstruction in the
hyperspectral domain and its’ remarkable performance in
data augmentation. The result above showed that the novel
view synthesis technology based on NeRF can expand
hyperspectral image datasets for reconstruction and other
3D applications, thereby enriching research and applications
of hyperspectral data in the 3D domain. The experiments
successfully generated 120 perspective images with high
quality from at least 24 different perspective hyperspectral
images. In the generated image results, the primary objects
in the images have not undergone distortions that affect their
structure. Even when there are inconsistencies in the shadows
in the background and noise in the images, under appropriate
model parameter settings and dataset sizes, the foggy spatial
distribution caused by the inability to correctly converge due
to background inconsistencies is limited to the vicinity of the
inconsistent scene. This does not affect the imaging quality of
the primary imaging targets, with PSNR values exceeding 30,
signifying high image quality.

The quality of image generation varies among different
channels. For multi-channel images, the darker channels,
including the violet channel near 400nm and the red channel
near 700nm, have higher PSNR values, generally around 40.
These wavelength bands have darker images with much
less information compared to other bands, making NeRF’s
reconstruction of them easier. The brighter channels around
500nm have PSNR values ranging from 27 to 35, which,
although lower than the darker channels in terms of PSNR,
carry a significantly higher amount of data and still maintain
relatively high quality.

By adjusting the dataset size, we found that for 360-
degree multi-view reconstruction, roughly evenly captured
24 images can generate accurate and highly detailed images
at any perspective. This further reduces the requirement for
many hyperspectral capture images. Through the experiment
in section IV-B4, we demonstrate that our method on dataset
augmentation have significant effect on 3D areas like SfM
reconstruction, which fulfill our goal in this paper.

In summary, this paper successfully validates the potential
of NeRF-based new view synthesis technology for expanding
hyperspectral datasets. The results indicate that with accept-
able training set sizes and neural network parameter numbers,
high-quality imaging is achieved. This can be applied to
other 3D-related tasks, especially those requiring 360-degree
multi-view datasets.
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However, our method still have some limitations. Our
method does not work well under datasets with few
perspectives (for example, less then 20 perspectives for
360-degree datasets). Our method can not handle moving
objects or scenes.

Currently, this research offers several directions for future
exploration, such as addressing the decline in imaging quality
when dealing with small datasets. Additionally, this research
primarily focuses on dataset augmentation for different
perspectives and does not consider scenarios with varying
lighting conditions. These are areas that warrant further
investigation.

V. CONCLUSION
In this study, we conducted multiple experiments to demon-
strate the applicability of neural rendering method for
novel view synthesis in the hyperspectral domain. We have
verified the feasibility of using hyperspectral NeRF for
multi-perspective dataset augmentation of hyperspectral data.
Our method can successfully generate hyperspectral images
at various perspectives, preserve the object’s feature informa-
tion which enabling it to play a role in key point recognition
and 3D reconstruction. Our method may still be improved in
terms of reduce required training set image quantity, increase
generated image quality and other aspects through future
research. It is our hope that by augmenting hyperspectral
images from various perspectives, hyperspectral imagery can
garner greater attention in the field of 3D research and
applications.

APPENDIX SSIM METRICS
See Figures 9 and 10.

FIGURE 9. SSIM data related with the PSNR data in Fig.3.

FIGURE 10. SSIM data related with the PSNR data in Fig.5.
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