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ABSTRACT The widespread use of artificial intelligence (AI) in more and more real-world applications
is accompanied by challenges that are not obvious at first glance. In machine learning, class imbalance,
characterized by an imbalance in the frequency of classes, is one key challenge that poses essential
problems for many common machine learning algorithms. This challenge led to the development of
various countermeasures to tackle class imbalance. Although these countermeasures improve the prediction
performance of models, they often jeopardize interpretability for both AI users and AI experts. Especially in
sensitive domains where class imbalance is regularly present, for example, medicine, meteorology, or fraud
detection, interpretability is of utmost importance. In this paper, we evaluate the effect of class imbalance
countermeasures on interpretability with methods of explainable AI (XAI). Our work contributes to a more
in-depth understanding of these countermeasures and connects the research fields of class imbalance learning
and XAI. Our experimental results suggest that only feature selection and cost-sensitive approaches are
the only class imbalance countermeasures that preserve interpretability for both AI users and AI experts.
In contrast, resampling and most classification algorithms for imbalance learning are not suitable in settings
where knowledge should be derived and where interpretability is a key requirement.

INDEX TERMS Classification, class imbalance, explainable AI, interpretability.

I. INTRODUCTION
While AI is improving processes in many areas, it is
accompanied by challenges that need to be embraced.
With AI, or more precisely, machine learning (ML), the
quality in the modern manufacturing industry is constantly
improving [1]. This improvement leads to fewer and fewer
defects, which consequently reduces the number of data
instances describing such defects. This lack of training
data affects the ability of models to detect these defects,
reducing the quality of defect detection of these models.
Many real-world tasks, such as detecting fraudulent credit
card transactions, predicting rare weather conditions, or using
ML to treat patients with rare diseases, have similar situations
where relevant data instances are rare [2].

InML, situations where rare instances represent the minor-
ity and normal instances represent the majority are referred to
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as class imbalance. Over the past few decades, the research
field of class imbalance learning has focused on the detection
and modeling of minority instances, or “rare events”.
Many successful approaches have been developed [1], often
referred to as class imbalance countermeasures. These
countermeasures incorporate specific techniques that focus
on rare events to increase the overall accuracy, for example,
re-sampling with the Synthetic Minority Over-Sampling
Technique (SMOTE) [3]. Most of these countermeasures
are typically applied purely based on the existence of class
imbalance in the training data. Class imbalance is only
a concern if a model is incapable of distinguishing the
majority from the minority class [4]. Furthermore, certain
countermeasures require distinct pre- or post-processing,
adjusting of their inherent (hyper-)parameters, and in some
instances, multiple countermeasures are required [5]. Coun-
termeasures increase the complexity of the model selection
process, compromising its traceability. The interpretability
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of the countermeasures themselves being a secondary
factor, the overall interpretability of the resulting model is
jeopardized [6].

This lack of interpretability contradicts the typical infor-
mation needs of humans, for example, a customer wants
to understand why his credit card payment was declined;
a meteorologist wishes to understand why extreme weather
phenomena are predicted; doctors and patients desire to
understand why a specific treatment is recommended; and
finally, a manufacturer intends to understand why a model
predicts that a specific product does not fulfill the quality
criteria. Similar to AI and ML in general, acceptance of class
imbalance countermeasures depends on the trust of humans,
which is only established if concerns about fairness, privacy,
reliability, and robustness are overcome [7].

Interpretability has the potential to eliminate these con-
cerns to better understand, and therefore trust these models.
This motivates us to investigate the interpretability of the
most common class imbalance countermeasures and their
representatives. We therefore analyze these countermeasures
and their effect on model interpretability. Currently, the
evaluations, reviews, and surveys in class imbalance learning
focus either on specific domains only or only on one
specific type of countermeasure, for example, re-sampling.
Recent publications often apply heavy-tailed evaluations
using complex pipelines, comparing thousands of different
combinations of various (hyper-)parameters and pipeline
steps with a focus on the pure accuracy of involved
approaches.

On the contrary, the focus of our evaluation relies on an
interactive and visual analysis of current class imbalance
countermeasures. Therefore, we use a self-developed,
bespoke web application that incorporates methods of
explainable AI (XAI) to compare their effects on inter-
pretability. One can choose from 27 data sets incorporating
class imbalance. Once a data set is chosen, the user of the
web app can choose and combine several class imbalance
countermeasures and different classification models. After
the model is trained with the given countermeasures,
we provide a comparison of the performance of the ML
models with and without class imbalance countermeasures.
In the earlier stages of our investigation, we discovered
that interpretability has different implications from the
perspectives of AI users and AI experts. We will elaborate
the key differences of these perspectives in our background
section, and will also provide separate conclusions for these
two different perspectives in our results & discussion section.
Overall, our findings suggest that only cost-sensitive methods
and feature selection fulfill the requirement of interpretability
from both perspectives. To provide full traceability and to aid
the reproducibility of our results, the datasets, and our web
application are publicly available.

This work has the following contributions to the current
state-of-the-art:

• An introduction to class imbalance, its characteristics,
challenges, and state-of-the-art countermeasures.

• To the best of our knowledge, the first systematic union
of class imbalance countermeasures with XAI.

• A clear definition of interpretability concerning the
perspectives of both AI users and AI experts.

• An overview of the most common class imbalance
countermeasures and their interpretability.

• A publicly available web application, including its
source code, and datasets.

II. CLASS IMBALANCE COUNTERMEASURES AND
INTERPRETABILITY
A. CLASS IMBALANCE
In classification, a model is trained on a given training
set to learn a mapping between its input and output data.
The training set consists of instances, where each instance
is represented by its feature values (input or independent
variable) and a concept or class label (output or dependent
variable). After training, the model should be able to predict
the correct class value by only being presented with the
instance’s feature values. Suppose the number of instances
for one class, namely the majority class, outnumbers the
number of instances for the other, namely the minority
class. In that case, it is referred to as skewed, biased,
imbalanced data or class imbalance. If instances have
only one label with two possible values it is referred to
as binary classification, which is the focus of this work.
If there are three or more distinct labels, it is multi-class
classification.

Since this task has already been studied for quite some
time, it has already received various names. Beginning with
small or rare class learning problems [1], learning from
imbalanced data [8], learning from class-imbalanced data [2],
class imbalance learning, and class imbalance problem [9].
In the real world, numerous examples of imbalanced data
exist, for example, fraudulent credit card transaction data
where the representation of legitimate transaction instances
is expected to be greater than the number of fraudulent
transactions. In this case, the data is generated with an uneven
distribution and a naive classification model will classify
the unseen fraudulent instances as non-fraudulent, resulting
in high accuracy but low performance [10]. One important
aspect of imbalanced data is the ratio between the number
of majority instance and the number of minority instances,
referred to as class imbalance ratio (CIR). The CIR typically
ranges from 1:4 to 1:100, but can also range from 1:1000
up to 1:5000 or even worse, in real-world applications such
as fraud detection or chemo-informatics [8]. The global
CIR is often used as the sole and most “striking” criterion
for describing the existence of class imbalance in a data
set.

Nevertheless, the pure existence of class imbalance does
not indicate whether a model can separate the majority from
the minority class [4]. Next to the CIR, [1] identified and
analyzed the small sample size, the class separability, and
within-class concepts as aspects that influence the capability
of a model to identify the minority class. According to
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TABLE 1. Some fictitious predictions of an arbitrary classifier assembled
in a confusion matrix.

the authors, the small sample size makes it challenging
to uncover regularities inherent in the minority class.
Furthermore, patterns among each class are overlapping in
some feature spaces, hindering the model from inducing rules
to discriminate the minority from the majority class. “Within-
class concepts” is the term used to describe classes that are
composed of implicit subclasses, which additionally increase
the learning complexity and even worsen the effect of class
imbalance. So far, we have discussed what class imbalance
is, how it emerges, and what are the characteristics of the
minority and majority instances. In the following section,
we focus on the challenges of common classifiers when
dealing with class imbalance.

B. CHALLENGES POSED BY CLASS IMBALANCE
A desirable objective for a model is its ability to generalize,
which is the capability of correctly predicting the class
values of “previously unknown” instances. These unknown
instances follow the underlying generative nature, but fall
outside the observed instances during training. To achieve
this generalization, the model first has to fit the training
data accordingly. If the model fails to fit the training data,
it is under-fitting, and consequently will not be able to
generalize. If the model fits the training data too well,
it is over-fitting, meaning it captures too many details
statistically independent of the target class of the training
data, and will most likely, again, fail to generalize [11].
To avoid over-fitting, techniques that search for the most
common regularities are introduced to ensure generalization.
Such techniques generate maximum-generality bias, favoring
the discovery of more general rules. This inductive bias
of maximum-generality poses a serious obstacle for the
classification of imbalanced data, since rules that predict the
minority class are often scarce, undiscovered, or overlooked,
resulting in a weak generalization performance of such
models [1]. According to [12] the problem with standard
learning algorithms and imbalanced data is that the rules
describing the minority class are often fewer and weaker than
those of the majority class.

For the evaluation of a model in the presence of class
imbalance, an evaluation metric that accurately represents
class imbalance is required [6], [9], [13], [14], [15]. Common
evaluationmetrics, such as accuracy, precision, recall, and the
F1- score strongly vary when swapping classes. An example,
consisting of a confusion matrix of fictitious predictions of
an arbitrary classifier, and common evaluation metrics from
a recent work by [16], can be found in Table 1 and 2.
To illustrate the need for proper evaluation metrics, we added
the result for the Matthew’s Correlation Coefficient (MCC),

TABLE 2. Common evaluation metrics and MCC for the fictitious
predictions of Table 1 rounded to three decimal places.

TABLE 3. Common evaluation metrics and MCC when the labels are
swapped in Table 1 rounded to three decimal places.

an evaluation metric invariant of class swapping [13]. In this
fictitious case, we have a total of 1,000 instances, 950 for the
majority class (labeled as positive) and 50 for the minority
class (labeled as negative). Although the classification fails
to predict the overwhelming number of the minority class,
there are 45 false positives out of a total of 50. All evaluation
metrics, except MCC, fail to represent the poor performance
of the classification for the minority class. To depict the class-
swapping-invariant characteristic of MCC, we re-computed
all the measures in Table 2 by swapping the class labels
of majority and minority class in Table 3. Reference [15]
concluded that if the focus is on pure successes (dismissing
the errors), bookmaker informedness and geometric mean are
the best evaluation metrics. If classification errors must also
be considered, then the MCC is the preferred option.

In addition to MCC, the Polygon Area Metric (PAM)
[17] is a state-of-the-art evaluation metric. PAM avoids
the need to create large tables in the presence of multiple
evaluation metrics. PAM provides one single scalar value
as an estimate of a classifier’s ability by considering all
the aspects of a classifier’s performance, i.e., specificity,
sensitivity, AUC, Kappa, F-measure, and classifier accuracy.
Despite the promising performance of PAM, its applications
are limited when data is imbalanced [18] and results are
difficult to interpret as one of its shortcomings mentioned
by the authors is that ‘‘unlike confusion matrix, it does
not provide information about exact values of TP, TN,
FP, and FN.’’ Reference [17], which are useful in our use
case to understand the behavior of a model. As we are
primarily interested in a single scalar, which is invariant
of class swapping, as an estimation of classification errors
and confusion matrix, we will solely utilize the MCC score
as the evaluation metric in our experiments. Therefore,
we shall briefly introduce it. The MCC can take values in the
interval [−1. . . 1], whereas a value of−1 represents complete
disagreement, 0means that the prediction is uncorrelatedwith
the ground truth, and 1 means complete agreement. From the
equation of the MCC depicted in Equation 1 one can see that
in case any of the expressions in the denominator are zero,
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then the MCC is not defined [19].

MCC =
TP · TN−FP · FN

√
(TP+ FN )(TP+ FP)(TN + FP)(TN + FN )

(1)

In general, caution should be exercised not only concerning
an appropriate evaluation metric, but also in the validation
of a given model regarding class imbalance. Reference [9]
investigated the effect of absolute rarity on model validation
and showed that the validation performance of a model is
affected by randomness in the model, which leads to an
incorrect evaluation of the generalization of the model. When
evaluating models by cross-validation, the partitioning of
the already absolute rare minority instances into k separate
validation sets is noticeably worse [20]. Absolute rarity
also favors the induction of small disjuncts in the learned
classifier. Small disjuncts are regions that cover only a few
training instances, and it has been observed inmany empirical
studies, that small disjuncts have a much higher error rate
than large disjuncts [21]. Finally, we briefly describe the
severe effect of rather common issues in machine learning,
namely data shift, noise, and high dimensionality of data in
combination with class imbalance. Data shift is a change
of the distribution between the training and testing set,
which occurs frequently and leads to small performance
degradation. For class imbalance, severe performance losses
may happen due to this data shift [22]. The additional,
negative impact of noise in the class imbalance domain is
related to the absolute rarity of data. Since the minority
class has fewer instances “to work with”, noise has a
greater impact on the minority class, than on instances of
the majority class [21]. Some domains are represented by
high dimensional data, and the main challenge concerning
class imbalance is to select features containing the key
information for the corresponding problem. In general,
feature selection is considered an appropriate countermeasure
for class imbalance [22], which is the topic of the next
Section.

C. CLASS IMBALANCE COUNTERMEASURES
In the past 20 years, a growing number of countermeasures
for handling class imbalance evolved. For example, in
2019 at least 85 different variants of the most common
oversampling method SMOTE [3] existed. With the growing
number of countermeasures, also a growing number of
taxonomies emerged ( [1], [2], [5], [8], [12], [14], [22],
[23]. In this work, we will refrain from introducing an
additional taxonomy and refer to renowned publications in
the area of class imbalance, and elaborate on their key aspects.
Reference [1] presented one of the first taxonomies, in which
the authors introduced two basic approaches: data-level and
algorithm-level approaches.
Data-level approaches focus on solutions on data-level,

which include different forms of resampling, generating
synthetic data, or a combination of the aforementioned
approaches.

FIGURE 1. Basic approaches of class imbalance countermeasures and
their representatives.

Algorithm-level approaches are mainly dealing with the
adaptation of existing algorithms. This can be accomplished
by introducing an appropriate inductive bias, for example,
for decision trees by adjusting probabilistic estimates at tree
leaves, or by inventing novel pruning techniques. Modifying
the learning paradigm by treating the problem as a one-class
learning problem, such as with one-class support vector
machines (OCSVM) [1] is another option.

Although very similar to [1] and [2] represents a more
“up-to-date” version of the basic approaches and their
representatives, discussed in more detail in the rest of this
subsection. We provide an overview of these approaches in
Figure 1.
Resampling data space or just resampling is used to

re-balance the minority and the majority classes. This is
performed by either removing instances of the majority
class, referred to as under-sampling, or by adding instances
of the minority class, referred to as over-sampling. The
main advantage of both approaches is the independence of
the classifier being used [23]. There are both “informed”
and random variants for both techniques1. The primary
disadvantage of under-sampling is the potential disposal of
useful information by removing instances of the majority
class. The drawbacks of over-sampling depend on the
used variant, for example, since random over-sampling
creates exact copies of minority instances, the chances for
over-fitting are increased, and for focused over-sampling
variants more specific decision regions are created [14].
Feature extraction is the overall concept for both feature

construction and feature selection.While feature construction
creates the representation of the data to model, for example
transforms the data, such as standardization, normalization,
or discretization2.Feature selection is the process of selecting

1“Random” is actually meant literally here: The instances to remove or to
be replicated are selected randomly.

2We stick to the term “feature extraction” as introduced by [2], instead of
using the term “feature construction”.

VOLUME 12, 2024 45345



D. Cemernek et al.: Effects of Class Imbalance Countermeasures on Interpretability

the most relevant features from data and is used to improve
the prediction performance of models by reducing the
dimensionality of data. This reduction leads to simpler and
less complex models, fostering a more profound understand-
ing of the underlying process [24]. For class imbalance,
specifically designed feature selection methods, for example,
class decomposition-based feature selection, which is applied
on smaller pseudo-subclasses of the majority class, exist [5].
Cost-sensitive learning handles the integration of costs

into models or introducing different weights of instances in
the data space. Since this integration could happen both on
data-level and algorithm-level, cost-sensitive learning is often
assigned to both levels of approaches [1]. We will integrate
techniques for both approaches, namely the integration of dif-
ferent class weights, and cost-sensitive post-processing in the
form of changing or calibrating the prediction probabilities in
a cost-sensitive manner [22]. Next to calibrating, there also
exists a technique referred to as the threshold method, or only
thresholding.
Thresholding is a cost-sensitive meta-learningmethod, that

can be integrated into any classifier that produces probability
estimates on training and test data. In essence, thresholding
selects the best probability from training instances as a
threshold, and uses this threshold to adapt the probability
estimates of test instances according to class imbalance,
to minimize total misclassification cost [25]. In real-world
applications, the cost of misclassifying the minority and the
majority class typically vary. For example, misclassifying
a healthy person as sick will “only” lead to further
medical investigations, whereas the costs of misclassifying
a sick person as healthy will lead to excessive health cost
and potential fatality [14]. Cost-sensitive learning is often
combined with ensemble methods, for example, the models
AdaC1-AdaC3 and AdaCost, which introduce costs into the
weight updating strategy of AdaBoost [12], one of the first
ensemble methods.
Ensemble methods are based on a simple principle: “The

Wisdom of the Crowd”. The wisdom of the crowd is the
collective opinion of a group of individuals, rather than that of
a single expert3. For ensemble methods, this idea is applied as
follows: the predictions of multiple predictors are aggregated,
and ideally, each predictor represents a different hypothesis.
This aggregated prediction results in a better prediction than
the best individual predictor. This group of predictors is
referred to as an ensemble [26]. Ensembles typically improve
generalization performance in many scenarios, and according
to [27] the reasons can be summarized as follows:

• Overfitting avoidance - Averaging multiple hypothesis
reduces the risk of choosing an incorrect hypothesis.

• Computational advantage - Single learners that conduct
local searches may get stuck in local optima, but several
learners decrease the risk of obtaining a local minimum.

• Representation - An optimal hypothesis may be outside
the space of any single model, but combining different

3https://en.wikipedia.org/wiki/Wisdom_of_the_crowd

models, the search space may be extended, which
achieves a better fit to the data space.

Due to its nature, AdaBoost was one of the first ensemble
methods to be used for tackling the class imbalance problem.
AdaBoost is an iterative boosting algorithm,where each train-
ing instance is weighted based on the error of the previous
model, resulting in putting the most weight on hard-to-
classify instances. This approach is equivalent to resampling
the data space by combining under- and over-sampling [1].
Nowadays, ensemble methods belong to the most popular
approaches for handling class imbalance [8]. For example,
the authors of [2] presented that from 527 reviewed papers,
218 papers proposed novel ensemble methods or applied
existing ensemble models to solve practical class imbalance
problems.
Algorithmic classifier modifications adapt the learning

ability of existing classification algorithms, to improve their
prediction performance for imbalanced data. These adaptions
are manifold, for example by enhancing the discriminatory
power of classifiers, such as SVM or nearest neighbors using
kernel transformations, or fuzzy-based methods integrated
into decision trees [2]. Recently, a new breed of classification
algorithms handling class imbalance evolved, referred to as
hybrid approaches- Hybrid approaches employ more than
one machine learning algorithm, often through hybridization
with other learning algorithms, to alleviate the problem of
sampling, feature subset selection, cost matrix optimization,
and fine-tuning of classical learning algorithms [5]. One
group of representatives for hybrid methods for class imbal-
ance are active learning approaches [22]. Traditionally, only
used to handle unlabeled training data, active learning has
also been used to solve problems related to class imbalance.
The main principle is to select only the most informative
instances to train a model. These active learning approaches
are typically integrated into kernel-based methods, mostly
involving SVMs [12]. Due to the skew associated with class
imbalance, the hyperplane of SVMs is usually located closer
to the minority class.

New kernel-based approaches adapt the kernel function,
to try to “bias” the hyperplane so that it is “moved” further
away from instances of the minority class [22]. SVMs are
also the most used algorithms to implement the one-class
learning paradigm [1]. Instead of learning the boundaries to
distinguish the majority from the minority class, one-class
learning attempts to learn boundaries that surround only the
class of interest, for example, next to SVMs, autoencoders
are used more recently [22]. Due to this increased use of
more complex models, e.g., SVMs or neural networks, the
consideration of explainability and, above all, interpretability
in class imbalance countermeasures is becoming more and
more important.

D. EXPLAINABLE ARTIFICIAL INTELLIGENCE AND
INTERPRETABILITY
Recently, researchers in the field of AI and especially in ML
have focused purely on improving prediction performance,
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leading to complex models with exceptional predictive
abilities. These complex models have the drawback that both
AI users and AI experts are unable to comprehend their pre-
dictions, their inner structure, and the process that generated
them. This development led to a new research field aimed
at making AI systems and their results more understandable
to humans, namely explainable AI (XAI) [28]. Currently,
the majority of research in XAI is focused on explicating
black box models through the utilization of post-hoc analysis
and techniques that scrutinize previously trained models
and their predictions [29]. Examples of such techniques
are Local Interpretable Model-agnostic Explanation (LIME),
SHap-ley Additive exPlanations (SHAPE), surrogate models,
partial dependency plots, sensitivity analysis, and feature
importance [28]. From the perspective of the philosophy of
science, explanations have a heuristic function, should guide
for further inquiry and, since their delivery is not always an
end point, must be considered a continuous process [30]. All
of these functions are typically not provided for the aforemen-
tioned techniques. Two fundamental inconsistencies with the
concept of explaining black box models were identified by
recent work from XAI. First, since explanation techniques do
not have perfect fidelity regarding the original model, these
techniques are not faithful. Otherwise, they would not be
needed, or they could be used without the models they try
to explain. Second, explanation techniques level out some
information to prevent too much information concerning the
to-be-explained model, and hence there is some information
loss [31].

Black box models require post-hoc explanations that are
not faithful or leave out information. Instead, white box or
interpretable models, such as linear regression, rule-based
learning, decision trees and Bayesian models “naturally
include” or have “built-in” mechanism to understand how
their predictions are made. Especially for well-structured
data with understandable features, the difference in pre-
diction performance between complex black box models
and white box models with inherent interpretability is
often not significant [31]. Although Bayesian models allow
for probabilistic inference by modeling the conditional
probabilities between the variables, if not decomposable, they
could fall into the category of complex black-box models
due to their acyclic nature [32]. The central concept is
interpretability, a term that describes, how well a human
can understand decisions in a given context, or more generic,
“the degree to which an observer can understand the cause
of a decision” [33]. The key to grasping the concept of
“interpretability” is “understanding”, which allows us to
distinguish interpretability from explainability.

In the past, there was little consensus on what “inter-
pretable” or “interpretability” in ML means [7]. More
recently, research refers to it as the ability to direct transparent
modeling mechanisms, and interpretability is used for
comprehending how a certain prediction of a model works
as a whole [34]. Reference [35] gather and unified terms
dealing with the problem of interpretability and state that

interpretability itself, is associated with three sub-problems,
namely, accuracy, efficiency, and understandability. “Accu-
racy” focuses on the fact that one can always create a
trivial, easily understandable model that has no connection
to the data and therefore no real prediction performance.
“Efficiency” is concerned with the time that is necessary
for an AI user or an AI expert to grasp or understand
a model, which is related to the understandability of that
model. Without this efficiency constraint, one could use an
infinite amount of time to understand a model, which is
not constructive. In consequence, even white box models
could happen to be not interpretable by both AI users and
AI experts, for example, imagine a linear model like logistic
regression which uses several dozen or even hundreds of
features. Humans can only understand the predictions of
interpretable models, if the number of features used in the
model are small, since each feature has a level of contribution
towards the final prediction [36].
From the different roles of AI users and AI experts,

there are no major differences concerning the first two
sub-problems accuracy and efficiency, since both can be
measured objectively. However, understandability depends
on the different knowledge and requirements of these
two roles, requiring different definitions. For an AI user,
understandability is given, when he or she can grasp the
process of a model’s predictions, for example, by inspecting
the formula for a regression model, or by visualizing a
decision tree. This ‘‘why’’ a prediction is made is not
sufficient for anAI expert. For anAI expert, understandability
is only given, when he or she can fully understand and
reproduce the process or algorithm that created the model
(how?). We even would go so far as to claim that this process
or algorithm must be reproducible manually, for example,
with a pencil and paper in efficient time. This claim for full
understandability should be given for the overall process of
the creation of models, i.e., interpretability should be given
for all involved pre-processing and model selection steps that
contribute to the creation of the final model.

III. RELATED WORK
The work [20] focuses on the application of oversampling
techniques on imbalanced data, for which the authors focused
on three main categories. The first category, “learning
from imbalanced data”, focused on works that performed
extensive experiments to evaluate various techniques. The
second category, namely “comparing approaches in a specific
context”, performed a comparison of specific algorithms in a
specific context. The third category, “solving a classification
problem”, had the main objective of solving a particular
classification problem, where the imbalance problem was
not the focus of the paper. Within our work, we focus on
the application of countermeasures for class imbalance and
their impact on interpretability, categorizing our work into the
aforementioned “learning from imbalanced data” category.
Within this category, we investigated all evaluations, reviews,
and surveys concerning class imbalance, and found two
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FIGURE 2. Screenshot of the web application for interactive evaluation of class imbalance countermeasures and their
effects on interpretability.

publications are related to class imbalance countermeasures
with some representative of XAI.

In [8] the authors identify six vital areas of research,
namely classification, regression, clustering, data streams,
big data analytics and applications which are discussed
and finally suggestions concerning lines of future research
are presented. The authors pointed out in their Section
“Imbalanced big data” that interpretable classifiers that can
handle massive and skewed data are of future interest. The
authors stated that more focus should be put on a more
profound understanding of the structure and the nature of the
instances of the minority class, to incorporate background
knowledge into the training procedure of new classifiers.
The main focus of this survey is to discuss open issues and
challenges to further develop the field of imbalanced learning.

Reference [22] presents a survey of existing approaches
for handling class imbalance, for which the authors discuss
the main challenges, define the problem of class imbalance,
propose their taxonomy and summarize the conclusion
of existing studies. According to the authors, both pre-
processing (data level) and special-purpose learning methods
(algorithmic level) should be biased towards the goals of
the user, to receive models that are more interpretable and
comprehensible for the user. Focusing on prediction post-
processing methods, for example, threshold method, and
cost-sensitive post-processing the authors claim that the
model’s interpretability may be jeopardized, by optimizing
loss functions that do not follow user preference bias.

In the conclusion section, the authors state, that there
is still a need to understand why, when and how class
imbalance countermeasures work and that not much work
exists involving comparisons among the main different types
of approaches.

To identify additional works, we also included one relevant
work from the second category in which approaches in
specific contexts are compared. Reference [6] investigated
the impact of “class rebalancing techniques” (re-sampling)
on the performance measures and the interpretation of defect
prediction models. The main goal was to find out which
re-balancing techniques, classifiers, and evaluation metrics
are beneficial for the prediction performance of defect
models. Concerning interpretability, the authors came to
the conclusion, that regardless of which class rebalancing
technique was used, the learned concepts (classes) shifted,
which was presented in the form of changes of feature impor-
tance. Although rebalancing techniques can be beneficial
for prediction performance, depending on the model and
used technique, the authors recommend that class rebalancing
techniques should be avoided when the models are used to
derive knowledge and understanding from defect models.

In the current state-of-the-art literature, integrated explo-
ration of class imbalance countermeasures within the domain
of XAI are under-represented. Our study aims to fill this
void by introducing a cohesive evaluation addressing inter-
pretability, accommodating both AI users and AI experts’
perspectives.
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TABLE 4. Overview of class imbalance countermeasures in terms of interpretability for both AI users and AI experts.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
We conducted our experiments visually and interactively to
understand the effects of class imbalance countermeasures
on interpretability. We developed a simple, yet powerful
Python web application (see Figure 2). The main principle
of these visual and interactive experiments is the comparison
of two models: one model (baseline) that does not apply
the selected class imbalance countermeasure, and one model
for which the selected countermeasure is applied. With this
approach, we assure the ad hoc comparison of the effect on
the trained models. Concerning the general pre-processing
steps, we perform the selected feature extraction and feature
selection algorithms always for both models. Since the
selection of an appropriate evaluation metric is crucial for
modeling class imbalance (see Section II-A), we provide
the most common evaluation metrics in our experiments, for
example, balanced accuracy, precision, recall, and F1-score.
Nevertheless, the comparison of different approaches and
models is solely based on theMCC. Due to the simplicity and
the interactive nature of our experiments, we split the data sets
into training and test sets. This split is performed “stratified”,
leaving the same proportion of minority instances in the
training and the test set.

B. DATA SETS
Concerning the data sets used in our experiments, we use
the data sets provided in the library imbalanced learn [37].4

The 27 available data sets are taken from various sources, for
example, the UCI,5 and can be downloaded and used directly
within the API of the library.

C. PYTHON WEB APPLICATION
For the visual and interactive evaluation of class imbalance
countermeasures, we developed a Python web application.6

4https://imbalanced-learn.org/stable/data sets/index.html
5https://archive.ics.uci.edu/ml/index.php
6https://gitlab.know-center.tugraz.at/dcemernek/cicm-paper

Within this web application, we provide techniques for all
approaches using their default parameters from the corre-
sponding libraries, for example, feature extraction and feature
selection methods, multiple sampling variants, ensemble
classification models, adapted classification models, thresh-
olding and calibrations. A full list of available approaches,
classification models and other techniques is available in
the Appendix. For more specific comparison of the trained
models, we provide different local and global explanations in
the section “Comparison of created models”. In general, one
can globally inspect a model by comparing the “weights”7 of
different models.

Hardware:The app is designed towork on normal desktop
computers or notebooks, for example, the authors used a
Lenovo notebook type T470p with Ubuntu 20.04.3 LTS, Intel
Core i7-7700HQ CPUE with 2.8 GHz and 4 cores, 16 GB of
RAM.

V. RESULTS AND DISCUSSION
In Table 4, we present the analysis of the interpretability of
selected class imbalance countermeasures for both AI users
and AI experts. As a short recap (for details see Section II-D),
we listed the three sub-problems associated with a method’s
or models’ interpretability:

1) Accuracy - Prediction performance is given, instead of
trivial model

2) Efficiency - Time to understand a method or model
3) Understandability:

• AI user - Grasp the process of a method or model’s
outcome or prediction (why?)

• AI expert - Understand and reproduce the output
of a method or model (how?)

Given the information in Table 4, we point out, that the inter-
pretability of almost all countermeasures heavily depends
on the model used within a countermeasure. For example,

7Used in library eli5 as a term for explaining model-specific parameters,
for example, the feature-importance of tree-based models
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TABLE 5. Weights of selected features before and after resampling using
SMOTE.

feature selection with recursive Feature Elimination (RFE)
can both be interpretable, when using logistic regression as
a wrapper and non-interpretable, when using random forest.
In the following subsections, we provide a detailed analysis
of this overview.

A. RESAMPLING DATA SPACE
Following the mathematical analysis of [23], we first show
the influence of resampling on the feature importance of the
arrhythmia dataset for a selected model (i.e., decision tree) in
Table 5. The selected resampling technique, SMOTE, gives
similar weights to all features while adding new instances
of the minority class. This addition of new data instances
significantly changes the importance of certain features,
including diminishing the weights of some features. Our
findings of this experiment align with the study of [38]
that resampling has significant impacts on models and
should be avoided in tasks where interpretability is a
constraint.

We use another example to show how the models
themselves can change if resampling is used. We therefore
visualize two decision trees built on the arrhythmia data set.
For the first decision tree in Figure 3(a) the SMOTE algorithm
was used before training, and in Figure 3(b) we see a decision
tree, without any pre-processing. From the differing models,
we conclude that the decision tree without pre-processing is
even simpler, given by:

• Fewer leaves (nine compared to ten)
• Lower depth (four compared to six)
• Checks fewer variables (seven compared to nine)

Sampling approaches have positive effects on the perfor-
mance of classification models, which was already shown by
many authors before [2], [6], [39], [40]. However, the effects
on the trained models are often neglected, since as we showed
on the comparison of the trained models with and without
resampling. From our experiments, we can not conclude
that the trained models are always more complex, but the
importance of features, the predictions, and the prediction
probabilities of models do change, since underneath sampling
approaches change the class distribution. To emphasize our
argumentation, we build on the findings in literature. For
example, [41] stated that under-sampling has a significant
impact on the results of random forests, since especially for
smaller data sets, removing a few observations has a high
impact on the error curve of the trained model. Additionally,
under-sampling is the disadvantage of the potential disposal
of useful information by removing instances of the majority

TABLE 6. Sampled rows of the E. coli dataset before feature extraction.

TABLE 7. Sampled rows of the E. coli dataset after feature extraction, for
which the feature values completly changed in comparison to the raw
feature values from Table 6.

class [14]. For over-sampling experiments, [40] suggested
that for decision trees, the measured syntactic complexity
is higher for models where over-sampling was used. The
syntactic complexity was represented by the mean number
of induced rules and a mean number of conditions per rule
of the induced models. The drawbacks of over-sampling
depend on the used variant, for example, since random
over-sampling creates exact copies of minority instances,
the chances for over-fitting are increased, and for focused
over-sampling variants more specific decision regions are
created [14]. Regarding the impact on trained models,
we follow [6] arguing that the derivation of knowledge
that has been generated with re-sampling approaches is not
recommended.

B. FEATURE EXTRACTION
For classification models sensitive to feature scaling or
normalization, for example, logistic regression or SVM,
feature extraction is obligatory. In general, we emphasize,
that feature extraction has an impact on interpretability,
since the original feature values change, and therefore,
at least, AI users cannot understand the model’s prediction,
without additional methods. We demonstrate this concept by
performing the feature extraction on ecoli protein dataset,
Table 6 and Table 7 show the original and changed feature
values respectively. While certain robust methods for feature
extraction enhance model performance by eliminating low-
entropy features, they may pose challenges in interpretability
for AI users. This is evident in Table 7, where these
techniques result in significant alteration of feature values.
The substantial transformation introduced by feature extrac-
tion methods can impede the straightforward understanding
of the relationships between input features and model
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FIGURE 3. Decision tree trained with/out SMOTE algorithm.

outcomes. The absence of the raw feature values, hinders
interpretability, since AI users cannot understand the model’s
predictions.

C. FEATURE SELECTION
Feature selection is beneficial, especially in an imbalanced
learning setting. Due to the lower number of minority
instances, these instances are easily regarded as noise, but by
removing irrelevant features this risk is reduced [2]. Concern-
ing interpretability, Figure 4(a) shows a decision tree trained
on the arrhythmia dataset without feature selection, achieving
a MCC test score of 0.713. Figure 4(b) shows a decision
tree trained with feature selection achieving an MCC of 0.77.
Both models use the same number of features, but partially
different ones. This example provides visual evidence for our
argument that feature selection has no adversary impact on
the interpretability of a model. Feature selection filters out the
insignificant features, thus helping the model to distinguish
between the majority and minority classes, resulting in an
improved MCC. An appropriate feature selection method
applies the reduction to only relevant features, leading to
simpler models or situations where simpler and interpretable
models can be built, which again are easier to understand by
both AI users and AI experts. We repeated our experiment on

the same data set with another interpretable model, namely
logistic regression. Therefore, we observed a significant
improvement of 42% in the MCC test score after using
feature selection (MCC = 0.226 without feature selection
and MCC = 0.654 after feature selection. PAM results
are in agreement with the results obtained for MCC before
and after feature selection (PAM = 0.22 and PAM = 0.59
respectively).

D. COST-SENSITIVE LEARNING
The experiments for cost-sensitive learning investigated
the impact of the class weights’ parameter, and the
post-processing calibration of prediction probabilities, for
classifiers supporting it.

1) INTEGRATION OF WEIGHTS
In this subsection, we break down the results for a normal
and amodel that integrated weights, to transparently show the
effects on the confusion matrix and ultimately the predictions
for the integration of weights. We trained both logistic
regression and decision tree on the yeast_me2 data set.
Unfortunately, both models received weak results, so we
turned to the random forest model. The “normal” random
forest achieved a MCC test score of 0.213 and 0.354 for
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FIGURE 4. Decision tree trained with/out feature selection algorithm.

both the balanced and balanced-subsample options for the
yeast_me2 data set. The confusion matrix for the normal
model is presented in Figure 5(a), and the corresponding
confusion matrix for the model with the balanced option
is presented in Figure 5(b). The confusion matrices are
only differing for the “True-Negative” column, where the
normal model correctly predicted only one minority example,
whereas the balanced model correctly predicted two minority
examples.

In Table 8, we provide an overview of the weights (in
that case “feature importance”) for the features in the two
models. For this table, we intend to point out, that the weights
for features zero and two are higher in the balanced model.
Additionally, the weights for features one, three, and four
differ, resulting in a slightly different model.

Furthermore, in Table 9 we provide the prediction prob-
abilities for the test instances for both models. With these
prediction probabilities, we see that for the test instance
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FIGURE 5. Confusion matrix of the imbalanced and balanced (IH model =
imbalance handling model) test instances using random forest model for
the data set yeast_me2.

TABLE 8. Comparison of model weights and their standard deviation
(Std) for the different features for the normal and the balanced model for
the yeast_me2 data set.

TABLE 9. Excerpt of prediction probabilities for the test instances
105-114 for the normal and the balanced model for the yeast_me2 data
set. Column “Mismatch” indicates if there is a mismatch (1) between the
prediction of the normal and the balanced model.

with index 106, the two models make differing predictions,
indicated by the column “Mismatch” equals 1. The normal
model has a prediction probability for the majority class of
0.68 vs. 0.32 for the minority class. The balanced model has
a prediction probability of 0.44 for the majority and 0.56 for
the minority class, leading to a correct prediction for this
instance for the balanced model. In Table 10 we present
the explanation for both predictions, showcasing that the
differing weights of variables are the cause for these differing
predictions.

2) CALIBRATION
Calibration, as a prediction post-processing strategy for
handling imbalanced data [22], has no effect on the model
structure or model (hyper-)parameters. Therefore, we only
show the effects of calibration on the confusion matrix
and prediction probabilities. For example, for the data set
solar_flare_m0 we presented the confusion matrix for the
normal model in Figure 6(a), and the confusion matrix for the
calibrated model in Figure 6(b). The calibration of the model

TABLE 10. Explanation of the predictions for the test instance with index
106 for the normal and the balanced model for the yeast_me2 data set.
The column “Target” is the predicted target class, and the column
“Weight” represents feature importance.

FIGURE 6. Confusion matrix of the test instances for the baseline and
calibrated (IH model = imbalance handling model) random forest model
for the data set solar_flare_m0.

led to an additional three test instances, that are correctly
classified as minority, but also led to additional 22 test
instances incorrectly classified as minority instances. The
change of prediction probabilities is presented in Table 11,
where the probabilities for the test instance with index
19 changes from majority class in the normal model, to the
prediction of minority class in the calibrated model.

E. ENSEMBLE METHODS
Within this section, we try to investigate the question,
how simple, interpretable models perform compared to the
complex, and class imbalance-specific models. To compare
logistic regression, we added a feature extraction step, namely
RobustScaler8 to scale the features accordingly. We use the
random forest model as our baseline, and compared logistic
regression and decision tree as interpretable models, with
the complex and class imbalance-specific ensemble methods.
In Table 12 we provided the results for these experiments.
For the eleven data sets, for which the baseline model
achieved a MCC test score below 0.5, we also tested all
available complex models (column “Best-Complex”). For
the remaining 16 data sets, for which the baseline already
was above a MCC test score of 0.5, we only compared the
baseline model with decision tree and logistic regression.
From the overall 27 data sets, the simple models performed
better than the baseline for 15 data sets, indicating, that the
simple models are at least a good starting point for further

8MinMaxScaler tends to favor scaling for outliers, and StandardScaler
assumes that the data is normally distributed
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TABLE 11. Excerpt of prediction probabilities for the test instances with index from index 19-28 for the normal and the calibrated model for the
solar_flare_m0 data set. Column “Mismatch” indicates if there is a mismatch (1) between the prediction of the normal and the balanced model.

FIGURE 7. Confusion matrix for an isolation forest trained on the ecoli
data set only learning the majority class. Since the minority class is never
correctly predicted, the MCC is zero.

model selection and (hyper)-parameter tuning. At least for
these data sets, the “general” trade-off between accuracy and
interpretability is not true [31].

F. ONE-CLASS LEARNING
Finally, we examine the inner workings of one-class learning
with a focus on the comparison of the two main different
approaches, learning only the minority vs. learning only the
majority class. For each of the 27 data sets we trained both
representatives, namely Isolation Forest and OneClass-SVM
and analyzed theMCC test scores.We tested both the learning
of the minority and the majority class. The training of the
majority class almost always resulted in a MCC test score
of 0.0.9 We provide an example of the confusion matrix for
the ecoli data set with the isolation forest only trained for
the majority class in Figure 7, in which it is shown that the
minority class is completely missed, resulting in a MCC of
0. Due to this, we only report the MCC test scores for the
training of the minority class (see Table 13). Concerning
the other data sets, it appears that these algorithms need
further inspection and tuning to learn the minority instances.
To improve their performance, the structure of the minority
instances is important information, that should be integrated
in the form of background knowledge into classifiers [8].

9MCC is 0 if one of the four values of the confusion matrix is zero, then
MCC is also zero.

G. SUMMARY
Although feature extraction is not changing the relationship
between of features itself, the effect of feature transformation
must at least be considered. For example, by providing the
parameters of feature scaling, such as the min and max values
used for a Min/Max-Scaler to AI users.

Although feature selection changes the number of features,
it does not change the distribution of remaining feature values
or the distribution of instances. For interpretability, the key
aspect is that an appropriate feature selection method applies
the reduction to only relevant features, leading to simpler
models or situations where simpler and interpretable models
can be built. This provides full interpretability for both AI
users and AI experts.

For re-sampling approaches, the argument of [42], that
over-sampling does not add information and under-sampling
actually removes information, and research strategies should
concentrate on ML algorithms that can deal most efficiently
with whatever data they are given, is absolutely valid.
From the perspective of interpretability and based on our
experiments, we can reinforce this finding by stating that
models that were created using sampling methods should not
be used in a setting where interpretability is a requirement.
For these settings, approaches that do not change the
distribution of input data should be preferred [14].
For both cost-sensitive approaches, we conclude that

careful monitoring of confusion matrices is required to
avoid massive shifts of errors from the minority to the
majority class. Assigning costs, or benefits, to the minority
and majority instances is not a trivial task. For example,
an explicit description of the costs of misclassification is not
available in many situations [12], and furthermore, a wrong
cost matrix could lead to the situation that some class labels
are never predicted [43]. The simplest solution that requires
no explicit costs or domain knowledge is assigning weights
to different labels by their inverse frequency, for example, via
the class weight parameter of scikit-learn (what we did within
our experiments). The integration of this parameter into a
model selection process is recommended. Especially, for
data sets for which models with default parameters achieve
lower MCC scores, it is a simple and interpretable way
to take class imbalance into account. As our experiment
also showed, the use of weights has minor effects on the
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TABLE 12. Comparison of baseline model (random forest) with simple, complex, and class imbalance-specific models. MCC for the baseline, decision tree
and logistic regression are available in columns “MCC-Baseline”, “MCC-DT”, and “MCC-LR”. Column “MCC Best-Simple-Change” indicates the change from
the best simple model compared to the MCC test score of the baseline model. For the data sets, for which the baseline achieved a MCC test score below
0.5, we also tested all available complex, and class-imbalance-specific models: Column “Best-Complex” indicates the name of the best performing
complex model, its MCC test score in column “MCC Best-Complex” and the change compared to the MCC test score of the baseline model in column “MCC
Best-Complex-Change”.

TABLE 13. Comparison of one-class learning approaches with the
baseline model. “MCC-Baseline” contains the MCC test score for the
isolation forest is depicted in column “MCC-IF”, and for the one-class SVM
in column “MCC-OCSVM”. The column “MCC Best-Change” indicates the
difference between the MCC test score of the default model with the best
one-class learning approach. The final row contains the number of data
sets for which the corresponding approach: Isolation Forest or one-class
SVM approach outperformed the baseline model.

inner workings and structure of trained models, although
these effects would require additional investigation to gain
a better understanding. With the integration of weights, the
calibration of models is understandable since it does not
modify a model’s structure. Furthermore, its effects can
be visually represented and analyzed, and the impact of

calibration onmodel behavior can be easily demonstrated and
understood by both AI users and AI experts.

The presence of class imbalance encouraged the use
of ensemble methods and also led to the adaptation of
existing classification algorithms to appropriately consider
the challenges imposed by class imbalance. Given the
main concept of ensemble methods, the aggregation of the
predictions of a group of multiple predictors, almost always
involving bagging, is not interpretable. Although it is shown
that ensemble models work [26], they typically fulfill the
accuracy criteria. Due to their nature, they typically do
not fulfill the understandability requirement for both AI
users and AI experts. AdaBoost-related ensemble methods
are not understandable in terms of their resampling of the
data space approach [1]. The same is true for algorithms
that involve bagging, for example, random forest and its
derivates. Additionally, most ensemble methods only fulfill
the accuracy criteria when using a large number (even 100s)
of models, which jeopardizes the efficiency criteria since it
is not possible to understand an ensemble method within a
reasonable time.

We conclude with our findings concerning the inter-
pretability of one-class learning. In relation to interpretability,
learning only the majority class makes it easier to understand
the behavior and predictions of a model, and it is a useful and
interpretable approach for anomaly detection. However, for
classification, the tested approaches face the same obstacles
concerning interpretability as “common” classification mod-
els. To gain a more profound understanding of this research
field, further investigationwould be necessary, as [44] already
stated that explainable or interpretable one-class learning is
necessary.
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TABLE 14. The table contains the names, technique and type of all used classification algorithms, feature selection, feature extraction methods. The
Name column contains links to the api-documentation of the corresponding approach.

TABLE 15. The table contains the names, technique and type of all used
resampling approaches. The Name column contains links to the
api-documentation of the corresponding approach.

H. LIMITATIONS
In this section we disclose and address possible limitations of
our experiments and evaluation.

a: MODEL SELECTION VIA TRAIN-TEST SPLIT AND NOT
WITH CROSS-VALIDATION
Full cross-validation with multiple parameters was not useful
due to the interactive nature of our experimental approach.
A user should interact and understand both data and the

model, which, in our opinion, is not possible with complex
hyperparameter tuning.

b: USAGE OF DEFAULT PARAMETERS FOR ALL MODELS
AND CLASS IMBALANCE APPROACHES
Simpler models, have fewer parameters, resulting in a poten-
tial advantage over more complex models in an advantage,
since more complex models provide more options to tune.
From a prediction performance perspective, this aspect is
true, but from an interpretability aspect additional tuning of
hyper-parameters of a black-box model does not make it
“more interpretable”.

c: NOT ALL REPRESENTATIVES FOR CLASS IMBALANCE
APPROACHES ARE AVAILABLE
For most of the missing approaches, for example, active
learning or costs for cost-sensitive learning, it is not feasible
due to a lack of domain knowledge for the used data sets.
Even for domain owners, estimating costs is a complex
task. For feature selection, for example, we want to show
the basic effect that feature selection could have in a class
imbalance setting, and therefore available options seem
sufficient.

d: NOT ALL EXPLANATION METHODS ARE AVAILABLE
Concerning the available options, we decided to use
pre-existing options from specific libraries, for example,
eli5 or tree-interpreter. There exist many other tech-
niques, for example SHAPE, LIME or partial depen-
dency plots, but ultimately, these are only explana-
tions of pre-trained models, with the aforementioned
limitations.
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VI. CONCLUSION
The purpose of this paper is to investigate the inter-
pretability of class imbalance countermeasures from the
perspective of AI users and AI experts. To be considered
interpretable, a countermeasure, or more generally a model,
must fulfill three criteria, namely, accuracy, efficiency, and
understandability. Accuracy is important since one can
always create a trivial, interpretable model with no relation
to the data. Efficiency focuses on the amount of time
needed, to grasp the model, since every (complex) model is
understandable with infinitive time. For AI users, a model is
understandable as they understand how a model’s prediction
is materialized. For AI experts, a model is understandable if
they can fully trace the process that created a given model.
Our experiments indicated that two of the most common
class imbalance countermeasures, namely, resampling and
ensemble methods, are not interpretable for both AI users
and AI experts. Resampling is not understandable due to
the random sampling of the data. Ensemble methods are
also not understandable due to their nature, with various
models or involved re-sampling mechanisms. To be accurate,
most ensemble methods require numerous models, which
jeopardizes both efficiency and again understandability.
Due to the transformation of raw feature values within
feature extraction, AI users cannot understand the model’s
prediction, or only with the help of the original feature
values. The two representatives of one-class learning are not
interpretable. One-class-SVM, due to the complex feature
transformations, is not understandable by AI users, and
isolation forest is not understandable by both AI users and AI
experts, due to the involved bagging algorithm. Given that the
used method or model is interpretable, we conclude that the
remaining class imbalance countermeasures feature selection
and the two representatives of cost-sensitive learning, namely,
integration of weights and calibration are interpretable.
Feature selection generally reduces the overall feature set to
the most relevant features, leading to simpler, less complex
models, without jeopardizing interpretability. For the integra-
tion of weights, the usage of different weights for minority
and majority classes improves the performance of models
without an impact on their interpretability. Calibration has
the additional requirement that the used model must support
probability estimates, but despite that calibration is usable
in settings where interpretability is important. Additionally,
both cost-sensitive representatives require monitoring of
changes in the confusion matrix, since they typically shift the
classification error from minority to majority instances. Our
results indicate that interpretability is still an under-explored
topic in the field of class imbalance countermeasures, for
which the pure prediction performance of class imbalance
countermeasures seems to be the main criterion. However,
experiments suggested that for 16 out of 27 data sets,
simple, interpretable models, i.e., logistic regression and
decision tree, can outperform complex models. With this
publication, we also provide a guideline for both AI users and
AI experts, on which class imbalance countermeasures are

usable in settings where interpretability is of importance. Our
findings propose, that there is great potential for interpretable
class imbalance countermeasures. In one of our future
works, we will further investigate the combination of feature
selection with techniques of cost-sensitive learning.

APPENDIX
USED METHODS
We assemble a table consisting of all classification algo-
rithms, feature selection, feature extraction in Table 14, and
resampling methods in Table 15.
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