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ABSTRACT In today’s and future wireless communications, especially in 5G and 6G networks, machine
learning (ML) methods are crucial. Potentially, these techniques bring many benefits such as increased
data throughput, improved security, reduced latency, and, on the whole, enhanced network efficiency.
Furthermore, to facilitate the processing of large amounts of data in real-time situations, machine learning is
used for various functions in wireless networks. This article aims to explore the significance and application
of machine learning, with a particular focus on classic reinforcement learning, in the context of predicting
optimal beam configurations within wireless communications scenarios. Our goal is to minimize interference
between transmitters by finding the optimal beamforming angles. For this, ray tracing techniques are
deployed. We see this research as a step forward towards integrating digital twin (DT) technology in network
management and control. In this article, different machine learning methods are used and their performance
is compared. Firstly, the most effective angles for beamforming, maximizing channel capacity are identified.
Then, by using these methods and after verifying their accuracy, the optimal antenna angles in scenarios with

an increased number of transmitters and receivers is found and evaluated.

INDEX TERMS Beamforming, machine learning, network capacity, ray-tracing.

I. INTRODUCTION
For reaching the ambitious goals of next generation networks,
more optimal utilization of the limited resource bandwidth
by spatial re-use and multiplexing is needed. To meet the
evolving demands of future networks, 6G is slated to embrace
an extensive integration of artificial intelligence (AI) and
machine learning (ML) techniques [1]. This deployment of
Al and ML is aimed at achieving heightened automation
and superior operational reliability, currently unattainable by
the incumbent 5G technology [2]. Many research endeavors
are already underway to lay the foundations for 6G wireless
communication networks.

Machine learning, which mimics human cognitive pro-
cesses, is critical for improving wireless communication in
various ways. It enhances computer vision, image processing,
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parallel processing, distributed processing, analytics, and
prediction capabilities [3]. In machine learning, models are
extensively trained using datasets to ensure they perform well
across a variety of examples. This is particularly crucial for
tasks such as image classification and sentiment analysis [4].
The use of machine learning in controlling communica-
tion systems has seen significant growth recently [5], [6],
[7], [8], [9]. Key references cover a range of applications,
including source and channel coding [10], [11], [12], wave-
form design [13], signal detection [14], [15], [16], resource
allocation [17], [18], [19], [20], [21], [22], and channel esti-
mation [23], [24], among others. This expanding field, [5]
highlights the effectiveness of a machine-learning approach
in automatically finding optimal solutions based on training
data.

Additionally, Federated Learning (FL) emerges as an inno-
vative solution, tackling both AI’s data demands and the
crucial aspect of privacy protection. It has positioned itself as
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aleading method in machine learning [25]. Exploring the syn-
ergy between machine learning and wireless communication
system design, another study provides three practical exam-
ples [5]. In the first example, machine learning optimizes
reflection coefficients, enhancing performance by bypassing
channel estimation. The second example explores distributed
source coding in massive Multiple Input Multiple Output
(MIMO), emphasizing the feasibility of short block-length
code design for significant performance gains and the third
example illustrates machine learning’s role in navigating the
optimization landscape for millimeter-wave initial alignment
in a complex sequential learning problem [5]. Furthermore,
in the context of the B5G network, ML-enabled scheduling
is highlighted for its crucial role in reducing queuing latency
and ensuring reliable services [3]. In [26], a reinforcement-
learning-based framework is presented for wireless channel
access mechanisms in IEEE 802.11 standards, particu-
larly in the context of Massive Internet of Things (mloT).
Reference [27] classifies application scenarios, including
strengthened eMBB/mMTC/uRLLC and novel scenarios like
space—air—ground—sea integrated networks and Al-enabled
networks. These scenarios illustrate the integration of Al
and big data techniques with key technologies and appli-
cations, improving their comprehensive utility. A different
perspective is explained by a study that outlines ten key roles
for machine learning in joint sensing and communication
(JSC), sensing-aided communication, and communication-
aided sensing [28]. Additionally, [29] proposes an RL-based
model for RADAR operation prediction, facilitating the iden-
tification of unused communication channels. Reference [30]
recommends the development of ad hoc AI/ML models to
enhance their practical usability. Reference [31] clarifies the
potential of machine learning in the link-to-link aspects of
communication systems, with a focus on neural-network-
based reinforcement learning algorithms and on-orbit testing.

In addition, beamforming as a technique recognized for
its capacity to enhance wireless communication performance,
holds promise for increasing 6G internet capabilities. In [32]
Qi et al. present a novel 6G IoT network with UAVs
and Intelligent Reflective Surfaces (IRS) for efficient data
transmission by backscattering communication (BackCom).
IRS, using beamforming, enhances signal energy, improv-
ing BackCom system performance and range. In [33] Thsan
and et al. aim to improve energy efficiency in 6G wireless
communication using intelligent reflective surfaces (IRS) in
a non-orthogonal multiple access beamforming (NOMA-BF)
system. It optimizes beamforming, power allocation, and
performance while keeping complexity low. In [34] Jiang and
et al. present a novel initial beamforming approach that uses
complementary beams to achieve an equal gain in all direc-
tions, ensuring comprehensive coverage. Numerical results
confirm its potential for significantly enhancing 6G internet
performance.

This article investigates the practical application of
machine learning, especially reinforcement learning and, for
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comparison, a Monte Carlo approach. Ray tracing simula-
tions are used, for detecting the best angles for beamforming
in transmitters and receivers, thereby aiming to achieve
the maximum total channel capacity. To our knowledge,
no article has employed classic machine learning methods
to determine optimal angles for antennas on transmitters and
receivers using ray tracing in a indoor room environment and
subsequently compared these approaches based on channel
capacity.

In Section II, an overview of machine learning, with
a particular focus on reinforcement learning, is provided.
Furthermore, it is also briefly explained how the Monte
Carlo method is applied. Section III offers extensive informa-
tion on the experimental setup, clarifying the methodology
employed for antenna pattern generation and detailing the
classic reinforcement learning methods and Monte Carlo
method utilized. The ensuing section, Section IV, presents
the results of our simulations and of our analytical efforts.
In Section V, we provide conclusions from our findings.
Additionally, we outline potential areas for future research
in this field.

Il. OVERVIEW OF MACHINE LEARNING IN WIRELESS
NETWORK OPERATION

Machine Learning (ML) is highly useful for solving com-
plex problems with intricate patterns, like those found in
tasks such as network density and traffic load estimation.
ML techniques are typically classified into supervised learn-
ing (SL), unsupervised learning (uSL), and Reinforcement
Learning (RL) [35]. In supervised learning, the agent learns
from labeled data with clear input-output pairs. Unsupervised
learning, on the other hand, does not require labeled data and
relies on the inherent structure of the data. Reinforcement
Learning (RL), the main approach in this article, involves
a dynamic balance between exploration and exploitation in
an environment, using both labeled and unlabeled input data.
In RL, the goal is to maximize expected rewards by learn-
ing the best policies and actions that connect current states
to unknown future states in the environment. This learning
process involves states, actions, rewards, and state-transition
probabilities, which together define the new environment.
RL-aware frameworks are well-suited for next-generation
wireless communications because of their adaptability and
effectiveness. Notably, RL algorithms have lower computa-
tional complexity compared to other supervised and unsuper-
vised techniques, as they learn from real-time experiences
rather than relying on preexisting datasets. This approach
involves a balance between exploration (randomly selecting
actions with a probability ‘c’) and exploitation (choosing
actions with the highest value function with a probability
of ‘1 - ¢”). This exploration-exploitation trade-off is pivotal
in determining the optimal solution [26]. Fig. 1 offers an
overview of various Machine Learning (ML) algorithms, with
a specific focus on Reinforcement Learning (RL) - algorithms
that we will examine more in the future.
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FIGURE 1. An overview of machine learning algorithms.

Reinforcement Learning (RL) is a crucial part of machine
learning that focuses on creating smart agents capable of
making a series of decisions. These agents aim to maximize
a total reward, representing rational and goal-oriented
behavior [36].

Initially, we explored supervised learning methods in our
research. However, we faced challenges due to nonlinear
relationships and complex interactions among antenna angles
and maximum total channel capacity. The complexity of the
data made regression techniques impractical. Consequently,
we changed our focus to classic reinforcement learning
(RL) and Monte Carlo as a stochastic method. RL, known
for effectively handling nonlinearity and decoding complex
relationships in data, became a more suitable and effective
approach for covering our specific problem. In addition,
in a scenario involving a massive number of combinations,
evaluating all possible configurations exhaustively may not
be feasible. Monte Carlo methods allow us to explore a
representative subset of the solution space by randomly
sampling configurations [37]. This approach provides a
reasonable approximation of the optimal solution while sig-
nificantly reducing the computational burden associated with
an exhaustive search [37]. The motivation behind compar-
ing reinforcement learning (RL) with Monte Carlo methods
stems from their distinct approaches to problem-solving
and decision-making. Each methodology possesses distinct
strengths and weaknesses, prompting a comparative analysis
to evaluate which approach proves more effective within a
specific context. In the following discussion, we will briefly
introduce the Monte Carlo method and some potentially
suitable RL methodologies.

A. MONTE CARLO
Monte Carlo methods are a general class of computational
algorithms that rely on random sampling to obtain numerical
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results. They are especially suitable for tasks structured in
episodes, where the agent interacts with the environment
and gathers returns [37]. In such episodic tasks, the agent
interacts with the environment over a sequence of episodes,
with each episode consisting of a series of steps or time-steps.
In mathematical terms, they approximate the action-value
function Q (s, a) by averaging returns obtained from multiple
episodes:

1
06~ D Gilsa) M

The averaging process involves sampling and averaging the
returns achieved by taking a specific action in a particular
state across different episodes. This allows for a more robust
estimation of the action’s value in that state, as it considers
the variability in returns across different episodes [36].

B. Q-LEARNING

Q-learning is a fundamental reinforcement learning algorithm
that trains an agent to make sequential decisions to maximize
cumulative rewards in an environment. It is model-free,
requiring no prior knowledge of the environment’s dynamics,
and is off-policy, allowing it to learn from past experi-
ences [38], [39]. The central concept in Q-learning is the
Q-value, denoted as Q (s, a), which signifies the expected
cumulative reward when taking action ‘a’ in state ‘s’ and
subsequently following the optimal policy. Q-values are iter-
atively updated using the Bellman equation [38]:

0(s,a) < Q(s,a) +a[R+y.max[Q(s',d) — O (s, a)]]
(2)

where:

e O (s, a) is the Q-value for state-action pair (s, a).

e o is the learning rate, determining the step size in
updates.

e R is the immediate reward received after taking action
‘a’ instate ‘s’.

e y is the discount factor that balances immediate and
future rewards.

+ Q(s', @) represents the Q-value for the next state-action
pair after the action ‘a’ is taken in state ‘s’.

Through a process of exploration and exploitation,
Q-learning guides the agent to refine its Q-values over time,
enabling it to make better decisions. Q-learning is particularly
effective in solving problems where agents must learn to nav-
igate uncertain environments to maximize their cumulative
rewards [39], [40].

C. DOUBLE Q-LEARNING

Double Q-learning is a sophisticated technique within the
domain of reinforcement learning. It was developed to adjust
a common challenge known as overestimation bias, which
can lead to inaccuracies in estimating the values of actions.
This method extends the conventional Q-learning frame-
work by introducing two distinct Q-value functions and
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employs an alternating approach during the learning process
[39], [40]. In mathematical terms, Double Q-learning
involves the following steps:

1) Initialization of two separate sets of Q-values, denoted
as Q1(s,a) and Q»(s, a) where s signifies the state, and a
represents the action.

2) During each learning iteration, a decision is made
between these two sets of Q-values with a 50% probability:

o if rand () < 0.5,Q; is updated using the Bellman

equation:

Q1 (s,a) < Q1 (s, a)
+ a[R + y.02(s', argmax 01 (s', a) — Q1 (s, a)]

e if rand () > 0.5, O, is updated similarly:

Q0a(s, a) < Qa(s,a) + a.[R+ y.0i(s', argmax,0a(s', a)
— Oa(s, a)]]

3) The agent consistently alternates between Q; and Q>
during learning iterations, which effectively decreases the
problem of overestimation bias.

Double Q-learning finds particular relevance in scenarios
where accurately estimating action values is critical, as it
helps prevent potential inaccuracies that can adversely affect
decision-making in dynamic environments [41], [42].

D. SARSA (STATE-ACTION-REWARD-STATE-ACTION)
SARSA, or State-Action-Reward-State-Action, is a rein-
forcement learning technique where an agent learns to
make decisions within an environment. It associates states
(environmental conditions), actions (choices), and rewards
(immediate outcomes). SARSA aims to optimize cumula-
tive rewards over time [43]. In SARSA, the agent estimates
Q-values for state-action pairs (Q (s, a)). It updates these
estimates using a formula:

0(S,A) < Q. A+a.[R+y.0(5 A)—0(S.4)]
3)

where:

« « (alpha) is the learning rate, controlling update size.

¢ R is the immediate reward.

o y (gamma) is the discount factor, valuing future rewards.

o (8, A") represents the next state-action pair based on the

agent’s policy.

In summation, SARSA is a basic algorithm for reinforcement
learning, emphasizing on-policy learning, where decisions
are made in line with the current policy. Through the
estimation of Q-values, SARSA prepares agents to make
progressively informed decisions within a dynamic and
uncertain environment, ultimately optimizing their long-term
rewards [43].

E. EXPECTED SARSA
Expected SARSA is a reinforcement learning algorithm
that estimates the expected value of action-values under the
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current policy. It’s less sensitive to noise in the environment
compared to SARSA [43], [44].
The algorithm updates its estimates using the formula:

Q(s,a) < Q(s,@) +a[R+y D w(dls) — Qs, )] (4)

In this formula:

o QO (s, a) represents the estimated action-value.

o « is the learning rate.

o R is the immediate reward.

« y is the discount factor.

o 7 (d' | s') is the probability of taking action @’ in the next

state s'.
Expected SARSA calculates the expected value by combin-
ing Q-values for all possible next-state actions, weighted by
their probabilities according to the current policy ’7r’. This
reduces sensitivity to noisy rewards, making it a robust choice
for uncertain environments [44], [45].

Moreover, it’s important to note that the computational
complexity of the four learning methods—Q-Learning,
Double Q-Learning, SARSA, and Expected SARSA—is
O(S*A), where S represents the number of states in the
problem and A represents the number of possible actions
in each state. Additionally, for the Monte Carlo Method,
the complexity is O(SxA%T), with T denoting the episode
length [39], [40], [41], [42], [43], [44], [45].

A more detailed discussion on these ML categories and
techniques is out of the scope of this article, and we suggest
readers refer to [38], [39], [40], [41], [42], [43], and [44] for
further details.

IIl. EXPERIMENTAL SETUP

In this section, the focus is on maximizing the total chan-
nel capacity by exploring transmitter (Tx) and receiver (Rx)
beamforming angles. A wide range from -60 to +60 degrees
in a 5-degree step size is covered, totaling 25* = 390,625
combinations. Fig. 2 shows the setup of a 3D room model
(“office.stl”’) measuring 8m x 5Sm x 2.75m. In our model,
the mmWave communication nodes are configured to operate
at a frequency of 60 GHz with a bandwidth of 2 GHz. The
transmit power is 0.5 W. The gain of each antenna varies
based on its beamforming angle and is not constant. However,
the maximum antenna gain reaches 15.95 dBi. The four
nodes deploy antennas arranged in a 8§ x 4 Uniform Rect-
angular Array (URA) each, with half-wavelength spacing
between elements. The exact locations of transmitters (Tx)
and receivers (Rx) are specified as:

Tx:(0.02, 8, 2)

Txz: (5, 8,2)

Rxi: (4.5, 3.5,0.85)

Rxz: (2, 4, 0.85)

It’s important to note that the setup we’re discussing here
doesn’t involve any unique or specific room conditions.
Instead, it’s based on a standard layout that’s readily available
within the MATLAB environment. We’ve opted for a gen-
eral room setup and layout with a generalized configuration.
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FIGURE 2. (a) The 3D room layout model. (b) The antenna placement in
the model room.

Additionally, the choice of antenna locations isn’t tied to any
particular scenario. We anticipate that the conclusions drawn
won’t be affected even if we were to alter the rooms and
locations of the antennas.

Raytracing is employed for channel modeling, allowing
one maximum reflection with a “concrete’ surface material
to evaluate the channel capacity across various Tx and Rx
angles. Antenna patterns are calculated within our compu-
tational framework using MATLAB’s Phased Array System
Toolbox, employing these four key steps:

1. Creating a steering vector to represent the antenna
array’s spatial response.

2. Defining desired scan angles for the main lobe beam.

3. Calculating beamforming weights.

4. Using the pattern function to compute the antenna
array’s radiation pattern.

Various radiation patterns are created by customizing scan
angles and weights, considering antenna element options
such as ‘‘patchMicrostrip” and ‘‘phased.CosineAntenna
Element”. Custom antenna elements are generated based on
these patterns, and transmitter (““Tx”’) and receiver (“Rx”’)
objects are constructed accordingly. Path characteristics for
selected rays, including path loss, phase, angle of departure
(AoD), and angle of arrival (AoA), are then calculated. The
Signal-to-Noise and Interference Ratio (SNIR) depends on
the specific interference generated by each transmitter for
the others. This variability is influenced by the particular
radiation pattern employed in the system.

IV. SIMULATION RESULTS
In the subsequent section, our approach will cover
two distinct implementation phases. In the initial phase,
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emphasis will be placed on evaluating the precision and
accuracy of the learning methods. Subsequently, in the second
phase, when the computational demands of exhaustive search
become impractical, according to the accuracy determined in
Phase 1 will be utilized to predict optimal transmit-receive
angles and calculate the maximum attainable channel
capacity using these learning methods.

PHASE I: Validation Using 2 Tx and 2 Rx with Exhaustive
Search Results

Recognizing the computational complexity involved in
processing all 254 = 390,625 combinations of beam patterns,
which necessitates a simulation time of 3 days, we decided
to use classic reinforcement learning methods and the Monte
Carlo method for finding the optimal solution within a
reasonable time. Subsequently, a comparison is performed
between the results derived from an exhaustive search and
those obtained through machine learning. The exhaustive
search, which demanded around 3 days, was performed
using a machine equipped with the specification: 72 cores,
4 E7-4880 CPUs operating at a speed of 2.5 GHz, and
1TB RAM.

This evaluation aims to measure the time required for
ascertaining the optimal antenna angles and estimating chan-
nel capacity. The primary objective of this comparison
is to evaluate the accuracy of the classic reinforcement
learning-based approach in contrast to the exhaustive search
method.

Fig. 3 offers a comparison of different classic reinforce-
ment learning methods and Monte Carlo, focusing on the
average achieved channel capacity after 10 execution cycles
for each method. The decision to conduct 10 execution cycles
was made to ensure that the results were not influenced
by random variations. The average of these runs provides a
more reliable assessment. Additionally, the figure provides
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FIGURE 3. Comparison of reinforcement learning methods for channel
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the associated error values and accuracy averages for each
method. The left axis of the figure represents channel capac-
ity, measured in bits per second (bps), while the right axis
illustrates the accuracy of the learning methods, expressed as
a percentage. Among the methods, SARSA has the best per-
formance in both channel capacity and accuracy. It achieves
an impressive 99.88% accuracy and presents superior chan-
nel capacity results. Following SARSA, Expected SARSA
obtains the second-highest accuracy at 99.85%. It shows
great performance in terms of channel capacity, though it
doesn’t perform as well as SARSA. The remaining methods
are ranked based on their accuracy, with Double Q-learning
achieving 99.76%, Q-learning at 99.09%, and Monte Carlo at
70.14%. While these methods show varying levels of accu-
racy, they still provide reasonable solutions for enhancing
channel capacity.

Table 1 displays the maximum total channel capacity
achieved through the learning process, along with the cor-
responding optimal angles for all four antennas for each
learning method. It is noteworthy that most methods con-
verged to similar angle configurations for all four antennas
and most of them have been able to find the maximum total
channel capacity which is 29 Gbps.

TABLE 1. Maximum total channel capacity and optimal antenna angles.

Tx-1 | Tx-2 | Rx-1 | Rx-2 | Channel

Learning method | (o) (0) (0) (0) capacity
(Gbps)

Monte Carlo -40 5 5 35 25.4
Q-Learning -40 -40 45 55 29.0
Double -40 -40 45 55 29.0
Q-Learning
SARSA -40 45 45 55 29.0
Expected SARSA | -40 -60 45 55 29.0

According to Table 1, Fig. 4 provides a schematic represen-
tation of the optimal positioning of transmitting and receiving

interference line
TX-1

X

FIGURE 4. Schematic representation of maximum interference points
according to 4 antennas placement in 2D space for 2 Tx and 2 Rx.
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antennas to achieve maximum total channel capacity. To sim-
plify the display in a 2D format, we assume that all antennas
have a parallel viewing direction aligned with the Y-axis.
A rectangular cube is depicted, proportionally scaled to match
the dimensions of the room under examination, and antennas
are positioned accordingly. The figure integrates data derived
from the Q-learning method to determine emission angles
and the line of rays. The intersection line between these
planes which has been indicated by the red line, describes the
location characterized by maximum interference. This inter-
section signifies the interference point in a scenario involving
two transmitters and two receivers aligned in a single line,
effectively representing the interference of two planes.

Fig. 5, displays the maximum standard deviation values
for the implemented methods, which are the square root of
their variances and it shows how much the values of each
method vary from their averages. Monte Carlo exhibits the
highest deviation at 2.93E+49 bps, while Q-Learning follows
at 5.25E+9 bps. Double Q Learning shows a lower devia-
tion of 1.1E+9 bps, SARSA at 8.5E+8 bps, and Expected
SARSA with the lowest deviation at 8.3E+48 bps. This plot
highlights Expected SARSA’s superior consistency and accu-
racy compared to other methods, emphasizing its stability
in optimizing channel capacity. In contrast, Monte Carlo
exhibits higher variability, showing reduced reliability in
channel capacity optimization.
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FIGURE 5. Standard deviation analysis of reinforcement learning
methods for 2 Tx and 2 Rx.

Fig. 6 summarizes the analysis of how long it takes and the
errors observed in 10 runs for each method. This comparison
allows us to evaluate the efficiency of these methods, taking
into account their varying execution times. Among the imple-
mented methods, Monte Carlo demands the most significant
computational time, which may appear surprising consid-
ering its lower accuracy. In contrast, SARSA demonstrates
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FIGURE 6. Computation time of learning methods for 2 Tx and 2 Rx.

the most efficient execution time, approximately 1724 s,
making it an efficient choice. Expected SARSA shows the
second-longest execution time, approximately 1971 s while
presenting favorable accuracy. Q-learning ranks next in terms
of execution time, followed by Double Q-learning and Monte
Carlo. The extended computational time for the Monte Carlo
method can be attributed to its inherent reliance on random
sampling and statistical approximation. Monte Carlo needs a
large number of tries to make sure the result is close enough to
the true solution with a good level of confidence. This high
number of attempts contributes to the longer computational
time.

Combining accuracy and complexity (execution time) we
attempt to generate a single figure of merit for the differ-
ent ML-techniques and Monte Carlo method. According to
Equation 5, Fig. 7 uses effect sizes of 0.7 for accuracy and
0.3 for execution time, providing an evaluation of their com-
bined impact on the observed results. Selecting the effect
size is contingent on the preference. In our case, prioritizing
accuracy instead of time led us to assign a larger coeffi-
cient to it. Fig. 7 shows that SARSA, Expected SARSA and
Q-Learning methods exhibit superior performance, achieving
a balance between time efficiency and accuracy with scores
of 55%, 53%, and 44%, respectively. These methods deliver
accurate results within shorter computational times, making
them efficient choices for optimization tasks. In contrast,
Double Q-Learning and the Monte Carlo demonstrate lower
weighted efficiency scores.

Weighted efficiency
= (Normalized Accuracy of Algorithms
%0.7)— (Normalized Execution Time of Algorithms %0.3)

&)
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FIGURE 7. Weighted efficiency scores of RL methods for 2 Tx and 2 Rx.

The choice of effect size depends on the specific preferences
and priorities of the analysis. In our case, our priority was
accuracy rather than time efficiency, which led us to assign
a larger coefficient to accuracy in Equation 5. We prioritize
accuracy in our results, even if it means taking extra time for
computations.

PHASE II: Prediction using 3 Tx and 3 Rx without Exhaus-
tive Search Results

In the next step, after our evaluation and accuracy assess-
ment of the classic reinforcement learning methods in the
prior step, the configuration is extended by adding one
additional-pair of transmitter and receiver, creating a scenario
with 3 transmitters and 3 receivers. This expansion intro-
duces a total of 25° = 244,140,625 distinct states, exceeding
the computational capabilities of our system for exhaustive
search.

Consequently, machine learning techniques and the Monte
Carlo method are exclusively employed to estimate optimal
angles and calculate the maximum total channel capacity in
this context. To enhance the accuracy of the result and ensure
convergence, the machine learning code execution comprises
20,000 iterations. The positioning of the new antennas within
the room is outlined below:

Txz: (1,2.75, 2)

Rx3:(2.5,6.5,1)

Fig. 8 compares different methods, focusing on the average
channel capacity after 10 runs. The measurements are in bits
per second (bps). Double Q-learning stands out as the top per-
former with a channel capacity of 2.47E+10 bps. Following
closely is Q-learning, achieving the second-highest channel
capacity at 2.40E+10 bps, showing commendable perfor-
mance but slightly trailing Double Q-learning. Expected
SARSA reaches a channel capacity of 2.39E+410 bps,
SARSA attains 2.38E+4-10 bps, and Monte Carlo records
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FIGURE 8. Comparative analysis of reinforcement learning methods for
channel capacity (average after 10 runs) for 3 Tx and 3 Rx.

2.10E+10 bps. These rankings are based on their respective
channel capacity measurements, offering insights into their
comparative performance.

Table 2 presents the maximum total channel capacity
attained via the learning process, in addition to the optimal
antenna angles for all six antennas, as per each learning
method. It’s worth mentioning that several of these methods
tend to converge on similar angle configurations for particular
antennas. Moreover, the majority of them have approximated
the total channel capacity to be around 2.5E+10 bps.

TABLE 2. Prediction of maximum total channel capacity and optimal
antenna angles FOR 3 Tx and 3 Rx.

Tx-1 Tx-2 Tx-3 Rx-1 Rx-2 Rx-3 Channel
Learning .

(0) (0) (0) (0) (0) (0) capacity
method

(Gbps)

Monte Carlo | -50 -55 -30 -50 0 -30 17.8
Q-Learning -40 -30 -5 45 55 -30 25.5
Double
Q-Learning -40 30 -5 45 55 45 25.5
SARSA -40 -15 -5 45 55 15 252
Expected
SARSA -40 -15 -5 45 55 15 252

Fig. 9 presents a schematic diagram, similar to Fig. 4,
with 3 transmitters and 3 receivers. In this figure, we have
incorporated the angles derived from the Q-learning method
to show the positions of six antennas. Consequently, the
intersection points among these three planes, represent-
ing each pair of transmitters and receivers, signify areas
with the highest interference levels. It’s essential to note
that these points do not form an interference line; rather,
they make an interference plane. Any ray path traversing
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FIGURE 9. Schematic representation of maximum interference points
according to 6 antennas placement in 2D space for 3 Tx and 3 Rx.

this plane will experience increased interference, result-
ing in reduced channel capacity compared to alternative
pathways.

Fig. 10 presents the maximum standard deviation values
for the maximum channel capacity of various reinforce-
ment learning methods and Monte Carlo Method, showing
their respective values in bits per second (bps). SARSA has
the highest deviation at 1.1E+49 bps, followed by Expected
SARSA at 9.5E+4-8 bps. On the other hand, Q-Learning shows
a lower deviation of 7.6E+8 bps, and Double Q Learning
has even less deviation at 6.7E+8 bps. Notably, Monte Carlo
exhibits the lowest deviation at 3.2E+48 bps. The difference
in standard deviation between Monte Carlo and SARSA is
attributed to their exploration strategies. The Monte Carlo
method completes episodes before updating, resulting in
more stable output. In contrast, SARSA’s on-policy approach

3x10°
2x10%

1x10°

=111l

Learning method

channel capacity, bps

Standard deviation of maximum

Monte Carlo
Method
Q-Learning
Double Q-
Learning

SARSA
Expected
SARSA

FIGURE 10. Standard deviation analysis of reinforcement learning
methods for 3 Tx and 3 Rx.
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introduces variability due to exploration, leading to a higher
standard deviation. In addition, Monte Carlo method in pre-
diction phase has less standard deviation than validation
phase because the implementation covers a broader range of
scenarios, accounting for various configurations. This diver-
sity helps mitigates the influence of outlier scenarios and
making the results more stable and less variable.

Fig. 11 provides an analysis of computational time versus
error values across 10 runs for each implemented method.
This plot highlights the crucial role of machine learning in
handling demanding computational tasks. In our scenario,
performing an exhaustive search would have demanded
around 1875 days, rendering it practically unfeasible, despite
utilizing a powerful machine with 72 cores. However,
by employing reinforcement learning techniques, we can
achieve (near-)optimal solutions in less than 15 minutes.
Among the methods, Double Q-learning demands the most
extensive computational time, approximately 8985 s. SARSA
follows with the second-longest execution time, roughly
8740 s. Expected SARSA ranks third in execution time,
around 6556 s. Q-learning occupies the next position, with
an execution time of 4156 s, followed by Monte Carlo,
which, despite its shorter execution time of 3390 s, yielded
a lower maximum total channel capacity compared to other
methods. Due to increased environmental complexity in the
3 x 3 scenario, learning methods require more time compared
to the Monte Carlo method, which is a stochastic approach,

4000

to achieve accurate results.
- ] I I I I
0

Learning method

10000

8000 -

6000

Time, s

Monte Carlo
method
Q-Learning
Double Q-
Learning

SARSA
Expected
SARSA

FIGURE 11. Computational time of learning methods for 3 Tx and 3 Rx.

Based on Equation 5, and considering the effect value
applied for Fig. 7 to weigh accuracy and execution
time, we aim to evaluate the relative effectiveness of the
implemented methods in Fig. 12. However, due to the
absence of the maximum channel capacity data obtained
through an exhaustive search, we used Formula 6 in this
context.
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FIGURE 12. Relative efficiency of channel capacity optimization methods
with computational time considerations for 3 Tx and 3 Rx.

Formula 6 presents the methodology employed to gener-
ate this plot. It involves comparing the maximum channel
capacity achieved by each method after 10 runs to the
maximum channel capacity determined by all learning
models and Monte Carlo method, which is attributed to
the Q-learning method. This comparison is achieved by
dividing the former by the latter and multiplying the
result by 0.7, emphasizing the importance of capacity
optimization.

MaxTotalChannelCapacityFoundForEachMethod

MaxTotalChannelCapacityAcrossAllMethods
AverageTimeofEachMethodDuring 10 Runs

MaxAverageTimeAmongDifferentMethods

0.3
(6)

Furthermore, we normalize the average execution time of
each method after 10 runs by dividing it by the average
of the longest execution time, associated with the Double
Q-learning method. Finally, we subtract the result of the
execution time normalization from the capacity optimization
factor, providing the relative efficiency (or ‘figure of merit’)
of the implemented methods in optimizing channel capacity
by considering the computational time. It should be men-
tioned that the increase from 4 nodes to 6 nodes notably
benefited the Monte Carlo approach. This can be attributed to
its inherent scalability, efficient handling of increased combi-
natorial complexity, and the provision of realistic uncertainty
quantification. The stochastic nature of Monte Carlo sim-
ulations proved particularly advantageous in capturing the
complexities of larger communication systems.

V. CONCLUSION

In this investigation, we compare different techniques of
machine learning (ML) for application in wireless commu-
nications. The research involved two main phases: initially
validating various learning methods and the Monte Carlo
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method through an exhaustive search and then applying
classic reinforcement learning techniques and the Monte
Carlo technique to optimize total channel capacity, determin-
ing optimal transmitter and receiver beamforming antenna
angles. Due to the impractical computational complexity of
exhaustive search, classic reinforcement learning techniques
are essential. Our results highlighted the accuracy of SARSA,
Expected SARSA, Q-Learning, and Double Q-Learning
methods, all achieving 99% accuracy with two transmitters
and two receivers. Particularly, when dealing with config-
urations involving three transmitters and three receivers,
these methods outperform the Monte Carlo approach. Among
them, Double Q-learning appears with a higher average chan-
nel capacity, being the best method evaluated. It’s noteworthy
that the Q-learning family, overall, outperformed the SARSA
family, though Double Q-learning required a more signifi-
cant computational time investment. Choosing between these
methods depends on application-specific priorities and con-
straints. However, our work emphasizes that using classic
reinforcement learning can compete with exhaustive search
results in much shorter execution time periods. The inves-
tigated reinforcement learning techniques show promising
results in handling complex tasks in wireless communications
that involve large amounts of data. As a future work, our
model could be extended beyond current limitations, explor-
ing the application of machine learning to optimize antenna
configurations in a dynamic real urban environment.
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