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ABSTRACT Rotated object detection in remote sensing images presents a highly challenging task due
to the extensive fields of view and complex backgrounds. While Convolutional Neural Networks (CNNs)
and Transformer networks have made progress in this area, there is still a lack of research on extracting
and fusing features for small targets in complex backgrounds. To address this gap, we have extended the
RTMDet framework by introducing three modules: the Focused Feature Context Aggregation Module,
the Feature Context Information Enhancement Module, and the Multi-scale Feature Fusion Module.
In the Focused Feature Context Aggregation Module, we replaced the Spatial Pyramid Pooling Bottleneck
(SPPFBottleneck) to better extract small target features by focusing on contextual information. The Feature
Context Information Enhancement Module enhances the model’s perception of multi-dimensional temporal
and spatial information. Finally, we combined the original features with the fused ones to prevent the loss
of specific features during the fusion process. Our proposed model, named the Multi-scale Feature Context
Aggregation Network (MFCANet), was evaluated on four challenging remote sensing datasets (MAR20,
SRSDD, HRSC, and DIOR-R). The experimental results demonstrate that our method outperforms baseline
models, achieving improvements of 2.13%, 10.28%, 1.46%, and 1.13% in mAP for the MAR20, SRSDD,
HRSC, and DIOR-R datasets, respectively.

INDEX TERMS Object detection, complex backgrounds, remote sensing images, context information,
multiscale feature fusion.

I. INTRODUCTION
Object detection in remote sensing images [1], [2], [3], [4],
[5], [6] plays a crucial role in various applications such
as environmental monitoring, military operations, national
security, transportation, forestry, and oil and gas activities.
It aims to identify the location and category of objects of
interest.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

To address challenges related to background overlap and
offer a more accurate delineation of target boundaries, rotated
bounding boxes have been employed. However, detecting
dense objects in complex backgrounds remains a challenging
issue, highlighting the importance of effective extraction
of multidimensional target feature context information.
To achieve improved detection results, advanced remote
sensing object detection networks typically enhance the two-
stage R-CNN detector [7], [8], [9], [10], [11]. This network
consists of a backbone network, neck, and detection head.
The detection head includes a Region Proposal Network
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(RPN) and R-CNN detection head. In the typical pipeline,
the backbone network extracts valuable target information,
the neck performs top-downmultiscale feature fusion, and the
features are then fed into the detection head for regression and
classification. However, most detection networks currently
only utilize single-dimensional features from the fused
features after multiscale fusion [8], [12], [13], [14], [15], [16].
This approach inadequately exploits the information from
the fused features. Additionally, re-extracting information
from the fused multiscale features may lead to the loss of
smaller targets, which contain crucial high-level semantic
and low-level geometric information. Therefore, it is crucial
to maximize the utilization of fused feature information for
enhancing performance.

Single-stage object detectors are commonly used for
rotated object detection in remote sensing images. These
detectors, similar to two-stage detectors, consist of three
parts but do not include a Region Proposal Network. Instead,
they directly perform classification and bounding box
regression on the fused multiscale feature maps. Although
this architecture is computationally efficient, it often lacks
accuracy compared to two-stage detectors. Therefore, the
challenges faced by two-stage detectors also apply to single-
stage detectors [14], [17], [18], [19]. In single-stage detectors,
the C4 and C5 parts of the backbone network usually
incorporate a module to enhance the semantic information
of features(As shown in Figure 5). This ensures that the
deepest feature map contains rich semantic information
while maintaining scale invariance in the output [20], [21],
[22]. However, this approach overlooks the importance of
contextual information between different features, which is
crucial for object classification and regression. Considering
the contextual information is a key factor in improving
dense object detection performance, especially in complex
backgrounds.

To address the aforementioned issues, this paper proposes
a method for detecting rotated objects in remote-sensing
images. The method, called Multiscale Feature Context
Aggregation Network for Oriented Object Detection in
Remote-Sensing Images (MFCANet), is based on RTMDet.
The proposed method consists of three main modules:
a Focused Feature Context Aggregation Module, a Fea-
ture Context Information Enhancement Module (ODCLayer
Module), and a Multiscale Feature Fusion Module. The
Focused Feature Context Aggregation Module is designed
to extract semantic information and context information
related to the focus feature. The ODCLayer Module extracts
fused feature information from four different dimensions
using various-sized convolutional kernels. The Multiscale
Feature Fusion Module integrates the original features with
the features after the ODCLayer Module to prevent the loss
of small target features. The effectiveness of the proposed
method is evaluated on the MAR20, HRSC, SRSDD, and
DIOR-R datasets. In summary, the contributions of this work
include:

• In the backbone network, we utilize a multi-level
feature fusionmechanism to acquire features of different
scales. Subsequently, context information is selectively
extracted from local to global levels at varying granular-
ities, resulting in feature maps equal in size to the input
features. Finally, these feature maps are injected into the
original features to obtain relevant information about the
objects of interest without altering their size.

• We design a feature aggregation module that assigns
varying attention across multiple dimensions to the
fused feature map information, thereby improving per-
formance in capturing rich contextual information and
consequently enhancing pixel-level attention towards
objects of interest.

• Within the feature pyramid, we efficiently harness
original feature information to process multi-scale
features more effectively by introducing a multi-scale
fusion pyramid network. This network connects original
features and fused features while shortening the infor-
mation transmission paths, extending from large-scale
features to fused small-scale features, and enabling the
module to optimally utilize features at each stage.

II. RELATED WORKS
A. OBJECT DETECTION IN GENERAL SCENARIOS
Over the past decade, computer vision technology has
rapidly advanced due to the continual iteration of large-scale
annotated datasets, which has further propelled advance-
ments in object detection tasks. These methodologies can be
broadly classified into two major categories: those based on
convolutional neural networks and those leveraging attention
mechanisms.

Within CNN models, there exist both single-stage detec-
tion models (such as SSD [23], RetinaNet [24], R2ANet [13],
the YOLO series [14], [17], [25], [26], [27], RTMDet [28],
among others) and two-stage models (R-CNN [29], Fast
R-CNN [7], Faster R-CNN [8], R-FCN [12], and so
forth). These models have shown significant achievements.
However, downsampling operations during processing in
CNN-based models may render extremely small targets
undetectable. To address the challenge of detecting small
targets, the introduction of FPN and its variants [30], [31]
aimed to improve their detection. However, this introduction
brought new challenges, including increased computational
complexity, the necessity for parameter adjustments within
FPN, and the potential for incomplete feature map matching
due to introduced cross-level connections, resulting in
inaccurate predictions at boundaries. Some researchers have
optimized feature spatial pooling modules and achieved
certain results [17], [20], [21], [22]. However, they have not
fully considered the impact of feature context information on
detection results.

Moreover, some researchers have introduced attention
mechanisms into CNNs [27], [32], [33], [34], which to some
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extent enhance the accuracy of object detection. Methods
combining attention with convolution capture both static
and dynamic contextual information in images, possessing
self-attention learning capabilities while incorporating con-
textual information. Furthermore, certain researchers have
transformed temporal information into the frequency domain
through techniques like wavelet and Fourier transforms [10],
[35], subsequently extracting frequency domain features that
have yielded promising results. Various approaches have
been proposed from different perspectives, involving the
design of a series of channel weight-solving methods to
adaptively learn the importance of each channel and weight
each channel feature map [36], [37], [38], all of which have
demonstrated favorable results.

In recent years, Transformer-based models [39], [40], [41],
[42] have shown promising results in the field of object
detection. The Vision Transformer (ViT) [39]demonstrated
that Transformers can be applied to computer vision with
minimal modifications and achieve excellent performance.
The DETR [40] model provides end-to-end object detection
without the need for post-processing steps like non-maximum
suppression (NMS) or prior knowledge and constraints such
as anchors. It can be parallelized and achieves results
comparable to Faster R-CNN, with better performance on
large objects. However, DETR, which utilizes CNN for
feature extraction and dimension reduction before applying
Transformers, still faces challenges in small object detection.
To build a comprehensive Transformer-based model, the
Swin Transformer [41] adopts a strategy inspired by the
favorable properties of CNN networks. It divides the image
into patches and further subdivides them into multiple win-
dows. Within each window, it calculates self-attention among
patches and then computes global self-attention through
a sliding window mechanism. This approach overcomes
the memory and computational limitations of Transform-
ers when dealing with large images. Additionally, the
Swin-Transformer exhibits strong scalability and performs
well on large-scale datasets. Nevertheless, it still requires
relatively high computational costs compared to traditional
neural networks and has certain limitations related to input
image size, which needs adjustments based on window size
and model architecture.

B. OBJECT DETECTION IN REMOTE SENSING SCENARIOS
Deep learning methods are presently extensively utilized for
object detection in remote sensing imagery. A variety of
CNN-based approaches for remote sensing object detection
have emerged, showing promising results.

To address the multiscale detection challenges arising
from different object sizes in remote sensing imagery,
mSODANet [43] constructs a hierarchical dilation network
using parallel dilated convolutions in PAFPN to enhance
the extraction of feature targets. This network facilitates
contextual information learning for diverse object types
across various scales and fields of view. The Super-Yolo

model [18] integrates multimodal data and incorporates aux-
iliary super-resolution learning to tackle multiscale detection
challenges for high-resolution objects, balancing detection
accuracy and computational cost. MFAF [44] proposes
an adaptive multiscale feature fusion approach, utilizing
multiscale feature integration modules and spatial attention
weight modules to create a feature fusion module, facilitating
flexible fusion of multiscale features. MDCT [31] introduces
a single-stage object detection model in FPN, relying on
multi-kernel dilated convolution blocks and Transformer
blocks to improve the intrinsic and neighboring spatial
features of small objects. ANSDA [45] employs NASFPN
for feature extraction and incorporates context enhancement
modules and channel attention modules, enhancing the
feature extraction capabilities for shallow-level features and
small object semantics. ORCNN-X [30] integrates a dynamic
attention module and an efficient feature fusion mechanism
into a multiscale feature extraction network, improving
the model’s perception capabilities to handle scale and
orientation variations. DCFPN [46] develops aDense Context
Feature Pyramid Network (DCFPN) and uses Gaussian loss
for rotation object detection. It utilizes dense multi-path
dilated layers to accurately extract multiscale information
and addresses boundary regression discontinuity via the
Gaussian loss function, resulting in favorable performance.
HFAN [47] introduces an adjacent feature alignment module
to integrate adjacent features in the feature map using
a non-parametric alignment strategy, improving detection
performance. YOLO-DCTI [19] addresses the challenge of
globally modeling pixel-level information for small objects
by designing a context transformer framework and embed-
ding it into the detection head. SPH-Yolo [27] incorporates
the Swin-Transformer into PAFPN to more effectively detect
objects of various scales.

Additionally, researchers have designed Simplified Spatial
Pyramid Pooling Fast [17] to replace Spatial Pyramid Pooling
Fast [27], speeding up feature extraction. Inspired by SPP,
the Atrous Spatial Pyramid Pooling module [21] is proposed
in DeepLabv2, utilizing multiple parallel atrous convolution
layers with different sampling rates. Features extracted at
each sampling rate are further processed in separate branches
and fused to generate the final result. This module constructs
convolutional kernels with different dilation rates to build
convolutions with different receptive fields, enabling the
acquisition of multiscale object information in Atrous Spatial
Pyramid Pooling. The Receptive Field Block [22] strengthens
the network’s feature extraction capability by simulating the
receptive field of human vision. Structurally borrowing from
the Inception concept, RFB incorporates atrous convolution
to effectively increase the receptive field. Despite the
significant progress made by spatial pooling methods in
improving feature extraction speed, these approaches have
not fully addressed the importance of contextual information
for target feature extraction. In the construction of feature
pyramids, there are still unresolved issues in multiscale
feature fusion and feature extraction, necessitating further
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FIGURE 1. The fundamental macro-architecture comprises three
segments: the backbone, neck, and heads. Input images are processed
through the backbone network to extract features, resulting in three sets
of feature maps at varying scales. The neck section utilizes PAFPN for the
bidirectional merging of these multi-scale feature maps before passing
them to the head. In the head component, predictions encompass various
aspects, including object category counts, boundary regression, and
detected target rotation angles, derived from the input features.

in-depth research and exploration. Therefore, more emphasis
should be placed on achieving more effective multiscale
feature fusion in feature pyramids, as well as a more detailed
and comprehensive consideration of information during the
fused feature extraction process.

III. METHODS
A. BASIC ROTATED DETECTION METHOD AS BASELINE
Previous approaches have commonly relied on horizontal
bounding boxes for object delineation, overlooking the
detection of rotated bounding boxes [15], [48]. However,
remote-sensing images often contain objects with complex
backgrounds, and traditional horizontal bounding boxes
include background information that can hinder precise
object localization. In contrast, rotated bounding boxes
enable precise object localization while minimizing back-
ground interference. Additionally, rotated bounding boxes
have minimal overlap, ensuring clear object delineation.
Therefore, it is crucial to explore and implement more
accurate representations of rotated bounding boxes for object
detection in remote sensing images. The typical definition of
rotated bounding boxes (RBB) is as follows:

(X ,Y ,W ,H , θ). (1)

Here, θ ∈ [−π/2, π/2] represents the clockwise rotation
angle from the image’s X-direction to the bounding box’s
X-direction in its relative coordinate system.We use the long-
edge-based format [49], requiring the width w to be greater
than the height h. We utilize the one-stage rotation object
detector RTMDet [28] to detect sparse and dense objects with
complex backgrounds in remote sensing images. RTMDet is
an improved version derived from YOLOX [16], having a
comparable overall macro-architecture to the YOLO series.
The complete model structure is depicted in Figure 1.
Specifically, RTMDet comprises CSPNeXt,

CSPNeXtPAFPN, and SepBNHead, which share convo-
lutional weights while performing batch normalization
independently. Furthermore, it takes cues from ConvNeXt

FIGURE 2. The FFCA module is specifically designed to acquire
multi-scale focal feature context information. C, H, and W respectively
denote the channel, height, and width of the feature map. ‘mean’
represents the tensor’s mean operation, ⊙ denotes tensor multiplication,
and ⊕ signifies tensor addition.

[50] and RepLKNet [51], improving feature extraction
by incorporating large kernel convolutions within the
Basic Block. Additionally, the authors adopt a dynamic
SimOTA approach for detecting rotated objects, employing
DistanceAnglePointCoder for Bbox encoding and decoding.
RTMDet introduces a Dynamic Soft Label Assigner to
execute a dynamic label-matching strategy. This method
primarily employs prior position information loss, sample
regression loss, and sample classification loss, incorporating
soft processing on these losses to fine-tune parameters for the
optimal dynamic matching effect. Upon summing these three
losses to derive the final cost matrix, SimOTA is utilized to
ascertain the quantity of matched samples for each ground
truth (GT) and thereby establish the final samples.

B. FOCUSED FEATURE CONTEXT AGGREGATION MODULE
Spatial feature pooling and its variations [20], [21], [22]
are commonly employed in the backbone network to extract
multi-scale features for target detection. However, these
methods have not adequately addressed the aggregation
of contextual features relevant to the specific feature of
interest, which is crucial for target localization and regression
prediction. To address this, we propose a novel method called
the Focal Feature Context Aggregation Module. This module
first adjusts the channel dimensions of the input tensor,
which has a channel dimension of C, through convolution
to yield a tensor with dimensions 2C+4. The tensor is then
partitioned into three groups along the channel dimension,
with channel dimensions of C, C, and 4 respectively. The part
with channel dimensions of 4 is further decomposed into four
tensors, each with a channel dimension of 1, as shown in the
gray-boxed convolution in Figure 2. One of the tensors with
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a channel dimension of C undergoes sequential convolution
operations with kernels of sizes 1, 3, 5, and 7. After each
convolution, mean operations are applied. The outcomes of
these convolutions are then element-wise multiplied with the
corresponding tensors obtained earlier (channel dimension of
1). The results are summed and passed through activation
functions. Finally, the resulting tensor, which still has a
channel dimension of C, is multiplied by another tensor
with a channel dimension of C. This product is refined
through a 1 × 1 convolution operation to extract specific
target features along with their corresponding contextual
information. The entire process is visually represented in
Figure 2. This module is embedded within the FFCAModule
section of the backbone network, as illustrated in Figure 5.

The FFCAModule is mathematically described as follows:

Y = F(X) ⊙ (
3∑
i=0

Hi(X ‘) ⊙ Gi(X ′′)). (2)

In this equation, F (·) represents the focusing function
used to extract results conforming to the Feature Context
Aggregation from the original features. Hi is the feature
context extraction function for the ith layer, Gi (·) represents
the gating function for the jth layer, ⊙ denoting the
tensor multiplication operation, and

∑
representing the

tensor summation operation. The variables X , X ′, and X ′′

respectively represent the sections of the original features
used for querying, extracting context information, and gate
selection.

C. MULTISCALE FEATURE FUSION MODULE
Objects in remote sensing images often exhibit significant
size variations, requiring neural networks’ feature maps to
encompass diverse receptive field scales for comprehensive
object feature extraction. PAFPN [52] initially extracts
feature maps at various scales through a bottom-up approach
and subsequently performs upsampling using a top-down
structure. It then integrates the downsampled and upsampled
outcomes via lateral connections, producing feature maps at
higher pyramid levels to incorporate enriched semantic infor-
mation. However, the PAFPNmodel encounters challenges in
detecting objects with complex backgrounds. Object features
with complex backgrounds within this model are confined
to small regions, potentially leading to their oversight or
misclassification during the image partitioning into multiple
scales using feature pyramids. Additionally, multiple fusions
can diminish vital features, reducing feature map clarity,
and thus hindering effective object detection. Optimizing
and adjusting the PAFPN model’s feature fusion mechanism
becomes essential to improve its performance.

Figure 3 illustrates our proposed model architecture. The
model incorporates two levels of lateral skip connections,
merging the original feature information with the inter-
mediate and final results. This creates direct connections
between the original features and the fused feature maps,
effectively utilizing the original feature maps’ characteristics

FIGURE 3. The multiscale feature fusion network integrates intermediate
and final outputs from PAFPN with the original output features using a
red solid line as a residual connection. The fusion of intermediate-level
information with deep-layer information is denoted by a deep yellow
dashed line, employing a 1 × 1 convolutional kernel for channel
dimension adjustment. The Fusion module, inherent in the baseline,
is used for merging the concatenated features.

to improve model performance. Furthermore, the integrated
residual structures maintain essential information throughout
the fusion process, preventing the loss of crucial details
and mitigating gradient vanishing issues. As this approach
relies on feature fusion, the combination does not inherently
increase computational costs. This module corresponds to the
MFFM section in the Neck of Figure 5. The entire process is
outlined as follows.

P3 = F3(G3(G4(C4,C5),C3) + C3) + C3. (3)

P4 = F4(G4(F4(G4(C4,C5)) + C4,P3 − C3)) + C4. (4)

P5 = F5(G5(C5,P4 − C4) + C5) + C5. (5)

In this context, C3, C4, and C5 represent the features
extracted by the backbone network, while P3, P4, and P5
correspond to the fused feature outcomes. The function Fi (·)
denotes the fusion of the merged results, and function Gi (·)
signifies channel-wise concatenation. The subscript i denotes
the respective layers, ranging in values from 3 to 5.

D. FEATURE CONTEXT INFORMATION
ENHANCEMENT MODULE
Traditional convolution methods typically utilize fixed ker-
nels that are independent of input samples. However, dynamic
convolution technology integrates attention mechanisms and
deformable convolution to enhance the model’s perception
of both time and space information. ODConv [53] employs
a parallel strategy and combines multi-dimensional atten-
tion mechanisms to achieve flexible attention learning of
cross-convolution nuclear space. As depicted in Figure 4,
ODConv incorporates different attention values for space
position, input channels, convolution filters, and overall
convolution kernels. These diverse types of attention comple-
ment each other, facilitating various convolutional operations
based on positions, channels, filters, and kernels. This,
in turn, enhances the capture of context information across
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FIGURE 4. The ODCLayer begins by integrating input features using a
1-sized convolutional kernel. The integrated features are then split into
two segments. ODConv modules with kernel sizes of 3 and 5 are
concatenated in series while maintaining residual connections. This
sequence is repeated four times. Afterward, the other segment is
concatenated along the channel dimension. Finally, channel attention
mechanisms assign different weights to different channels.

different dimensions. Consequently, ODConv significantly
enhances the feature extraction capacity of convolution
operations. Building upon the powerful performance of
ODConv, we have developed the ODCLayer. Please refer
to Figure 5 for detailed information and its application in
the ‘neck’ part of our model for feature fusion in PAFPN.
The ODCLayer module can be observed in the neck part of
Figure 4.
ODCLayer is mathematically described as follows:

Y = H (concat(F(C1(X )),C2(X ))). (6)

The equation contains notations: H (·) for channel atten-
tion weighting, F (·) representing ODConv operation with
four layers, each with a depth of 4, utilizing convolutional
kernels of sizes 3 and 5. C1 (·) and C2 (·) represent ordinary
convolution with a kernel size of 1, and concat denotes tensor
concatenation across the channel dimension.

E. MFCANet
Figure 5 illustrates the overall architecture of our proposed
multi-scale feature context aggregation network, constructed
upon RTMDet. It consists of a feature extraction module,
a feature pyramid module, and prediction heads. The
backbone network extracts features at three different scales
for handling objects of diverse sizes in object detection.
We replaced the SPPFBottleneck with the FFCA Module
to enhance feature extraction at varied scales. Additionally,
we integrated original and output features using PAFPN.
A new ODCLayer was designed, employing ODConv
with various convolutional kernels to capture information
representing real features at diverse scales.

IV. EXPERIMENTS
This section evaluates the performance of our proposed
model by training and testing it on four widely used
datasets: MAR20, SRSDD, HRSC, and DIOR-R.We provide
a comprehensive overview of our experiments, including

details on the experimental design, parameter configurations,
comparisons with state-of-the-art (SOTA) models, and the
outcomes of our experiments. In addition, we conducted
an ablation study on the MAR20 dataset to demonstrate
the effectiveness of each module. Our software environment
consists of CUDA 11.8, Python 3.8.10, PyTorch 2.0, mmde-
tection3.1.0, and mmrotate1.x. The hardware setup includes
an Intel(R) Xeon(R) Platinum 8350C @ 2.60GHz, NVIDIA
GeForce RTX 3090, and 80GB of memory. Configuration
files follow the default settings of mmrotate, with a linear
decay in learning rate for the first 1000 iterations, followed by
a cosine decay at maxepoch/2. All experiments are evaluated
using DotaMetric. We utilize the AdamW optimizer with a
base learning rate of 0.00025, a momentum of 0.9, and a
weight decay of 0.05 for all experiments. Random seeds for
both the numpy library and tensors are set to 42.

A. DATASETS AND EVALUATION METRICS
1) DATASETS
The MAR20 [54] dataset stands as the largest publicly
available dataset for recognizing military aircraft targets in
remote sensing images. It includes 3842 images featuring
20 distinct military aircraft models, totaling 22341 instances.
Most images have a resolution of 800×800 pixels. These
instances were gathered from 60 military airfields situated
in countries like the United States, Russia, and others, using
Google Earth imagery. The MAR20 dataset comprises a
specific array of 20 aircraft models, including six Russian
aircraft such as the SU-35 fighter, TU-160 bomber, TU-22
bomber, TU-95 bomber, SU-34 fighter-bomber, and SU-
24 fighter bomber. The remaining 14 models belong to
the United States, including the C-130 transport plane,
C-17 transport plane, C-5 transport plane, F16 fighter, E-3
AWACS (Airborne Warning and Control System) aircraft,
B-52 bomber, P-3C anti-submarine warfare aircraft, B-1B
bomber, E-8 Joint Surveillance Target Attack Radar System
(Joint STARS) aircraft, F-15 fighter, KC-135 aerial refueling
aircraft, F-22 fighter, F/A-18 fighter-attack aircraft, and KC-
10 aerial refueling aircraft. These aircraft model types are
labeled A1 to A20. The training set contains 1331 images and
7870 instances, while the test set includes 2511 images and
14471 instances. The MAR20 dataset encompasses diverse
scenarios and conditions, facilitating the evaluation of the
model’s generalization capabilities. Validating the network
on such a dataset provides a more nuanced understanding of
the model’s performance in specific scenarios.

The SRSDD [55] dataset is a high-resolution Synthetic
Aperture Radar (SAR) dataset designed for ship detection,
characterized by complex backgrounds and notable inter-
ference. The original SAR images are in spotlight mode,
displaying HH and VV polarization. Annotations within
the dataset employ rotated bounding boxes, specifically
suitable for detecting objects within rotational frames.
It consists of 666 smaller patches extracted from 30 China
High-Resolution Gaofen-3 SAR panoramic images at a
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FIGURE 5. The architectural components of MFCANet consist of crucial modules. Initially, we employ the FFCA module to replace the SPPFBottleneck in
the backbone network, capturing multi-scale feature context information related to focal targets. Subsequently, utilizing the MFFM module enhances the
utilization of original features, minimizing the loss of specific feature information during fusion processes. Finally, leveraging our designed ODCLayer
maximizes the enhancement of cross-layer feature integration and extraction, considering information across various feature dimensions. Our
improvements notably enhance the model’s detection capability within the context of remote sensing applications.

1-meter resolution, with each patch containing 1024×1024
pixels. The dataset includes 2884 ship instances distributed
among six distinct categories: Container, Dredger, Ore-oil,
LawEnforce, Cell-Container, and Fishing, containing 89,
263, 166, 25, 2053, and 288 instances, respectively. Most
images in the dataset capture coastal areas, featuring intricate
background interferences, which pose substantial challenges
for detection.
HRSC [56] is a widely utilized benchmark for arbitrary-

oriented object detection. It consists of 1061 images ranging
in size from 300×300 to 1500×900. The training set
comprises 436 images, the validation set has 181 images,
and the rest are designated for testing. Regarding evaluation
metrics, we utilize COCO-style mean average precision
(mAP) along with average precision scores at 0.5 and
0.75 IoU thresholds (AP50 and AP75) for HRSC.

The DIOR-R [57] dataset serves as an extended iteration
of the DIOR dataset, featuring reannotation with directional
attributes. This dataset holds a prominent position as a stan-
dard benchmark for the evaluation of rotated object detection
capabilities within remote sensing applications. The DIOR-R
dataset is systematically organized into training, validation,
and testing subsets. It comprises 20 distinct categories,
each denoted by specific labels such as Expressway-Toll-
Station (ETS), Chimney (CHI), Baseball-Field (BF), Vehicle
(VE), Harbor (HA), Basketball-Court (BC), Golf-Field (GF),
Tennis-Court (TC), Storage-Tank (ST), Windmill (WM),
Train-Station (TS), Bridge (BR), Ground-Track-Field (GTF),
Ship (SH), Airport (APO), Airplane (APL), Expressway-
Service-Area (ESA), Dam (DA), Stadium (STA), and Over-
pass (OP). In total, the DIOR-R dataset encompasses 23,463
images, collectively representing the 20 designated cate-
gories, amounting to 192,472 distinct instances. The training
and validation datasets jointly consist of 11,725 images,

incorporating 68,073 individual instances. Meanwhile, the
test dataset comprises 11,738 images and encompasses
124,445 distinct instances. All images adhere to a consistent
size of 800× 800 pixels, with pixel resolutions ranging from
0.5 meters to 30 meters.

2) EVALUATION METRICS
In experiments, it is common practice to employ various eval-
uation metrics to assess the effectiveness of remote-sensing
object detection models. In this paper, we utilize Average
Precision (AP) as a performance measure for the object
detection model. The calculation formula for AP is as
follows:

P =
TP

TP+ FP
. (7)

r =
TP

TP+ FN
. (8)

AP =

∫ 1

0
p(r) dr . (9)

TP represents correctly classified targets, FP signifies
background identifications as targets, and FN indicates object
identifications misclassified as background. Precision (p) is
the ratio of correctly identified targets to all detected results,
while Recall (r) is the ratio of correctly identified targets to the
true values of all targets. The area under the curve with p on
the vertical axis, r on the horizontal axis, and the coordinate
axes represents the AP value. AP considers both precision
and recall, where a higher value suggests better detection
accuracy. The mean Average Precision (mAP) for each class
is calculated with the formula below:

mAP =
1
N

N∑
i=1

∫ 1

0
Pi(Ri) dRi. (10)
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Here, N represents the number of object categories.
mAP@0.5 indicates themean average precision for all classes
at an Intersection over the Union (IoU) threshold of 0.5.
mAP@0.5:0.95 denotes the average mAP calculated across
IoU thresholds from 0.5 to 0.95.

Furthermore, we applied the frames-per-second (FPS) to
evaluate the detection efficiency of different methods as
follows:

FPS =
1

Tper−img
. (11)

where Tper−img represents the inference time per image.
As for the algorithm complexity, we use the number of
parameters, model size, and floating-point operations per
second (FLOPS) to evaluate the different methods.

B. IMPLEMENTATION DETAILS
We perform experiments utilizing RTMDet [28] within
the MMRotate toolbox [58]. Our experiments adopt the
configuration from RTMDet, employing CSPNetXtBlock as
the backbone network and CSPNetXt-PAFPN as the neck.
Throughout the model training phase, we utilize diverse
data augmentation techniques like random flipping, rotation,
scale variation, and padding. Scale variation augmentation is
similarly applied in the testing and inference phases. In com-
parative experiments, we uphold consistent hyperparameter
settings during training to ensure a fair comparison with other
SOTA methods.

The MAR20 dataset is divided into patches of 800 ×

800 pixels with a 200-pixel overlap between contiguous
patches. During the training, validation, and testing phases
of the SRSDD and HRSC datasets, we resize the images
to 1024 × 1024 and 800 × 800 pixels, respectively, using
data augmentation techniques without cropping. We use the
training subset for training purposes and the test subset for
validation and inference. The training duration comprises
36 epochs for the MAR20 dataset and DIOR-R dataset,
144 epochs for the SRSDD dataset, and 108 epochs for the
HRSC dataset to derive the inference model.

C. COMPARISONS WITH SOTA
We compare our proposed method with several other state-of-
the-art (SOTA) approaches on the MAR20, SRSDD, HRSC,
and DIOR-R datasets using the mAP metric. Particularly,
we provide the frames-per-second (FPS) for the evaluation of
the SRSDD dataset. First, we introduce the characteristics of
the compared methods, and then we present the comparative
results.
S2A Net [13] enhances classification scores and localiza-

tion accuracy in aerial image target detection by utilizing the
Feature Alignment Module (FAM) and Directional Detection
Module (ODM), addressing the misalignment issue between
anchor boxes and convolution features. Faster R-CNN [8],
a two-stage object detector, improves accuracy by generating
proposals before detection. Oriented R-CNN [54] introduces
a simple and universal oriented Region Proposal Network

(oriented RPN) for direct high-quality proposal generation
in rotation object detection in remote sensing images. The
RoI Transformer module [9] is a two-stage object detector
comprising RRoI Learner and RRoIDeform. It achievesmore
accurate RRoI by learning the transformation from HRoI
to RRoI without increasing anchor points. RRoI Deform
extracts rotation-invariant features from RRoI for subsequent
classification and regression tasks. RetinaNet [24] achieves
effective rotation object prediction by designing a balanced
sample loss function and adding angle prediction. R3det [59]
improves detection speed and recall by initially detecting
horizontal boxes in the first stage and refining rotation
boxes in the refinement stage to adapt to dense object
detection. It addresses feature misalignment with a feature
refinement module using feature interpolation to obtain
refined position information and reconstruct feature maps
for alignment. BBAVectors [60], a single-stage anchor-free
detection method, predicts object positions through center
and corner points without pre-setting anchors. It incorporates
angle information prediction based on CenterNet. Gliding
Vertex [61], utilizing the structure of Faster RCNN, predicts
rotation rectangles along with classification results and
horizontal box coordinates. FR-O [62] augments Faster
RCNN with angle prediction and adds a Feature Pyramid
Network (FPN) for multi-scale feature fusion. The Region
Proposal Network (RPN) still uses horizontal boxes for
initial filtering in the first stage, offering advantages in
training and testing speed. In the second stage, it adds
angle information prediction based on the first stage.
RBFA Net [63] designs three target networks: Balanced
Attention Feature Pyramid Network (BAFPN), Anchored
Feature Alignment Network (AFAN), and Rotation Detection
Network (RDN). BAFPN, an improved FPN, reduces the
negative impacts of multi-scale ship feature differences.
AFAN adopts aligned convolution layers to adaptively
align convolution features based on rotated anchor boxes,
addressing misalignment. RDN includes a Task Decoupling
Module (TDM) to separately adjust feature maps, resolv-
ing conflicts between regression and classification tasks.
AOGC [64]proposes an anchor-free oriented object detection
method based on Gaussian centrality, addressing challenges
in anchor-basedmethods such as high computational load and
low accuracy. MSSDet [65] designs a Joint Recursive Feature
Pyramid (JRFP) for generating semantic-rich and spatially
fine multi-scale features, enhancing detection accuracy.
DCFPN [46], based on dilated convolutions, designs a Dense
Context Feature Pyramid Network and α-Gaussian loss for
improved rotation object detection accuracy. It introduces a
simple and effective bounding box representation, integrated
into two detection stages, avoiding discontinuity issues
and inconsistencies between two-stage regression schemes.
In the first stage, it specifically initializes four quadrant
points as regression starting points to generate high-quality
oriented candidates. In the second stage, it refines the final
localization results using the proposed novel bounding box
representation, achieving a good balance between accuracy
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and speed. AOPG [66], using a coarse localization module
(CLM), produces coarse-oriented boxes in an anchor-free
manner, refined into high-quality orientation proposals.
Following AOPG, a convolutional neural network (R-CNN)
head based on a fast region proposal is applied to generate
the final detection results. DODet [67] proposes a two-stage
oriented object detection method to address spatial and
feature misalignment issues. The first stage is the Oriented
Proposal Network (OPN), generating high-quality proposals
using a new representation scheme for oriented targets.
The second stage is the Location Guided Detection Head
(LDH), aiming to alleviate feature misalignment between
classification and localization. RoIF-Net [68] proposes a
dense object determination method for Oriented Bounding
Boxes (OBB), determining dense objects in the dataset
based on class inter-distance, class intra-distance, object
minimum distance, and object minimum side length. To fully
utilize target features, it introduces a two-stage detection
head, extracting regions of interest from input images and
merging them with RoI extracted from feature maps to add
detailed features. It constructs a feature induction module
based on a self-attention mechanism for position regression
and category classification. This structure can be applied
to any two-stage network to enhance detection capability.
AOPGSGIoU [69] introduces a new bounding box regression
loss named Smooth Generalized Intersection over Union
(SGIoU) loss. Firstly, the Smooth GIoU loss can adopt more
appropriate learning intensities within different GIoU value
ranges to address the mentioned issues. The design scheme
of the Smooth GIoU loss can be extended to other IoU-based
bounding box regression (BBR) losses. Secondly, existing
GIoU loss computation schemes can be modified to suit
rotation object detection.

1) RESULTS ON MAR20
MAR20 is a detailed dataset specifically created for detecting
military aircraft, covering a broad spectrum of target sizes.
It comprises remote sensing images captured in diverse
climatic conditions, various seasons, and under differing
lighting conditions. Due to the modules we designed that
combine both convolutional and attention characteristics, our
model efficiently extracts features and aggregates feature
contexts, obtaining high-quality feature maps. This enables
effective category recognition and precise learning of object
bounding boxes, resulting in significantly higher accuracy
than the current SOTA. We have chosen various object
categories at different scales and scenes where objects are
arranged densely and sparsely against different backgrounds
for visualization.

The detection results are illustrated in the figures 6. It can
be observed from the figures that the proposed method
accurately detects densely arranged objects. Table 1 presents
the specific performance metrics for each object category.
For individual categories like A11, A13, and A14, there
is considerable room for improvement in detection results

FIGURE 6. The depicted image demonstrates the outcomes derived from
our proposed approach on the MAR20 dataset, encompassing 20 distinct
categories. The initial column portrays the dataset’s authentic
annotations, while the second column displays the baseline results, and
the third column exhibits our method’s outcomes. Each row corresponds
to three sets of results for a single image. The rectangular boxes labeled
A1 to A20 at the bottom signify the distinct colors representing respective
category bounding boxes.

due to the limited number of training instances for each
class, which is fewer than 200. Similarly, some small object
categories (such as A15 and A20) face challenges in accurate
detection owing to their small size, with approximately
70% of instances having pixel values less than 100 pixels.
Additionally, the similarity between the A13 andA15 classes,
both representing aircraft, further complicates accurate
detection. The same conclusion can be obtained by analyzing
the mAP. Overall, our approach outperforms most categories
and achieves an outstanding performance of 85.96%.

In the MAR20 dataset, we selected two images from the
test set for showcasing feature heatmaps, and the feature
heatmaps of the baseline model and MFCANet at scales
P3, P4, and P5 are visualized in Figure 7. Observing the
images, it’s evident that the baseline CSPPAFPN model
lacks sufficient feature extraction for the targeted objects.
The heatmap points for features are relatively small, and
there are instances of misalignment, with certain features
undetected (such as the plane in the third column of the
image). Conversely, our approach significantly enhances
feature extraction, resulting in more prominent, clearer-
shaped, and accurately positioned extracted features. This
showcases the exceptional feature acquisition capability of
our method, excelling in target differentiation, background
noise suppression, and optimized feature extraction.
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TABLE 1. Detection accuracy of different detection methods on the MAR20 dataset. The numerical value in black bold represents the maximum.

FIGURE 7. Each image’s top row represents the output results of our
method, while the second row showcases the baseline’s output results.
The first column corresponds to the real image, and the subsequent
columns, from the second to the fourth, display the output features from
the P3, P4, and P5 levels of the pyramid. Blue denotes background, while
red and yellow indicate highlighted responses of that specific feature
part.

The following conclusions can be drawn from the exper-
imental results: Compared to the baseline, our network
effectively captures intricate features of smaller targets within
complex backgrounds, enabling precise identification of
fine-grained objects and mitigating classification errors. This
illustrates that our network thoroughly considers feature
and contextual information extraction, effectively eliminating
background noise interference. During the feature fusion
phase, the network enhances target features, enabling better
discrimination of subtle differences within categories, conse-
quently yielding superior results compared to the baseline.
However, our network still encounters certain issues. For
instance, in scenarios involving more ambiguous images with
complex background noise, our model exhibits instances of
missed detections and classification errors.

2) RESULTS ON SRSDD
The SRSDD dataset serves as a dataset for detecting rotated
objects within complex backgrounds. There is a significant
imbalance in the quantity among different categories in
this dataset, posing a noticeable issue of data imbalance.
Simultaneously, the complex background of the dataset
contains considerable noise, presenting significant challenges
for the detection task. Most algorithms exhibit relatively
low detection results, as shown in Table 2. Our model has
been compared against various state-of-the-art methods on
the SRSDD dataset, demonstrating a 10.28% improvement
over the baseline model. Additionally, we have compared
the trade-off between accuracy and speed with other state-
of-the-art methods in Figure 8, where our method, with an
input size of 1024 × 1024, provides the highest detection
accuracy (66.28% mAP) while achieving a high speed of up
to 18.3 frames per second. Considering the accuracy/speed
trade-off, our method achieves the state-of-the-art.

Specifically, our model achieves the best results in
two categories: Ore-oil vessels with distinct features that
make them easier to detect across various algorithms, and
Law-enforce vessels, which are scarce and usually poorly
detected by most algorithms. The improvement in this
category stems from our model’s ability to capture the
specific features and contextual information related to Law-
enforce vessels, enhancing accuracy due to their scarcity.
Container vessels, often overlapping with onshore targets,
pose significant interference, while their similarity to fishing
vessels complicates their detection amidst high noise levels.
Addressing this challenge remains a focal point for our
future work. Overall, our method demonstrates commendable
performance across most categories, achieving a notable
overall accuracy. However, issues persist in our network, such
as missed detections when numerous vessels are in proximity
and classification errors for vessels with less distinct features.
Figure 9 showcases a segment of the detection outcomes,
highlighting the proposed method’s adeptness in accurately
detecting objects within complex backgrounds despite these
aforementioned challenges.
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TABLE 2. Detection accuracy of different detection methods on the
SRSDD dataset. We utilize B1 to B6 to represent the six categories:
Ore-oil, fishing, law-enforce, dredger, cell-container, and container. The
numerical value in black bold represents the maximum.

FIGURE 8. Speed versus accuracy on the SRSDD testing set. Our method
is extremely fast and accurate.

TABLE 3. The comparison results between our method and the baseline
regarding the number of parameters and floating-point operations per
second (FLOPS) on the SRSDD dataset are provided.

The baseline achieves a mAP of 56.00% with
204.16 GFLOPs and 52.26 M parameters, demonstrating
the reliability of our baseline. Our method shows a slight
decrease in the number of parameters and floating-point
operations per second (FLOPS) compared to the baseline but
with only a marginal decrease in FPS. Notably, the mAP
improves by 10.28% compared to the baseline, indicating
that our method achieves a better trade-off between speed
and accuracy.

From Figure 9, it’s evident that our model detects targets
more accurately compared to the baseline. Within the same
image, MFCANet can detect and correctly classify nearshore
vessels amid complex coastal backgrounds. This capability
stems from MFCANet utilizing the FFCA Module to extract
rich contextual feature information. Subsequently, the Fea-
ture Context Information EnhancementModule amalgamates
and enhances multiscale features, significantly boosting the

FIGURE 9. We have presented a sequence of detection outcomes
obtained by our proposed MFCANet on the SRSDD dataset. These
outcomes emphasize MFCANet’s capability to accurately extract target
features despite complex backgrounds near coastal and marine areas,
ultimately yielding precise results. The initial column portrays the
dataset’s authentic annotations, while the second column displays the
baseline results, and the third column exhibits our method’s outcomes.
Each row corresponds to three sets of results for a single image. The
rectangular boxes at the bottom, each in a different color, represent the
bounding box colors corresponding to different categories.

model’s ability to focus on global information. Simultane-
ously, it’s observable from the figure that our network still
exhibits instances of misclassification and missed detections.
Nevertheless, despite these limitations, our model surpasses
the current state-of-the-art. We aim to address these issues
of missed detections and misclassification by refining our
network for optimal performance.

3) RESULTS ON HRSC
The HRSC dataset encompasses vessels with high aspect
ratios navigating in different directions, posing significant
challenges for precise target localization. Our proposed
model showcases robust capabilities in feature extraction,
emphasizing global information within the feature maps
and effectively identifying class-specific features, resulting
in exceptional performance. As illustrated in Table 4, our
method has achieved remarkable performance, securing
evaluation scores of 90.48% and 97.84% for the VOC2007
and VOC2012 benchmarks, respectively. Figure 10 displays
the visual outcomes of implementing our method on the
HRSC dataset. From the images, it’s apparent that compared
to the baseline, our model can more accurately identify
results. For instance, in the first row, the second column,
and the third column, the baseline incorrectly identifies
the object as a vessel, whereas our model adeptly avoids
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TABLE 4. Detection accuracy of different detection methods on the HRSC
dataset. The numerical value in black bold represents the maximum.

FIGURE 10. We display a subset of detection outcomes achieved using
our MFCANet on the HRSC dataset. The initial column depicts actual
images, the second column exhibits predictions from the baseline model,
and the third column illustrates predictions from our model. Our
approach demonstrates outstanding performance by producing precise
and high-quality detection outcomes, especially in identifying densely
clustered ships with challenging high aspect ratios.

this misidentification. Similarly, when correctly identifying
an object, our model expresses higher confidence in the
identification. In the case of the last row where the vessel
is not recognized, it might be due to the image cropping that
retains only a small portion of the vessel, hindering the model
from effectively extracting the vessel’s features.

4) RESULTS ON DIOR-R
DIOR-R is a large-scale dataset characterized by an extensive
array of categories and complex scenes. We compared our
approach with several state-of-the-art detectors on the DIOR-
R dataset, revealing that our model can extract high-quality
feature maps, enabling effective category recognition and
precise learning of object bounding boxes.

We selected a subset of images with complex backgrounds
for visualization, and the detection results are illustrated in
Figure 11. It can be observed from the figures that our
proposed method accurately detects target objects in complex
backgrounds. Our method effectively avoids false positives

FIGURE 11. We present a series of detection results obtained by our
proposed MFCANet on the DIOR-R dataset. These results highlight the
capability of MFCANet to accurately extract target features in complex
backgrounds, ultimately yielding precise outcomes. The initial column
displays the authentic annotations of the dataset, the second column
shows the baseline results, and the third column exhibits the outcomes
of our method. Each row corresponds to three sets of results for a single
image. The rectangular boxes at the bottom, each in a different color,
represent the bounding box colors corresponding to different categories.

and false negatives compared to the baseline. Although
there are still some challenging scenarios where targets are
difficult to observe, especially those with extremely complex
backgrounds or targets not easily visible to the human
eye, our method outperforms the baseline, indicating the
effectiveness of our improvements.

Table 5 presents specific performance metrics for each
object category. Our approach demonstrates significant
improvements over the baseline, particularly in categories
such as DA, APL, and APO, where the limited number
of training instances per class (less than 1500) still leaves
room for substantial improvement. Similarly, some small
object categories (e.g., BR and VE) did not achieve optimal
performance due to their small size (less than 80 pixels),
presenting a challenge for accurate detection.

Overall, our method exhibits superior performance across
most categories, achieving outstanding results with an
accuracy of 69.82%.

D. ABLATION STUDY
1) ABLATION STUDY WITH DIFFERENT FEATURE FUSION
METHODS IN MFFM
To deeply analyze how the original features are enhanced
during the fusion process with PAFPN features, we conduct
an ablation experiment focusing on the skip connections
within the Multi-Feature Fusion Module (MFFM). Figure 3
displays skip connections of different colors utilized as
modules for the ablation experiment, specifically identified as
red and orange. We compare how original features fuse with
PAFPN in contrast to the baseline RTMDet on the MAR20
dataset. The experimental results, as depicted in Figure 12,
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TABLE 5. Detection accuracy of different detection methods on the DIOR-R dataset. The numerical value in black bold represents the maximum.

FIGURE 12. The line chart below illustrates the baseline, orange, and
orange+red, representing the baseline result, the inclusion of yellow skip
connections, and the simultaneous inclusion of yellow and red skip
connections, respectively. The vertical axis indicates the mAP for each
method on the MAR20 dataset.

indicate that solely incorporating the yellow skip connection
leads to a slight improvement. This could be attributed to
the yellow skip connection primarily operating in the middle
layer, responsible for fusing the original features, while
the other two layers simply replicate the original features.
Better results are observed when employing both multi-scale
feature fusion methods simultaneously, notably enhancing
detection accuracy. This improvement can be attributed to
the effective re-fusion of original features with the already
fused ones via the red skip connection, compensating for
previously overlooked features and thereby enhancing the
overall outcome.

2) ABLATION STUDY ON ODCLAYER MODULES.
For a comprehensive understanding of the enhanced func-
tionality of our proposed ODCLayer module (Figure 4),
we conduct an ablation experiment involving the components

within the ODCLayer module. Specifically, we employ 3 ×

3 and 5 × 5 ODConv kernels as individual sets and perform
ablation experiments using sets of three, four, and five such
combinations. Furthermore, we conduct ablation experiments
with and without channel attention. The results from the
ablation experiments, as shown in Figure 13, demonstrate
that employing four sets of ODConv with the addition
of attention achieves optimal performance. Analyzing the
outcomes in Figure 13 leads to the following observations:
When the set count ‘‘Number’’ equals 3, the features are
incompletely integrated, resulting in suboptimal aggregation
of contextual feature information and consequently poor
results. However, when the set count ‘‘Number’’ is 5,
the outcomes degrade compared to ‘‘Number’’ 4, as it
aggregates background and noise information during feature
context fusion, leading to worsened results. Due to the
diverse impacts of distinct channel weights on the outcomes,
channel attention integration mitigates the adverse effects of
specific channel information on the results. Consequently,
incorporating channel attention further enhances the results
when the set count ‘‘Number’’ is 4, yielding the most
favorable outcomes.

3) ABLATION STUDY ON MFCANet
To assess the efficacy of each proposedmodule, we compared
the baseline with the individual enhancement modules using
the MAR20 dataset, using RTMDet as the baseline for
detection. The assessment primarily centers on the Average
Precision (AP) and mean Average Precision (mAP) of
standard object categories, such as A4, A5, A11, A13,
A14, A15, A16, A18, and A20. Due to the similarity
among fine-grained objects in remote sensing images and
the complexity of backgrounds under various seasons and
lighting conditions, their detection presents challenges.

Meticulous ablation experiments have been conducted
on each enhancement module, and the results, presented
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TABLE 6. The table clearly shows that adding each module independently enhances the detection performance of the baseline model. This suggests that
our methods facilitate aggregating features and their contextual information within the baseline model at their respective positions. Moreover, the
combination of any two modules exceeds the detection results achieved by a single module, illustrating the mutual enhancement among our method
modules. Remarkably, integrating all three modules simultaneously significantly improves the detection results. Although certain individual module
methods exhibit minor decreases in specific categories compared to the baseline, these variations stem from the diverse focal points of the respective
module methods. Overall, the collective integration of our module methods produces a significant enhancement.

FIGURE 13. From left to right, each bar in the bar chart represents
combinations of three, four, and five sets of 3 × 3 and 5 × 5 ODCLayer
configurations. The last column in the bar chart corresponds to the
addition of channel attention to the configurations of four sets of
3 × 3 and 5 × 5 ODCLayers. The vertical axis represents the mAP of each
method on the MAR20 dataset.

in Table 6, highlight the recognition outcomes for some
particularly challenging targets. These experiments unequiv-
ocally show the effectiveness of the FFCA Module in
significantly boosting the backbone network’s ability to
extract features across various scales. Simultaneously, the
ODCLayer module, employing a multidimensional attention
mechanism and broader receptive fields through extensive
kernel convolutions, adeptly captures comprehensive contex-
tual information. This strategic approach effectively reduces
background interference while enhancing the nuances of tar-
get features, thus increasing the model’s sensitivity to target
identification. Furthermore, the skip connections network
skillfully utilizes original feature information, preventing
information loss during the fusion process. The synergistic
interaction among these three modules vividly showcases

the exceptional capability of our multi-scale feature context
aggregation network.

V. CONCLUSION
To address the complex task of detecting targets in intricate
backgrounds within remote sensing images, we propose
a novel target detection network tailored for remote
sensing imagery. By combining three modules synergis-
tically, we efficiently extract more precise features of
interest. Following this, we devise a module dedicated to
comprehensively fusing multi-level and multi-dimensional
features, thereby enriching valuable features across each
layer of PAFPN. Ultimately, we fuse the original feature
map information with the results obtained from PAFPN.
We conduct thorough validation and ablation studies on
four publicly accessible datasets. Our experimental results
establish the superiority of our method compared to existing
detection networks on these challenging datasets, affirming
the effectiveness and versatility of the introduced modules.
Nevertheless, it’s important to note that our approach still
faces limitations in detecting densely occluded small targets.
We suppose thatMFCANet does not fullymine the unobvious
features of small samples. For future research, Despite
the commendable performance and competitiveness of our
proposed method in rotated object detection in remote
sensing images, it is important to note that our validation
efforts have been limited to CNN architectures and a subset
of datasets. Future work will focus on expanding our
methodology to Transformer architectures and conducting
validation on a more extensive set of datasets. This expansion
aims to contribute significantly to the enhancement of
accuracy in rotated object detection in remote sensing images.
Incorporating Transformer architectures and testing on
diverse datasets is expected to provide a more comprehensive
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understanding of the method’s capabilities and effectiveness
across various scenarios, further solidifying its potential for
real-world applications in remote sensing.
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