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ABSTRACT Arc fault detection devices are mandatory worldwide for mitigating DC series arc faults in
photovoltaic systems. However, they are prone to nuisance tripping. Artificial intelligence-based approaches
can be a solution, but they are ‘‘black boxes’’ and challenging to modify. This paper proposes an
explainability and attention-based method to investigate the intensive details of such an algorithm. The
contributions of an arc feature to the proposed model can be visualized by the proposed interpretable
methodology so that insensitive arc features can be removed to reduce the quantity of input data. Additionally,
the structure of the proposed model can be optimized by cutting the redundant layers. Thus, an accuracy
of 99.63% is achieved with only 48.48% of the parameters compared to the original model. Finally, the
optimized model is implemented by a Cortex M7-based microprocessor with a runtime of only 7.8 ms,
making it ready for industrial application.

INDEX TERMS Arc discharge, artificial intelligence, deep learning, discrete Fourier transforms, electrical
fault detection, electrical safety, fault diagnosis, machine learning, photovoltaic systems, proactive detection.

I. INTRODUCTION
As the hazards such as rising sea levels caused by global
warming become increasingly significant, carbon peaking
and carbon neutrality have become global development goals.
People need to wean themselves from fossil fuels to reduce
carbon dioxide emissions. The energy of photovoltaic (PV)
power generation is derived from solar energy, which will
not cause environmental pollution during power generation.
Additionally, the power generation is considerable, making
it essential to distributed power systems [1], [2]. Because
PV power generation is easy to install, it is widely installed
in places such as home roofs. However, an arc fault in a
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PV system generates a high temperature of 20,000 K, which
causes electrical fires, making arc faults a major threat to PV
system safety [3], [4].

PV system arc faults are divided into series, parallel, and
ground-arc faults. Parallel arc faults and ground-arc faults
are easily cut off by overload protection circuit breakers
due to their large currents [5], [6]. However, due to the
load limitation of series arc faults, the current generated is
generally smaller than the normal current; thus, protection
by traditional protection devices such as traditional overload
protection circuit breakers is challenging. Therefore, series
arc faults are the focus of arc fault detection.

The threshold detection method, which uses current
characteristics, is the most widely used arc fault detection
method. Ahmadi et al. [7] decomposed the information
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matrix composed of voltage and current to obtain arc
characteristics. Chae et al. [8] simultaneously detected load
current characteristics in time and frequency domains based
on relative amplitude comparisons. Ahn et al. [9] used a
discrete wavelet transform to obtain the current frequency
domain signal and then used the zero range density as the
arc fault detection criterion to achieve effective arc faults
detection. Wang et al. [10] combined the current waveform
similarity and the voltage signal sag criterion and used
the Hausdorff distance algorithm to calculate the degree
of load-side voltage waveform distortion to identify arc
faults.

However, under different system operating conditions, the
variation range of the time-frequency domain characteristic
quantity of the arc fault is different. Additionally, it is
difficult to set the fault identification threshold accurately
based on engineering experience. In particular, the inverter
in a PV system is a power electronic device prone to
inevitable conduction interference in the bus current [11],
[12]; its frequency band overlaps with the arc current fre-
quency band, which seriously affects arc fault identification
accuracy.

In recent years, many scholars have applied artificial
intelligence methods to solve the arc fault identification
problem [13], [14]. Wang et al. [15] used the raw current
signal of an AC system as the input of a convolutional
neural network to detect arc faults. The proposed detection
model has a computing time of 30 ms for embedded
devices. Xing et al. [16] constructed a network structure
of CNN+LSTM to detect arc faults and predict arc fault
occurrence. Cai andWai et al. [17] used optimized variational
modal decomposition to extract arc features and utilized
support vector machine(SVM) as a classifier to identify arc
features. Similarly, Jiang et al. [18] also employ frequency
domain analysis methods to decompose current signals, using
the resulting current frequency domain features as input for
the SVM algorithm to achieve arc fault detection. Yan et al.
[19] built a sequential convolutional network to extract DC
arc current signal characteristics. Tang et al. [4] and Wang
et al. [20] use 1D convolution to extract arc features of
the original current signal and a fully connected neural
network to classify circuit states. Likewise, Jiang et al.
[21] also use a 1D convolution to extract features of high-
frequency components in current signals to identify arc
faults. Zhang et al. [22] integrates load classification with
arc fault detection by first utilizing event classification to
determine the type of load; it then selects the appropriate arc
fault detection algorithm based on the load type; ultimately,
the corresponding K-Nearest Neighbor algorithm applicable
to the identified load type is employed for arc detection.
Shen and Xu [23] analyze signals through empirical wavelet
transform, extracting frequency domain energy metrics of
different frequency bands, and ultimately input the extracted
frequency domain features into a fully connected neural
network to achieve arc fault detection.

The artificial intelligence method does not need to set the
recognition threshold manually to identify the fault arc. How-
ever, the current method based on machine learning needs
to extract arc features before training the network model [7].
Previous arc detection research has developed from the time
domain characteristics of arcs to high-order cumulants [24]
and singular values [25], which reflects the increasing
emphasis on arc feature selection. Arc feature extraction
needs to relies on continuous trial and error or adopting
an optimization method independent of the arc recognition
model [16], [26]. Because the deep neural network model
is a ‘‘black box’’, its internal behavior characteristics are
unknown, which may lead to a mismatch between the arc
features extracted by this method and those extracted by the
machine learning model. In addition, the current machine
learning algorithm has many network model parameters and
computations, making it impossible to apply to arc fault
circuit breakers using embedded microprocessors [27], [28].
Since the time from fault arc occurrence to fire is less than
2.5 seconds, the network model must be directly deployed to
the user and be lightweight enough to meet the requirements
of embedded microprocessors. Therefore, it is necessary to
determine the critical characteristics of fault arcs according
to the network model and optimize the network structure and
parameters to meet the application requirements of embedded
devices.

The attention mechanism can help the model select
effective and appropriately scaled features so that the model
can complete the task effectively. Embedding attention
mechanisms into other models is widely used in deep
learning [29], [30]. In addition to using the attention
mechanism to help models select valuable features, the
interpretability property of attention weights can also be used
to visualize data relationships. Song et al. [31] combined an
attention mechanism and long short-term memory (LSTM)
to analyze the dependencies of time series data in the
clinical domain. Lee et al. [32] proposed a model based
on the attention mechanism, which can select words with
semantic importance and emotional classification meaning
from documents without word- or phrase-level emotional
polarity information. Tran et al. [33] combined the idea of
bilinear projection with an attention mechanism. The pro-
posed architecture can detect and focus on crucial temporal
information and highlight the contribution and importance
of each temporal instance. We use the interpretability of
the attention mechanism to visualize the importance of arc
features and use this information as a guide to select key
feature frequency bands and optimize the network structure.
This process improves the reliability of the network model
and reduces the number of parameters and computations. The
main contributions of this paper are as follows:

1) To detect arc faults in PV systems, an experimental
platform was built to analyze arc faults at different current
levels and locations. The study also designed an experiment
to evaluate the robustness of the arc fault detection device
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(AFDD) in the UL 1699B standard against light mutation
interference caused by PV inverter start-up and shadow occlu-
sion. Simultaneously, to meet the development requirements
of higher power capacity of PV systems, in addition to
the 3 A, 8 A, 8.5 A, and 16 A current level experiments
specified in UL1699B, two larger current level arc tests
at 20 A and 25 A were added;

2) Due to the complexity and interference of PV system
working conditions, extracting critical fault arc features
for accurate detection is crucial. This study analyses the
power spectrum characteristics of the DC series arc current
signal in a PV system. It extracts critical characteristic
frequency bands in a targeted manner using the inter-
pretability of the attention mechanism. The results show that
this approach effectively distinguishes arc fault states from
normal working states and reduces the amount of misop-
eration caused by interference, improving fault detection
accuracy;

3) To meet the requirements of edge computing with
embedded microprocessors, the network model needs to be
lightweight and accurate enough to be deployed directly
to the user end. This study optimized the network model
based on the critical characteristics of the arc fault to reduce
the number of model parameters and calculations while
ensuring accuracy. The experimental results show that the
proposed lightweight algorithm can be implemented by a
Cortex M7-based microprocessor with a runtime of only
7.8 ms, outperforming other algorithms.

The paper is structured as follows: Section II introduces arc
data analysis, processing methods, and the creation of an arc
database. Section III outlines the proposed arc fault detection
model based on deep learning interpretability. In Section IV,
we discuss the arc feature selection process and optimization
of the arc identification model based on the interpretable
principle of the attention mechanism. We also present the
results from immunity tests and actual tests of the optimized
arc identification model. Finally, Section V contains the
conclusions of the paper. The overall flow of the article is
shown in Fig. 1.

II. DATA COLLECTION AND ANALYSIS
This section describes the acquisition and processing of the
PV arc data used and details the number of samples in the
dataset.

A. DATA COLLECTION
A test bench is constructed for UL1699B for data collection
and arc feature investigation, as shown in Fig. 2. The test
bench comprises a PV simulator, an arc generator, a PV
inverter, a decoupling network, and a module/conductor
impedance network. The PV simulator of Itech IT6018C is
used, which is a programmable power source capable of
simulating different outputs under different conditions, such
as a solar array, such as load changes, switch operations,
and shadow influences. The arc generator can trigger an

TABLE 1. Technical specifications of the experimental test bench for
series DC arc faults in PV systems.

arc by separating the moving electrode from the stationary
electrode at a speed of approximately 5 mm/s. Moreover,
the module and conductor impedances are considered since
the distributed capacitance of the DC bus can attenuate
the high-frequency components of the arc current. The
decoupling network is used for isolating noise from the
PV simulator. The parameters for the impedance network
are shown in Table 1. These parameters should be tuned
according to the length of the DC bus, whose typical value
is 80 m.

The arc test was carried out at the beginning and end of
the PV module (the string head and the string tail). The DC
arc current signal in the solid conductor may be attenuated
by impedance. To reduce the impact of this situation on DC
arc fault detection, a test is performed by adding conductor
impedance before and after the arc current signal acquisition
location in addition to the UL1699B standard required arc
current signal collection location. The four kinds of fault
arc current signal collection positions in the experiments are
shown in A1, A2, A3, and A4 in Fig. 2. Simultaneously,
to meet the development requirements of higher power
capacity PV systems, in addition to the 3 A, 8 A, 8.5 A,
and 16 A current level experiments specified in UL1699B,
two larger current level arc tests were performed at 20 A
and 25 A.

According to the Nyquist theorem, the sampled signal
can completely retain the original signal’s information when
the sampling rate is greater than twice the frequency of the
target acquisition signal. The PV DC series arc fault signal is
generally distributed in the 3 kHz-120 kHz frequency band
[27]. To collect as much of a complete DC arc fault signal
as possible and to reflect the high-frequency characteristics
more clearly, the sampling rate was set to 250 kHz in
the test.

B. CHARACTERISTIC ANALYSIS OF THE PV ARC
Because of the unpredictable location of the arc and the
difficulty in accurately measuring the arc voltage, the current
signal of the arc fault is usually used to identify the arc
fault. Since PV power generation is influenced by light
intensity and temperature, the current is more random than
that in an AC system, making it difficult to distinguish
the arc current signal from the normal current signal using
only time domain characteristics. Therefore, the frequency
domain feature of the DC arc fault current is analyzed. The

45532 VOLUME 12, 2024



Y. Wang et al.: Explainability Approach-Based Series Arc Fault Detection Method

FIGURE 1. Block diagram of the proposed method for series arc fault detection in PV systems based on an
explainability approach.

FIGURE 2. Schematic diagram of the test circuit layout, potential arc position, and data collection of the
experimental test bench.

discrete fourier transform (DFT) is a widely used signal
analysis method that can discretize the DC arc fault current
signal in the frequency domain [34], [35]. By dividing the
DC arc fault signal into several small signals of equal
length through the time window, the DFT can effectively
distinguish arc and nonarc features. Although other methods,
such as short-time Fourier transform and wavelet transform,
can distinguish arc and normal state features, DFT is
preferred due to its simple calculation, low application
threshold, and ability to arbitrarily select the number of
transformation points [7]. Therefore, this paper chooses
DFT to extract the characteristics of the arc fault current
signal.

Using the DFT to analyze the signal x(n), X(k) is still a
finite-length sequence of length N, and the transformation

process can be expressed as

X (k) = DFT[x(n)] =

N−1∑
n=0

x(n)e−j
2π
N kn

=

N−1∑
n=0

x(n)W kn
N , k ∈ [0,N − 1]. (1)

To accurately analyze the DC arc fault current signal,
determining an appropriate time window is necessary before
performing characteristic analysis. The smaller the time
window is, the better the temporal resolution of the spectrum
results, but this may overload the computing power of the
hardware processor. A time window that is too large will
put considerable pressure on the processor and affect its
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TABLE 2. Summary of experimental dataset categories and features used
for the design and validation of DC arc fault detection algorithm in PV
systems.

resolution in the time domain, whichmay reduce the real-time
performance of the detection scheme. To balance the real-
time requirements of the arc detection task and the resolution
of the arc characteristics in the frequency domain, this paper
selects a time window of 10 ms based on the AR model
proposed in [27]. This time window size is feasible for the
detection scheme and can provide effective features to for
distinguishing arc faults from normal states.

C. DATA PREPROCESSING AND CREATION OF AN ARC
DATABASE
For embedded practical applications, current signals are
collected by current transformers, and both normal state data
and arc data are collected under all experimental conditions.
A DFT is performed on the divided small signal segments.
The arc characteristics are mainly after 3 kHz, and there
is considerable low-frequency harmonic interference in the
frequency band below 3 kHz, which easily affects arc fault
identification. Therefore, the normalized spectrum data of the
3-125 kHz frequency band are used as the input of EArcNet.

Finally, the set-aside method is used to randomly divide
the dataset into 75% of the training set, 10% of the validation
set, and 15% of the test set. The number of divided datasets
is shown in Table 2.

III. EARCNET ANALYSIS
A convolutional neural network has excellent one-
dimensional sequence data classification capabilities and can
precisely extract the characteristics of the arc current and
normal operating current [15]. A series of deep learning
algorithms such as convolutional neural networks have high
arc fault identification accuracy. However, their powerful
learning ability comes at the cost of a large number of
network parameters and computations, making the model
size and computations far more than the memory capacity
and computing capabilities of the embedded microprocessor.
Therefore, it is necessary to apply the interpretability
technology of deep learning to arc fault identification, extract
key arc features, optimize the network structure, and reduce
the number of network parameters and calculations so that the
arc fault identification algorithm based on deep learning can
be applied to the AFDD with an embedded microprocessor
as the main application scenario.

TABLE 3. Comparison of the advantages and disadvantages of scaled
dot-product attention, additive attention, and convolutional attention.

The proposed EArcNet modifies the structural framework
of [15] and incorporates an attention mechanism. The
attention mechanism can enable the neural network to focus
on important information, thereby improving the network’s
ability to identify arc faults. The interpretability of the
attention mechanism enables one to grasp the decision-
making behavior of the network model [37], [38]: the key
feature frequency bands of PV arc faults are extracted by
visualizing feature weights, which improves the reliability of
the network.

In the current research, the attention mechanisms predom-
inantly employed encompass scaled dot-product attention,
additive attention, and convolutional attention. Table 3
provides a comparative analysis of the performance metrics
associated with these three attention mechanisms. Table 3
shows that while additive attention exhibits enhanced
handling capabilities for inputs of varying lengths, and
convolutional attention can capture both local and global
dependencies, the scaled dot-product attention mechanism
boasts superior computational efficiency. Given that the
task of arc fault detection places a significant emphasis
on the algorithm’s real-time performance, the scaled dot-
product attention mechanism has been selected due to its
higher computational efficiency. The schematic diagram of
the calculation process of the scaled dot-product attention
is illustrated in Fig. 3. In Fig. 3, Q (query), K (key), and V
(value) are derived from the following equations:

Q = WQXi
K = WKXi
V = WVXi

(2)

where Xi represents the input data, while WQ, WK , and WV
are the weight matrices corresponding to the query, key, and
value. WQ, WK , and WV are each a fully connected layer
containing 16 neurons.

The scaled dot-product attention computes attention scores
by calculating the dot product between the query and the
key. Subsequently, these scores are scaled by dividing by the
square root of the dimensionality of the key. The softmax
function is then applied to obtain the attention weights.
The output of the attention mechanism is calculated by
performing a dot product between the attention weights
and the value. The mathematical expression for scaled
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FIGURE 3. Schematic diagram of the calculation process of the scaled
dot-product Attention.

dot-product attention is:

Attention(Q,K ,V ) = Softmax(
QKT
√
dk

)V (3)

where dK denotes the dimensionality of the key.
In scaled dot-product attention, sinusoidal position encod-

ing is employed. This encoding method does not require
learning through training. By applying sine and cosine
functions of different frequencies to each position, a unique
encoding can be generated for each position. The calculation
formula for Sinusoidal Position Encoding is:

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
)

(4)

where PE(pos, 2i) and PE(pos, 2i + 1) respectively denote
the encodings at the positions of the 2i and 2i+ 1 columns in
the pos row of the encoding matrix, while dmodel represents
the dimensionality of embeddings within the model.

EArcNet uses 1D convolution to extract arc features,
and the feature extraction layer composed of multilayer
convolution optimizes the network parameters by repeated
back-propagation and forward-propagation. If the length of
the 1-D convolution vector f is l and the length of the
convolution kernel k is r, the result (f × k) of the jth
convolution kernel in the ith convolution can be expressed as

(f × k)(i) =

r∑
j=1

k(j)f
(
i−j+

r
2

)
. (5)

The rectified linear unit(ReLU) activation function ReLU can
be expressed as

ReLU(x) = Max(0, x). (6)

The cross-entropy loss function can be expressed as

Categorical Cross Entropy = −
1
N

∑
j

yj log
(
ŷj

)
(7)

where N is the total number of training data, y is the true label
of the training sample, and ŷ is the predicted label.

With each 10 ms window, 2500 current signal points
can be collected at a sampling rate of 250 kHz. After

FIGURE 4. Network architecture of the proposed EArcNet model
(FC stands for Fully Connected layer of the network).

performing the DFT transformation, 1250 energy spectrum
amplitudes are obtained. These energy spectrum amplitudes
are evenly distributed at 3-125 kHz, and the frequency
coordinates between every two energy spectrum amplitude
coordinates have a difference of 100 Hz. The normalized
energy spectrum amplitude is taken as the input data of
EArcNet; thus, the input size of EArcNet is 1220 × 1, and
the network structure of EArcNet is shown in Fig. 4. EArcNet
enters the input data into the attention module and then
inputs the features processed by the attention module into
a 1-dimensional convolution, maximum pooling, and fully
connected layer. The network has an attention module, 4 1D
convolutional layers, and 4 max-pooling layers followed by
three fully connected layers. The data output by the attention
mechanism is two-dimensional; it requires a dimensionality
increase operation before input into the convolutional layers.
Each convolutional layer is followed by a ReLU operation
and a max pooling layer. Each layer of the first and third
convolutional layers has 96 filters, the second convolutional
layer has 128 filters, and the fourth convolutional layer has
64 filters. All the filters in the convolutional layers have the
same kernel size of 5 × 1. The maximum pooling layer size
is 2 × 1, which can effectively reduce the feature map size
and improve computational efficiency. To accommodate the
length of the input data, the stride of the first and second
convolutional layers in EArcNet is set to 2, while the stride of
the third and fourth convolutional layers is set to 1. Similarly,
the stride of the first and second pooling layers is set to 2,
and the stride of the third and fourth pooling layers is set to
1. After the last max pooling layer, the flatten operation is
performed to reduce the dimensionality of the data, and three
fully connected layers with 64, 32, and 2 neurons are followed
by the flatten operation. The output layer is the classification
layer. The softmax function is used to convert the scores into
the probability that the sum is 1, and the class with the highest
probability is taken as the final classification state.

The EArcNet model is implemented in Keras using a
TensorFlow backend. During training, EArcNet employs an
adaptive learning rate technique with a batch size of 100.
The adaptive learning rate monitors ‘‘validation_loss’’ with
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FIGURE 5. Spectrum diagram of the measured current under the
conditions of normal operation, arc fault, inverter startup, and shadow
occlusion in PV systems.

a tolerance of 10. The initial learning rate is set to 0.001, and
the minimum learning rate is set to 0.00001.

IV. MODEL OPTIMIZATION BASED ON DEEP LEARNING
INTERPRETABILITY
This section analyses the experimental results of EArcNet.
Using deep learning explainability to extract key features
of the PV system arc energy spectrum and optimize the
EArcNet network structure. The optimized EArcNet is cross-
validated and experimentally verified, and an arc detection
algorithm based on an embedded microprocessor is proposed
and verified.

A. EXPERIMENTAL RESULTS AND ANALYSIS
When training EArcNet, we used an adaptive learning rate
strategy and trained for 120 epochs with a batch size of
100 and an initial learning rate of 0.00001. Finally, the
accuracy of EArcNet in identifying arc faults is 99.78%,
which verifies that EArcNet is competent for arc fault
identification tasks.

B. KEY FREQUENCY BAND SELECTION BASED ON DEEP
LEARNING INTERPRETABILITY
Selecting the characteristic frequency band for a PV arc is
crucial for arc fault identification. Fig. 5 shows that the PV
system arc fault feature is mainly distributed in the 3-125 kHz
frequency range. However, in the frequency range after
20 kHz, the energy spectra of the arc state, normal operation
state, inverter startup, and shadow occlusion overlap in some
frequency bands. Energy spectra of overlapping frequency
bands will not be helpful for arc fault identification and may
even reduce the model’s accuracy. Therefore, key arc features
beneficial for arc fault identification must be extracted from
the 3-125 kHz arc characteristics.

The attention mechanism embedded in EArcNet allows
us to directly inspect the inner workings of deep learning
architectures [38], [39], making EArcNet interpretable.
Attention mechanisms improve the model’s local inter-
pretability to some extent. They act like transparent windows,
allowing us to see the importance of arc characteristics,

FIGURE 6. Attention weights of the proposed EArcNet model for each
current spectrum subband: (a) normal operation and (b) arc faults.

which is crucial in arc fault identification, especially in arc
feature selection. According to the attention weight of the
arc characteristic frequency band, EArcNet can check its
recognition of arc characteristics, visualize the importance of
arc characteristics, and extract key arc fault characteristics.

Fig. 6(a) shows the attention weights of EArcNet when
identifying nonarcs and Fig. 6(b) shows the arc data.
To determine the importance of feature bands, we extract
the attention weights of EArcNet when identifying the arcs
and normal states under all working conditions and calculate
their average values. We resampled the 3-125 kHz band with
a step size of 5 kHz and a width of 10 kHz, resulting in
24 subbands of 10 kHz each, and calculated the sum of
the attention weights within each subband. We found that
EArcNet mainly focused on the energy spectrum features
of the 8-18 kHz sub-band when identifying arc data, while
it also paid attention to the energy spectrum features of the
28-38 kHz subband when identifying nonarc data. Moreover,
from Fig. 6 we can observe that the critical features of arc
data are mainly concentrated below 23 kHz, while those of
nonarc data are distributed in a broader range. To reduce
the input dimension and computations of the neural network
and meet the real-time and memory requirements of the
embedded microprocessor, we extracted the joint energy
spectrum feature band consisting of the highest weight sub-
band 8-18 kHz for arc data and important weight sub-band
28-38 kHz for non-arc data and retrained EArcNet.

C. NETWORK OPTIMIZATION BASED ON DEEP LEARNING
INTERPRETABILITY
Although EArcNet achieved satisfactory arc fault detection
accuracy, it had four convolutional layers and three fully
connected layers, which exceeded the memory capacity and
computational power of the microcontroller. To reduce the
input feature dimension, we use the joint energy spectrum
feature band as input to EArcNet and we simplify the
network structure by removing convolutional, pooling, and
fully connected layers. We refer to the optimized version
of EArcNet as EArcNet-Lite, its structure is illustrated
in Fig. 7. After the attention mechanism, EArcNet-Lite
had only one convolutional layer with 64 filters and one
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FIGURE 7. Network architecture of the proposed EArcNet-Lite model (FC
stands for Fully Connected layer of the network).

TABLE 4. Confusion matrix, precision, recall, and overall accuracy of the
proposed EArcNet-Lite model.

TABLE 5. Comparison of total parameters and arc fault detection
accuracies between EArcNet-light and EArcNet models.

max pooling layer of size 2 × 1. After the max pooling
layer, we perform a flattening operation to reduce the data
dimension and add three fully connected layers with 64, 32,
and 2 neurons. A softmax function was used as the output
layer following the last FC layer. We trained the model using
the extracted joint energy spectrum feature band and fine-
tuned the hyperparameters to maximize its arc fault detection
accuracy.

Table 4 shows the confusion matrix for EArcNet-Lite
training. The precision, recall, and precision were assessed
with respect to the Table 4 confusionmatrix to evaluate model
performance. The EArcNet-Lite model has an accuracy of
99.63%, a recall of 99.77%, and precision of 99.46%. Both
the accuracy and recall rates reach more than 99%, which
verifies that EArcNet-Lite is competent for the task of arc
fault identification.

Table 5 compares the characteristics and precision of
EArcNet with those of EArcNet-Lite. The experimental
results show that when the critical energy spectral features
of arcs extracted based on deep learning interpretability
are used as arc detection features, EArcNet-Lite can still
maintain 99.63% accuracy even if the optimized network
model parameters are only 48.48% of those of EArcNet.

FIGURE 8. t-SNE visualization results for each dataset: (a) original current
data, (b) data extracted by the DFT-based method, and (c) data extracted
by the proposed joint subband-based method.

Since the network needs to learn fewer features, the
extracted joint frequency bands are more representative of
PV arc faults.The experimental findings indicate that the
characteristic frequency bands of the arc critical energy
spectrum that were extracted based on interpretability can
accurately represent the arc characteristics and reduce the
number of network parameters and computations while
maintaining network identification accuracy.

D. T-SNE DATA DISTRIBUTION VISUALIZATION
To further demonstrate the ability of our attention mechanism
to extract key arc fault features, we used t-SNE [40],
a dimensionality reduction technique in manifold learning,
to visualize and compare the original current data, the energy
spectrum data extracted by DFT, and the key arc fault features
extracted by the attention mechanism. The experimental
results are shown in Fig. 8. Fig. 8(a) shows the distribution
of the original current data, for which distinguishing between
the arc fault and normal state is difficult due to randomness
and redundancy. Fig. 8(b) shows the energy spectrum data
extracted by the DFT, which have slight overlaps but are
still not well clustered. Fig. 8(c) shows the arc fault key
features extracted by the attention mechanism, which have
large clusters for both arc fault and normal state data,
providing good knowledge extraction for the subsequent
network model. The t-SNE visualization results validate
the significance of our attention-based arc fault key feature
extraction approach.

E. ABLATION EXPERIMENT
An ablation experiment is designed to explore the influence
of the key arc characteristics and network model optimization
proposed in this paper on algorithm performance. We trained
and tested the EArcNet and EArcNet-Lite models with two
different input datasets to compare their arc fault detection
performances. The introduction is as follows:

EArcNet (3-125 kHz): Using the EArcNet model, the input
data are the current energy spectrum amplitude of 3-125 kHz,
so the input dimension is 1220 × 1.

EArcNet (joint frequency band):Using the EArcNetmodel,
the input data is the optimized key arc features, so the input
dimensions are 200 × 1.
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TABLE 6. Comparison of total parameters, floating points operations per
second(FLOPs), and arc fault detection accuracy of the models from
ablation experiments.

EArcNet-Lite (3-125 kHz):Using the EArcNet-Lite model,
the input data are the current energy spectrum amplitude of
3-125 kHz, so the input dimension is 1220 × 1.
EArcNet-Lite (joint frequency band): Using the EArcNet-

Lite model, the input data are the optimized key arc features,
so the input dimension is 200 × 1.
EArcNet (3-125 kHz) and EArcNet (joint frequency band)

have the same number of network layers and convolution
kernel sizes except for different input dimensions. We fine-
tuned the hyperparameters for each scheme to achieve
optimal accuracy. Table 6 shows the comparison results of
the four schemes in the ablation experiment.

Compared with EArcNet-Lite, EArcNet has deeper net-
work layers and can learn more knowledge. Compared
with 3-125 kHz, the key characteristic frequency band of
the arc extracted through interpretability analysis avoids
the influence of interference in the system on arc fault
identification. Therefore, EArcNet (joint frequency band)
has the highest accuracy rate. However, the deeper network
structure of EArcNet (joint frequency band) also makes it
more computationally intensive, as it outperforms the RAM
of the i.MX RT1064 used in this article, and ultimately
cannot run in the embedded microprocessor. Therefore, it is
necessary to optimize EArcNet. EArcNet-Lite (3-125 kHz)
only optimizes EArcNet but does not use interpretable
analysis to extract key arc characteristic frequency bands.
A reduction in the network depth reduces the fitting ability of
the network, and 3-125 kHz frequencies include interference
frequency bands that are likely to interfere with arc fault
detection, so the network depth has the lowest recognition
accuracy. Although EArcNet-Lite sacrifices part of its fitting
ability, EArcNet-Lite (joint frequency band) extracts key
characteristic frequency bands that can characterize arc faults
based on interpretability analysis. Therefore, an accuracy
rate of 99.63% can be maintained, and the calculation time
of the i.MX RT1064 embedded microprocessor is only
7.8 ms, which meets the requirements of outstanding real-
time performance and high arc fault detection accuracy.

In summary, introducing interpretability provides evident
benefits, which manifest in two main aspects:

1) Resolution of key feature extraction in arc fault iden-
tification: We effectively extract critical arc fault frequency
bands through interpretability analysis, avoiding interference
bands and significantly enhancing arc fault identification
accuracy. Specifically, we use the visualization of the
attention weight distribution to identify the importance of arc

TABLE 7. Performance evaluation of EArcNet and EArcNet-Lite under
different testing conditions.

features and select critical feature bands in the photovoltaic
system’s arc energy spectrum. This interpretable critical
feature extraction method enables the model to maintain high
accuracy while reducing the number of input dimensions and
avoiding frequency bands with interfering features.

2) The feature extraction pressure of the EArcNet-lite
model is reduced. Thismethod also helps to reduce the feature
extraction pressure on EArcNet-Lite, by reducing its input
data volume, parameter volume, and calculation volume,
allowing EArcNet-Lite to be easily deployed on embedded
microprocessors, promoting the industrial application of
artificial intelligence technology in arc fault identification.

F. IMMUNITY TEST
The shading of PV panels and the startup process of inverters
interfere with PV arc fault detection. To test the anti-
interference performance, 60 sets of samples were collected
for each situation to form a dataset. Table 7 summarizes
the results of the anti-interference tests. EArcNet-Lite,
based on key arc features, can eliminate both interferences.
EArcNet-Lite uses attention weights to extract feature bands
that contribute the most to arc identification and avoid
interference bands, thus improving the anti-interference
ability of the detection scheme. Although EArcNet has
a slightly higher accuracy in the validation set, it has
two misjudgments in the inverter startup interference test,
resulting in an accuracy decrease to 95% because both
inverter startup and shading occlusion change the current
magnitude of the PV system. The transient change in the
time domain also affects frequency domain features, causing
interference features to overlap with arc features, leading to
network model misjudgment. In contrast, the current changes
faster during inverter startup, and power electronic devices in
the inverter also generate switching noise to interfere with arc
fault identification, decreasing the resistance of the original
scheme to interference during the inverter startup process.

G. HARDWARE VERIFICATION OF ARC DETECTION
ALGORITHMS
To evaluate the performance of EArcNet-Lite, we separately
validate the EArcNet-Lite model and the entire arc detection
algorithm on i.MX RT10646. i.MX RT1064With a 600 MHz
ARM Cortex-M7 CPU and 1M capacity SRAM. In i.MX
RT1064, the prestored data are used to verify the EArcNet-
Litemodel. First, the current data collected by the transformer
are prestored in i.MX RT1064. Then each data sample is
subjected to data preprocessing, and the processed joint
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FIGURE 9. Prototype and experimental test bench for arc fault detection
and performance evaluation.

energy spectrum data are input into the EArcNet-Lite model
for testing. Finally, the average running time of all test
samples is calculated. The final running time of the EArcNet-
Lite model and data preprocessing on the i.MX RT1064
is 7.8 ms, which can meet the real-time requirements of
photovoltaic arc detection.

The accuracy of the arc detectionmodel is not 100%,which
may cause the AFDD to malfunction. As a result, the running
status cannot be obtained from detecting only a single piece of
data. Therefore, wemake the AFDD generate an action signal
only when three arc fault signals are detected consecutively.
Finally, we use the apparent diffusion coefficient(ADC) and
timer on an i.MX RT1064 to collect the data and preprocess
the collected data to test the entire arc detection algorithm.
The verification platform of the arc fault detection algorithm
is shown in Fig. 9, and the test results are shown in Fig. 10.
According to the experimental results, the time required for
AFDD to detect arc faults via the EArcNet-Lite detection
algorithm is 43 ms, because the third sampling window is
generated in the fourth sampling window. The test results
show that the algorithm proposed in this paper can meet the
real-time requirements of arc fault detection in PV systems.

Validating the interference resistance of EArcNet-Lite
using the i.MX RT1064 microprocessor is equally crucial.
Fig. 11 presents the interference test during the inverter
startup process. Fig. 12 demonstrates the disturbance test
conditions caused by intermittent weather factors such as
shading on the PV system’s current variation. In these
interference tests, the copper rod electrode maintains close
contact without generating an electric arc, effectively creating
short-circuit conditions; hence, the arc voltage remains
consistent at zero. The results reveal that, regardless of
whether the inverter is started or due to current variations
induced by intermittent weather factors, EArcNet-Lite does
not experience any false detections. In experimental testing,
AFDD did not cause misjudgments or missed judgments in
arc fault detection or anti-interference testing. Through the
experimental results of the AFDD, we verify the reliability

FIGURE 10. Response time of the proposed model for series DC arc fault
detection in PV systems.

FIGURE 11. Test result of the proposed algorithm under inverter startup
test conditions (no unwanted tripping).

FIGURE 12. Test result of the proposed algorithm under intermittent
weather test conditions of shadow occlusion (no unwanted tripping).

of EArcNet-Lite in operating on an arc database with an
accuracy of 99.63%, further confirming that EArcNet-Lite
not only possesses high computational speed but also exhibits
remarkable resistance to interference.

H. COMPARISON AND DISCUSSION OF DIFFERENT
METHODS
To better illustrate the effectiveness of the EArcNet-Lite
algorithm, a comparison is made with other PV arc
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TABLE 8. Comparative analysis of arc fault detection capabilities and operating environments: EArcNet vs. contemporary advanced methods.

detection algorithms. This comparison covers a variety of
factors, including the type of classifier used, sampling rate,
accuracy rate, verification platform, average running time,
whether different arc occurrence conditions are considered,
whether inverter startup interference can be avoided and
whether shadow occlusion interference can be prevented. The
algorithm verification platform and operation time in Table 8
are from the original paper.

Algorithm A [32] uses a convolutional neural network to
extract static features and a long-short-term memory network
to capture dynamic time-varying features. Algorithm B [17]
employs variational modal decomposition to extract fault
information from the current signal and a particle swarm
optimization-based SVM for classification. Algorithm C [41]
arranges the PV loop currents into a two-dimensional matrix
for DC series arc fault diagnosis. Algorithm D [19] employs
a temporal convolution network to extract features from
current waveforms. Algorithm E [28] utilizes random forests
to extract characteristics of electric arcs. Algorithm F [14]
constructs three continuous windows of DC bus terminal
voltage and current into an information matrix, which
principal component analysis (PCA) decomposes.

Table 8 demonstrates the superiority of the EArcNet-Lite
algorithm in terms of detection accuracy, speed, required
hardware and computing resources. Although Algorithm A
has a lower calculation time of 4.3 ms, its dependence on
a high-performance computer platform limits its practical
application. Additionally, Algorithm A does not consider
shadow interference or different conditions of arc occurrence,
which limits its application scope. The input feature selection
of Algorithms A, B, and C relies on trial and error,
while the EArcNet-Lite algorithm utilizes deep learning
interpretability technology to select reliable arc features.
While Algorithms D and E resolved the issue of extracting
features from electric arc faults, they entail a substantial
computational load, with processing times exceeding 150ms.
This is markedly greater than the 7.8 ms computational time
achieved by the algorithm presented in this paper. Although
Algorithm F requires the least computational resources and
has a fast computation time, its dependence on a fixed
threshold makes it unsuitable for application in power supply
and distribution environments with considerable interference.

In summary, the EArcNet-Lite algorithm uses an attention
mechanism to extract key features of fault arcs and uses a
neural network to establish arc fault identification conditions,
considering various experimental conditions and interference
in UL1699B. In addition, larger current levels of 20 A
and 25 A are considered according to the development trend
of PV systems. It can be used in embedded microprocessors
and has good running speed and detection accuracy, making
it superior to other methods.

V. CONCLUSION
An attention-based approach called EArcNet is proposed for
series arc fault detection in PV systems. The database used for
model training included the test currents of 3 A, 8 A, 8.5 A,
and 16 A, as specified by the UL1699B standard. In addition,
larger current levels of 20 A and 25 A are considered
according to the development trend of PV systems. The
decision-making behavior of EArcNet is visualized using
the interpretable principle of the attention mechanism, which
can be helpful for generating lightweight input data and
algorithm structures. Therefore, compared with the original
model, EArcNet-Lite can achieve a detection accuracy of
99.63% with only 48.48% of the parameters. The data of
two disturbance conditions, shadow occlusion and inverter
startup, are collected for algorithm verification. Although
the absolute accuracy of this method is not the highest
compared with other methods, the proposed method is
lightweight enough to be implemented by the Cortex M7-
based microprocessor i.MX RT1064 as a commercial AFDD.
In addition, the single runtime of the algorithm only needs
7.8 ms, which can fully meet the requirement of a UL1699B
of less than 2500 ms.
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