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ABSTRACT Remaining useful life (RUL) prediction is a key technology to ensure the reliability and
safety of high-end equipment. Deep learning is widely used for RUL prediction due to the excellent feature
extraction ability and nonlinear fitting ability. Traditional recurrent neural networks adopt recursive strategy,
which easily lead to the problems of error accumulation and low stability. On the other hand, most deep
learning methods are used for point prediction and cannot quantify uncertainty in the prediction results.
Although some probability prediction methods based on deep learning can provide probability prediction
results, it require the assumption that the prediction results follow a specific distribution in advance.
However, the distribution of most prediction results does not match a suitable distribution function. To solve
above problems, a novel RUL prediction approach based on eXtreme gradient boosting (XGBoost) and
multi-quantile recursive neural network (MQ-RNN) is proposed in this article. Specifically, XGBoost is
used to select features closely related to RUL, and the selected features are fed into MQ-RNN to train the
RUL prediction model. The advantage of MQ-RNN is that it has non-parametric framework, prediction
results can be obtained by multi-quantile regression, which does not require prior assumptions about the
distribution of predicted results. Furthermore, the proposed framework is verified by C-MAPSS dataset.
Finally, comparative experiments are conducted. The experimental results show that the proposed method
maintains good predictive performance in both point estimation and interval estimation.

INDEX TERMS Remaining useful life, eXtreme gradient boosting, multi-quantile recursive neural network,
quantile regression, forking sequences training scheme.

I. INTRODUCTION
Prognostics Health Management (PHM) technology is an
effective solution to ensure the safety and reliability of high-
end equipment [1]. As the key technology of PHM, RUL
prediction can warn failures as early as possible to avoid
accidents and reduce economic losses [2]. There are two
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main methods for RUL prediction: physical model-based
methods and data-driven methods [3]. Physical model-based
methods mainly constructs a parameterized mathematical
model describing the degradation process of systems based
on the failure mechanism, and updates the mechanism model
parameters based on state monitoring data to achieve the
RUL [4], [5]. However, due to the complex and diverse fault
mechanism of complex systems, it is difficult to establish
an accurate physical model [6]. Data-driven prediction
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methods can be divided into statistical model-based methods
and machine learning-based methods [7]. Statistical model-
based methods is based on the theory of probability and
statistics, using random models to establish monitoring
data and infer RUL, which can obtain the probability
distribution of RUL [8]. Machine learning-based methods
involve analyzing, training and processing the acquired
historical data to predict system RUL [9].
In recent years, machine learning-based methods have

become the preferred technology for RUL prediction, which
can be divided into shallow machine learning prediction
methods and deep learning prediction methods [10]. Shallow
machine learning prediction methods for RUL prediction
include support vector machine [11], extreme learning
machine [12], random forest [13], etc. Although shallow
neural network training is relatively easy, however, the
network structure is simple, and RUL prediction based on
shallow machine learning rely on prior knowledge of experts
and and signal processing techniques. In addition, it is
difficult to automatically analyze and process a large number
of monitoring data, resulting in low prediction accuracy and
poor robustness.

Deep learning have more powerful feature extraction and
nonlinear relationship learning ability than shallow machine
learning prediction methods [14], [15], [16], therefore, it is
widely used for RUL prediction. For example, Ma et al. [17]
used stacked sparse autoencoder to automatically extract
performance degradation features from multiple sensors on
the aircraft engine, and applied logistic regression to predict
the RUL. However, when stacked sparse autoencoder process
high-dimensional raw monitoring data, they still need to
use various signal processing techniques to extract system
degradation indicators. Jiao et al. [18] proposed a RUL
prediction method based on deep belief network (DBN), and
Ren et al. [19] proposed a RUL prediction method based on
deep convolutional neural network (CNN). However, DBN
and CNN are mainly used for feature extraction, which
should be combinedwith other methods to predict RUL. Then
Guo et al. [20] utilized RNN to predict RUL of the bearing,
but RNN can cause the problems of gradient vanishing and
gradient explosion.Long Short Time Memory(LSTM)and
Gated Recurrent Neural Network (GRU) can overcome these
shortcomings. Then Ding et al. [21] applied the LSTM neural
network model to predict RUL of bearings. Behera et al. [22]
used multi-scale depth bidirectional gated recurrent neural
network (MDBGRU) to predict the RUL of aero engines,
which can simultaneously capture the dependency ofmultiple
time scales and improve the accuracy and expressiveness of
sequence data processing. The above deep learning prediction
methods, especially those based on recursive prediction, have
the problem of error accumulation, and the existing models
still have the problem of low stability in training.

To improve the RUL prediction accuracy, more and more
researchers integrate multiple methods to compensate for
the shortcomings of a single deep learning network. For

instance, Xiang et al. [23] proposed a RUL prediction model
for aeroengines by combining multicellular LSTM neural
network and DNN. Qin et al. [24] proposed a degradation
trend-constrained variational autoencoder to construct an
health indicator (HI) vector with obvious degradation trend,
and the constructed HI was used to predict the corresponding
RUL using macro-microattention-based long-term short-
term memory (MMALSTM). Zhou et al. [25] explored a
new dual-threaded gated cycle unit (DTGRU) in order to
improve its ability to predict complex degradation trajecues.
Zhou et al. [26] innovatively constructed the Distributed
Contact Ratio Measure Health Indicator (DCRHI), then
the combined memory gated cycle unit (CMGRU) was
used to predict the RUL of the bearing. Li et al. [27]
proposed a RUL prediction method combining multi-branch
improved Convolutional network (MBCNN) and bidirec-
tional Long short-term memory (BiLSTM) network to solve
the problem of low prediction accuracy due to difficulty
in feature extraction of bearing data. Jiang et al. [28]
designed a combined time convolutional network (TCN)
and multi-head self-attention (MSA) model to predict the
RUL of rolling bearings in view of the complex nonlin-
earity and complexity of mechanical equipment systems.
Li et al. [29] combined CNN and LSTM neural network
to predict RUL of aeroengines. Xia et al. [30] integrated
time series and self-attention network, proposed the dis-
tance self-attention network (DSAN) to predict RUL for
aeroengines. Al-Dahidi et al. [31] gave RUL prediction
of high-reliability equipment based on long short-term
memory and MSA. However, the above RUL prediction
methods based on deep learning use point estimation, without
considering the uncertainty of prediction results. The purpose
of RUL prediction is to assist maintenance personnel in
making scientific maintenance decisions. Then the RUL
prediction methods still need to be further improved.

The degradation process of complex systems inevitably
suffer from uncertainty, such as the sensor noise, model
structure, model parameters, etc. Therefore, the RUL pre-
diction methods using point estimation are unsuitable for
making maintenance decisions while considering risks,
since risk is usually measured through uncertainty. The
uncertainty quantification in RUL prediction mainly depend
on statistical model-based methods, such as Gaussian process
regression [32], hidden Markov model [33], etc. Only a few
researchers have paid attention to uncertainty quantification
of RUL prediction results based onmachine learning in recent
years. For instance, Li et al. [34] formulated a novel Bayesian
deep learning framework to characterize the prognostic
uncertainties. Zhao et al. [35] proposed a Li-ion RUL
prediction method combining LSTM and Gaussian process
regression. Keshun et al. [36] propose a RUL prediction
method based on Gamma stochastic process combined with
particle filter expectation maximization method and Sparrow
Search algorithm optimized SVR to predict the RUL.
Zeng and Liang [37] used the deep Gaussian process to
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give RUL probabilistic prediction. The RUL probability
prediction methods mentioned in the above literature,
whether based on statistical models or machine learning,
requires the assumption that the prediction results follow a
specific distribution. Unfortunately, the distribution of most
prediction results does not match a suitable distribution
function.

As a non-parametric prediction framework based on deep
learning,MQ-RNNdoed not need tomake assumptions about
the distribution of predicted results in advance, which provide
a probabilistic multi-step time series regression method to
predict the future state [38]. In order to improve the prediction
accuracy of RUL and quantify uncertainty of the predic-
tion results, this article proposes a novel non-parametric
RUL prediction framework based on XGBoost and
MQ-RNN. The main contributions of this article are given
as follows:

• A novel non-parametric RUL prediction framework is
proposed based on XGBoost and MQ-RNN, which is
robust since it does not make any assumptions about the
distribution of predicted results. Specifically, XGBoost
is used to feature selection, and MQ-RNN is applied
to RUL prediction. The proposed method can not
only further improve prediction accuracy, but also can
quantify uncertainty of the prediction results.

• The article is the first to use MQRNN for RUL
prediction. MQ-RNN returns the condition quantile
of the predicted RUL distribution by using quantile
regression, which adopts direct multi-horizon strategy
to avoid error accumulation and maintains efficiency by
sharing parameters. In addition, the forking-sequences
training scheme in MQ-RNN trains the network model
by traversing the data sequences at all time points, which
significantly improves the stability and performance of
the prediction model.

• The proposed framework is verified by C-MAPSS
dataset. Then comparative experiments are conducted.
The experimental results show that the proposed method
maintains good predictive performance in both point
estimation and interval estimation.

The rest of this article is arranged as follows. Section II
introduces the basic theory of LSTM and MLP. Section III
proposes the RUL prediction framwork based on XGBoost
and MQ-RNN. Section IV verifies the proposed framework
by C-MAPSS dataset. Section V conducts the comparative
experiments. Section VI summarizes this article and states the
future research work.

II. BASIC THEORY OF LSTM AND MLP
A. LSTM
LSTM has added gate logic control unit, which effectively
solves the problems of gradient explosion and gradient
disappearance in the process of long-term sequence training,
andmakes long-distance time series informationmore widely
used. The structure of the LSTM model is shown in figure 1.

FIGURE 1. The structure of the LSTM model.

The gate control unit mainly consists of three logic control
units: forget gate, input gate and output gate. These three
logic control units control the three stages of LSTMby setting
weights, respectively. The formula of forget gate, input gate
and output gate are

ft = σ (Wf · [ht−1, xt ] + bf ), (1)

it = σ (Wi · [ht−1, xt ] + bi) (2)

and

ot = σ (Wo · [ht−1, xt ] + bo), (3)

where xt is the input data, ht−1 is the hidden state of the last
moment,Wf ,Wi andWo are the weight matrices in each gated
cell, bf , bi and bo are the biases.
The update of cell state in LSTM can be described by

C̃t = tanh(Wc · [ht−1, xt ] + bc) (4)

and

Ct = ft ∗ Ct−1 + it ∗ C̃t , (5)

where Ct is the cell state at time t , Ct−1 is the cell state at
time t − 1, C̃t is the candidate vector to add to the cell state,
Wc indicates the weight matrix of tanh activation function
layer and bc is the bias. Finally, an output gate and a tanh
function layer were used to generate the cell network output
ht , which can be expressed by

ht = ot ∗ tanh(Ct ). (6)

B. MLP
Multi-Layer Perceptron (MLP) is mainly composed of input
layer, hidden layer and output layer. Hidden layer can have
many layers, and the simplest MLP hidden layer only has one
layer, as shown in figure 2.
Each layer of the multi-layer perceptron is fully connected.

The input layer is used to receive data, the middle layer
is used to calculate data, and the output layer is used to
output results. In the multi-layer perceptron, the output of
the hidden layer will be converted by activation function. The
activation function used by MLP in the MQ-RNN prediction
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FIGURE 2. The structure of the MLP model.

model is the ReLU activation function. The formula of ReLU
activation function is

ReLU (x) = max(x, 0). (7)

Compared with Sigmoid activation function and Tanh
activation function, ReLU activation function solves the prob-
lem of gradient disappearance. Moreover, ReLU activation
function has only a linear relationship, which is faster than
Sigmoid activation function and Tanh activation function in
both forward and back propagation.

III. RUL PREDICTION FRAMEWORK BASED ON XGBOOST
AND MQ-RNN
In this section, a novel non-parametric RUL prediction frame-
work is proposed to improve the RUL prediction accuracy and
quantify the uncertainty of the prediction results. The structue
of the framework is shown in Figure 3, which involves three
parts: data preprocessing, RUL predictionmodel construction
and RUL prediction.

The data preprocessing mainly includes important feature
selection and data normalization. The XGBoost method is
used for feature selection to eliminate redundant features.
For data normalization, if only single operating conditions
are included, data standardization can be directly carried
out; if the data collected by the sensor involves multiple
operating conditions, it is necessary to cluster the data first,
and then standardize it based on the clustering results. Then
the RUL prediction model is constructed by using MQ-RNN
directly. Input the normalized training set into the MQ-RNN
model and train the MQ-RNN model. So the RUL prediction
model is obtained by optimizing the parameters in MQ-RNN.
Finally, test set is input into the trained RUL prediction model
to obtain the RUL prediction results.

A. FEATURE SELECTION
XGBoost is used for feature selection, which is an ensemble
learning algorithm based on decision tree and designed for
speed and performance. The purpose of the XGBoost is
to achieve the effect of a strong classifier by integrating
various weak classifiers. By analyzing multidimensional
features through XGBoost, the importance of features can be
obtained, and the input data is filtered by the importance of

FIGURE 3. The RUL prediction framework.

the features. The basic principles of XGBoost can be found
in the literature [39].

For a dataset with n example and m features D = {(xi, yi)},
(|D| = n, xi ∈ Rm, yi ∈ R), a tree ensemble model uses K
additive functions to predict the output

ŷi = φ(xi) =

K∑
k=1

fk (xi), fk ∈ F, (8)

where F = {f (x) = ωq(x)}, (q : Rm
→ T , ω ∈ RT ) is the

space of regression trees. q is the structure of each tree that
maps the dataset to the corresponding leaf weight. T is the
number of leaves in the tree. The model is optimized by using
the following objective function

L =

∑
i

loss(yi, ŷi) +

∑
k

�(fk (xi)), (9)

in which�(fk (xi)) = γT+
1
2λ∥ωq(xi)∥

2 is regularization item,
γ and λ are regularization coefficients.

For each iteration of the model, the objective function of
the previous iteration will be optimized. The predicted value
for tth iteration is

ŷ(t)i = ŷ(t−1)
i + ft (xi). (10)

The objective function L can transfer to

L =

∑
i

loss(yi, ŷ
(t−1)
i + ft (xi)) + �(ft (xi)). (11)
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To minimize the objective function, expand the second-order
Taylor expansion of ft (xi) in equation (11) and remove the
constant term,

L̃ ≈

∑
i

(loss(yi, ŷ(t−1)) + gift (xi) +
1
2
hif 2t (xi)) + �(ft (xi))

=

∑
i

(gift (xi) +
1
2
hif 2t (xi)) + �(ft (xi)), (12)

in which gi = ∂ŷ(t−1) loss(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ(t−1) loss(yi,

ŷ(t−1)
i ). Let Ij = {i | q(xi) = j} be the set of leaf j. Bring

� into equation (12), then

L̃ =

∑
i

(gift (xi) +
1
2
hif 2t (xi)) + γT +

1
2
λ

∑
j

ω2
j

=

∑
j

[(
∑
i∈Ij

gi)ωj +
1
2
(
∑
i∈Ij

hi + λ)ω2
j ] + γT . (13)

Minimize equation (13) to obtain feature importance,

ω∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
. (14)

Bring ω∗
j into equation (13), then

L̃∗
= −

1
2

∑
j

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT . (15)

B. DATA NORMALIZATION
Normalization is to limit the pre-processed data to a fixed
range such as [0,1] or [-1,1], so as to avoid a series of troubles
caused by the singular sample data.

If the dataset under a certain operating condition, the
Min-Max normalization method is used and the original data
is normalized to the range [0,1] by using linear transformation
of the original data, i.e.,

x∗
=

x − xmin
xmax − xmin

, (16)

where xmax and xmin are the maximum and minimum values
of sample data, respectively.

If the dataset contains a variety of operating conditions, it is
necessary to use clustering algorithmfirst, and then normalize
the clustering results by

x i =
x i,k − mi,k

vi,k
, (17)

where k is the number of clusters, the value of k is usually
consistent with the type number of operating conditions,
x i,k is the data collected by the ith sensor under the kth
operating condition, mi,k and vi,k are the mean value and the
variance of the original measurement values of the ith sensor
under the kth operating condition, respectively.

FIGURE 4. The structure of MQ-RNN.

C. RUL PREDICTION MODEL CONSTRUCTION
MQ-RNN is appiled for RUL prediction model construction.
The structure of MQ-RNN is encoder-decoder structure,
which is shown in Figure 4. MQ-RNN uses LSTM to encode
all historical information into hidden states, and designs two
MLPs as decoder: a global MLP and a local MLP. The MQ-
RNN can deal with the large scale time series regression
problem

P(yt+n,i, . . . , yt+1,i | y:t,i, x
(H )
:t,i , x

(F)
t:,i , x

(S)
i ), (18)

where y·,i is the ith time series to predict, x(H )
:t,i are the

temporal covariates available in history, x(F)t:,i are the temporal
covariates in the future, and x(S)i are time-invariant features.

Specifically, the input information of the encoder is x(H )
:t,i

and y:t,i, and the hidden state ht is output after LSTM
encoding. In the decoder, the global MLP and the local MLP
are used. The input of the global MLP is the hidden state ht
and future input x(F)t:,i . The output is dt+N ,N = 1, 2, . . . , n
and ds, where dt+N ,N = 1, 2, . . . , n are the captured
information at n future points, and ds is independent of time
and used to capture the global information. The output of
global MLP can be expressed by

(dt+1, . . . , dt+n, ds) = Mg(ht , x
(F)
t:,i ), (19)

in whichMg(·) is the global MLP and the output d(·) can have
arbitrary dimension.

The local MLP can respond well to the periodicity of the
data and some abrupt changes in the data, which is used to
each specific horizon. The input of the localMLP is the future
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input x(F)t:,i and the output of global MLP, i.e., dt+N ,N ∈

{1, 2, . . . , n} and ds. The output of the local MLP is all the
required quantiles for the specific future time step

(ŷ(q1)t+N ,i, . . . , ŷ
(qQ)
t+N ,i) = Ml(dt+N , ds, x

(F)
t:,i ), N = 1, 2, . . . , n,

(20)

in which Ml(·) is the local MLP and q(·) denotes each of the
Q quantiles.
Quantile regression fits different quantiles of the target

value by giving different loci. The prediction model is trained
by minimizing the the quantile loss function

Lq(y, ŷ) = q(y− ŷ)+ + (1 − q)(ŷ+ y)+, (21)

where y is the actual value, ŷ is the predicted value, q is the
quantile coefficient, and (·)+ = max(0, ·).

The MQ-RNN prediction model is trained by minimizing
the total quantile loss, namely,

Ltotal =

∑
t

∑
q

∑
N

Lq(yt+N , ŷ(q)t+N ). (22)

The difference between MQ-RNN and other Seq2Seq
architecture models is that it uses the forking-sequences
training scheme to improve its performance. Many time
series prediction models use a moving-window scheme
to cut the time series into subsequences, known as cut-
sequences, but a large amount of data needs to be extended
in the moving-window scheme. In the MQ-RNN prediction
method, the moving-window scheme is not necessary since
the forking-sequences training scheme is applied. The
forking-sequences training scheme treats each time series of
any length as a single sample, which eliminates the need for
a large amount of data in the experiment and significantly
reduces training time. In addition, the forking-sequences
training scheme utilizes all available information at one time
to make the model more stable.

IV. VERIFICATION
A. DATASET DESCRIPTION
To validate the effectiveness of the proposed method, the
NASA’s turbofan engine degradation dataset is considered.
The dataset has been generated by commercial modular
aero-propulsion system simulation (C-MAPSS), which is a
model-based simulation program developed by NASA. The
turbofan engine includes five main components, namely, the
fan, high-pressure turbine, high-pressure compressor, low-
pressure turbine and low-pressure compressor, the states and
operating condition of which are observed by 21 sensors
that measure features (temperature, pressure, fan speed, etc)
in several engine parts during each operation cycle. The
turbofan engine is considered to be in a healthy state initially,
and the degradation caused by an artificial fault progresses
until a system failure occurs.

The C-MAPSS dataset includes four subdatasets collected
in various degradation scenarios, denoted by ‘‘FD001’’,
‘‘FD002’’, ‘‘FD003’’ and ‘‘FD004’’, respectively. ‘‘FD001’’

TABLE 1. Description of the four subdatasets.

and ‘‘FD002’’ are affected only by high-pressure com-
pressor fault, while ‘‘FD003’’ and ‘‘FD004’’ are subject
to high-pressure compressor and fan faults; ‘‘FD001’’ and
‘‘FD003’’ under one operational condition, while ‘‘FD002’’
and ‘‘FD004’’ under multiple operational conditions. Due to
subdatasets ‘‘FD001’’ and ‘‘FD004’’ represent the simplest
and the most complex situations, they are usually selected
for experimental verification. The description of subdatasets
‘‘FD001’’ and ‘‘FD004’’ is shown in Table 1. Each subdataset
contains three .txt files, recording training set data, test set
data and RUL data, respectively.

B. DATA PREPROCESSING
In subdatasets ‘‘FD001’’ and ‘‘FD004’’, some sensor mea-
surement data are always constant, which are not valuable in
the RUL prediction. In addition, some unimportant features
need to be removed to ensure the efficiency of RUL
prediction. The XGBoost is used to evaluate the importance
of features since it increases the interpretability of the RUL
prediction model. Figure 5 shows the feature importance
in subdatasets ‘‘FD001’’ and ‘‘FD004’’, and ranks them
accordingly. Only important features are selected as RUL
prediction model inputs. In subdataset ‘‘FD001’’, the data of
sensors 11, 4, 9, 12, 7, 14, 13, 15, 8, 21, 2, 20, and 17 are
selected, and in subdataset ‘‘FD004’’, the data of sensors 13,
11, 15, 7, 12, 4, 8, 2, 10, 14, 9, 6, 3 and operating condition 1,
2 are selected. It is easy to see that in ‘‘FD001’’ and ‘‘FD004’’,
the importance of different sensor data in the residual life
prediction task is different, and the operating condition of the
‘‘FD004’’ also affects the selection of features.

For subdataset ‘‘FD001’’, the Min-Max normalization
method is used by formula (16). For subdataset ‘‘FD004’’, k-
means algorithm is used for clustering first, then formula (17)
is appiled for normalization. Since full life cycle data in
C-MAPSS dataset are available, according to literature [40],
the true RUL is defined as

RUL =

{
RUL, if RUL < RULmax
RULmax , if RUL ≥ RULmax .

(23)

C. RUL PREDICTION RESULTS FOR AEROENGINES
In order to select the optimal training model, the Adam opti-
mizer is used to determine the hyperparameters. It determined
that the network structure of MQ-RNN has a 3-layer LSTM
encoder with 40 LSTM units in each layer, and both global
MLP and locall MLP have 2 layers and 20 neuron nodes in
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FIGURE 5. The feature importance ranking.

each layer. The initial learning rate is set to 0.001 for training
the model. Then the RUL prediction model is trained.

Input the test set of subdatasets ‘‘FD001’’ and ‘‘FD004’’
into the trained RUL prediction model to obtain the RUL
prediction results. Select the representative prediction results
randomly, as shown in Figure 6. Specifically, set the predicted
point value as the quantile point. The prediction range of
30th to 70th quantile and the prediction range of 10th to
90th quantile are given, respectively. In addition, the RUL
prediction errors are also presented in Figure 6 to show the
performance of the proposed method.

For inverval prediction, the range of prediction results can
roughly represent the uncertainty of prediction results, that
is, the larger the range of prediction results, the higher the
uncertainty, and the smaller the range of prediction results,
the lower the uncertainty. As shown in Figure 6 (a), for
21th engine in subdataset ‘‘FD001’’, the RUL prediction
interval for cycles 0 to 20 is narrow, indicating relatively
low uncertainty in RUL prediction results, while the RUL
prediction interval for cycles 20 to 40 is wide, indicating
relatively high uncertainty in RUL prediction results. For the
cycles of 40 to 60, the RUL prediction range narrows again,
which implies that the uncertainty does not increase as the
prediction time point approaches the failure time. As shown
in Figure 6 (b), although both the operating conditions and
the faults types of the engine increase, the predicted result
interval does not significantly increased, which indicates that

FIGURE 6. The RUL prediction results for the test engines.

uncertainty has not increased as time goes on. However, the
average prediction interval of subdataset ‘‘FD004’’ is higher
than that of subdataset ‘‘FD001’’, as the increase in fault types
and operating conditions in the dataset leads to increased
uncertainty. For point prediction, both subdatasets ‘‘FD001’’
and ‘‘FD004’’ have no significant cumulative error in the
prediction results. In addition, the absolute average error of
subdatasets ‘‘FD004’’ is higher than ‘‘FD001’’ since the fault
types and operating conditions increase.

V. COMPARATIVE EXPERIMENTS
A. EVALUATION INDICES FOR PREDICTION RESULTS
Firstly, root mean square error (RMSE) and score function
(SF) defined in Chen et al. [41] are used to evaluate the
point prediction results. RMSE is used to calculate the error
between the real RUL and the predicted RUL, which defined
as

RMSE =

√√√√ 1
N

N∑
i=1

(Yi − Ŷi)2, (24)

where Yi and Ŷi represent predicted results and actual values,
respectively, and N represents the number of samples of the
test set.
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SF is used to measure the prediction ability of the model
and defined as

Score =

N∑
i=1

si =

e
Ŷi−Yi
13 , if Yi − Ŷi < 0

e
Yi−Ŷi
13 , if Yi − Ŷi ≥ 0,

(25)

where si records the scoring result of the final data point of
test engine i.

In order to evaluate the prediction results of interval
estimation, prediction interval coverage probability (PICP),
prediction interval normalized average width (PINAW)
and coverage width-based criterion (CWC) defined in
Chen et al. [41] are used in this article.
PICP determineswhetherRUL i is between the lower bound

Dσ
i and the upper bound Uσ

i of the prediction interval under
the confidence level 100(1 − σ )%. The PICP is defined as

PICP =
1
N

N∑
i=1

λi
{Dσ

i ≤RULi≤Uσ
i }

, (26)

in which λi
{·}

is the indicator function, i.e., its value is 1 if the
condition {·} is met, and 0 if not. The higher the PICP, the
better the prediction effect.

PINAW evaluates the prediction ability by calculating the
mean breadth of the prediction interval. PINAW is defined as

PINAW =
1
RN

N∑
i=1

(Uσ
i − Dσ

i ), (27)

where R is the range of RUL i in the whole prediction period.
The lower the PINAW, the better the prediction effect.

The indicator CWC combines PICP and PINAW to provide
a comprehensive evaluation score, which can be expressed by

CWC = PINAW (1 + γ (PICP)e−τ (PICP−κ)), (28)

where γ (PICP) = 0 if PICP ≥ κ , and γ (PICP) = 1
otherwise, τ and κ are the hyper parameters. Usually,
τ ranging from 10 to 100, κ is equal to the confidence level
100(1 − σ )%. The lower the CWC, the better the prediction
effect.

B. COMPETITIVE RESULTS COMPARED WITH OTHER
PREDICTION METHODS
The median points of the prediction results are regarded as
point estimation results, which are compared with the pre-
diction results of SVM [42], MLP [42], NN [2], LSTM [42],
DBN [42],MONBNE [23], LSTM-attention [23],MCLSTM-
attention-handscraft feature [23] and BiGRU-MMOE [43]
models. The evaluation indices RMSE and SF are used to
evaluate the predictive performance of point estimation, and
the comparison results are shown in Table 2. It is easy to
see that RMSE and SF of the proposed method are superior
to the above nine prediction methods, which shows that
the proposed method has better prediction ability in point
prediction.

Compare the evaluation indices of the proposed method
with those of the other nine methods that perform better. For

TABLE 2. Comparison results of RUL prediction point estimation for
different methods.

subdataset ‘‘FD001’’, the RMSE of the proposed method has
decreased by 1.50% compared to BiGRU-MMOE prediction
method, and the SF of the proposed method has decreased by
4.31% compared to MCLSTM-attention-handscraft feature
prediction method. For subdataset ‘‘FD004’’, the RMSE of
the proposed method has decreased by 0.87% compared to
BiGRU-MMOE prediction method, and the SF of proposed
method has decreased by 22.84% compared to MCLSTM-
attention-handscraft prediction method.

For interval prediction performance evaluation, the
existing interval prediction models MVE [44], Bayesian
[44], Bootstrapped SVR [45], IG-MLP [41] and DAE-
LSTMQR [41] are selected to compare with the proposed
method, and PICP, PINAW and CWC are the evaluation
indices. The confidence coefficient σ is set to 0.1, τ and
κ are set to 50 and 0.9, respectivly. The comparison
results of interval estimation are shown in Table 3. It can
be seen that the indices PICP, PINAW and CWC of the
proposed method are superior to those of the other five
methods.

For subdataset ‘‘FD001’’, the PICP index of the proposed
model is 0.97, which is higher than that of the other five
interval prediction models. In addition, compared to the
DAE-LSTMQR prediction method with better predictive
performance among the other five interval prediction models,
the PICP index has improved by 2.1%. The indices PINAW
and CWC of the proposed model are both 0.34, which
are lower than those of the other five prediction models.
Both PINAW and CWC have improved by 2.9% compared
to those of the DAE-LSTMQR prediction method. For
subdataset ‘‘FD004’’, the PICP index of the proposed method
is 0.93, which is much higher than the other five interval
prediction models and has 7.0% improvement compared to
the DAE-LSTMQR prediction method. The indices PINAW
and CWC of the proposed method are both 0.55, which are
lower than those of the other five interval prediction models.
The PINAW has improved by 9.84% compared to that of the
Bayesian prediction method, and the CWC has improved by
46.1% compared to that of the DAE-LSTMQR prediction
method.
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TABLE 3. Comparison results of RUL prediction interval estimation of different methods.

In summary, whether it is a dataset with a single
operating condition and a single fault type, or a dataset with
multiple operating conditions and multiple fault types, the
method proposed in this article maintains good predictive
performance in both point estimation and interval estimation.

C. DISCUSSION ON INTERVAL PREDICTION VERSUS
POINT PREDICTION
In the field of RUL prediction, the prediction results have a
certain degree of uncertainty. Compared to the determined
RUL point prediction, interval prediction has the following
advantages:

• Interval prediction can effectively quantify uncertainty,
and the interval width of the predicted results at a
certain confidence level can characterize the level of
uncertainty. When the width of the prediction interval
is wide, the uncertainty of the prediction result is high.
When the width of the prediction interval is narrow, the
uncertainty of the prediction result is low.

• The interval prediction of RUL can help equipment
maintenance personnel make reasonable maintenance
decisions considering reliability or risk, but the point
prediction of RUL cannot. For example, as shown
in Figure 6 (a), the RUL point prediction during
cycle range [70, 90] of the 21th engine in subdataset
‘‘FD001’’ is inaccurate. If there has no additional infor-
mation available, it may lead to incorrect maintenance
decisions. If interval estimation results are available,
maintenance will be carried out in advance. Therefore,
the RUL prediction interval estimation results under
different confidence levels has practical significance
for maintenance decision-making, the results of which
can be used as supplementary information combined
with point prediction to enhance the stability and
effectiveness of the decision-making.

VI. CONCLUSION
In order to improve the RUL prediction accuracy and
quantify uncertainty of prediction results, a novel non-
parametric RUL prediction framework based on XGBoost
and MQ-RNN is proposed in this article. The framework
uses XGBoost to select important features, and applied
MQ-RNN to prediction RUL. Then the proposed RUL
prediction framework is verified by C-MAPSS dataset,

and the RUL prediction results of point estimation and
interval estimation are given, respectively. The comparative
experimental results show that whether a dataset with a
single operating condition and a single fault type, or a
dataset with multiple operating conditions and multiple
fault types, the proposed method maintains good predictive
performance in both point estimation and interval estimation.
The proposed method can quantify the uncertainty of RUL
prediction results to provide risk assessment values, and
assist personnel in equipment maintenance support to make
scientific maintenance decisions while considering risks.

The proposed method mainly includes two limitations:
• High computational complexity: The MQ-RNN model
has high computational complexity, especially when
dealing with long sequences or high-dimensional data.
Since the MQ-RNN model needs to estimate multiple
quantiles at each time step, a lot of computation is
required. This can cause the training and inference
process to become time consuming and require greater
computational resources.

• High data requirements: MQ-RNN model has high
requirements for training data. Since the MQ-RNN
model needs to estimate multiple quantiles, there needs
to be enough samples in the training data to cover the
target quantile. If the distribution of training data is not
uniform or there is a lack of representative samples,
it may lead to poor performance of the MQ-RNN model
on some quantiles.

In summary, in the future, wewill focus on the construction
of lightweight models for predicting RUL. In addition, when
the data is not sufficient, we can enhance the data by
generating adversarial networks and predict the RUL on the
generated new dataset.
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