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ABSTRACT In the modern world, the growing presence of renewable energy power near the consumer
end makes DC distribution systems more attractive than traditional AC ones. However, designing fault
diagnosis schemes for the DC distribution system is a complicated problem due to noisy measurements and
rapidly rising DC-fault currents. This article proposes an Ultra High-speed Fault Diagnosis scheme using
a Discrete Median Filter and Mathematical Morphology Algorithm. In the first stage, the acquired current
signal from a corresponding faulty bus is preprocessed using a Discrete Median Filter for state estimation
and noise reduction. In the second stage, the proposed Scheme computes the DC Residual by deploying the
Mathematical Morphology Algorithm on the DMF estimated current signal. The DC Residual represents the
mathematical computed difference between the filtered output of the Mathematical Morphology Algorithm
and the DiscreteMedian Filter-estimated current signal. Then, the proposedmethod cross-matches variations
in the computed DC Residual with pre-defined threshold settings to detect faults successfully and promptly.
In the third stage, theMathematicalMorphologyAlgorithm-based Energy is computed for fault classification
and section identification. The polarity of Mathematical Morphology Algorithm-based Energy is used to
categorize and locate all types of DC faults in the proposed scheme. The suggested method is tested on a
DC distribution test bed via MATLAB/Simulink 2022b. The results demonstrate that the suggested scheme
successfully identifies all types of DC faults in less than 2.5 msec, with 99% accuracy.

INDEX TERMS Discrete median filter, fault detection, mathematical morphology, renewable energy-based
DC distribution network, smart grids.
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I. INTRODUCTION
The increasing electricity demand is coupled with the limited
capacity of existing AC distribution systems which leads to
a growing interest in alternative power distribution technolo-
gies [1]. One such alternative is the DCDS, which has gained
considerable attention in recent years [2], [3]. Unlike conven-
tional AC systems, the DCDS offers several advantages [1],
[4], [5], including higher efficiency, lower losses, enhanced
integration of renewable energy sources, and facilitated
DC-based applications. With the increasing adoption of
DC-based devices and the advancement of power electronics
technology, the DCDS has emerged as a promising solution
for future power distribution [4], [6], [7]. However, fault
detection in the DCDS is crucial to ensure the reliable and
efficient operation of power systems.

It poses several challenges that need to be addressed
effectively. Short circuit fault current in the DCDS
reaches a high magnitude sharply after the arising of
the fault because of the discharging capacitors [8].
Moreover, the absence of zero-crossing points in DC systems,
makes fault detection more difficult compared to traditional
AC networks [9]. Furthermore, the measurement sensors
and devices deployed in the protection relay (PR) of the
DCDS had a lot of noisy measured datasets which can
cause maloperation of the PRs. Furthermore, the rapid evo-
lution and integration of renewable energy sources in DCDS
present additional challenges for fault detection. The varying
characteristics of renewable energy sources, such as solar
or wind power, can significantly affect the fault detection
process [7]. Therefore, we need such a protection strategy that
can detect all kinds of faults in DCDS under these challenging
conditions without any maloperation and protection blinding.

Different kinds of protection methods for fault detection
of DCDS were reported in previous literature. In [10] a rapid
short circuit fault detection scheme was proposed for DC
microgrids which incorporates fault classification and loca-
tion. Authors in [11] proposed a fault detection method for
DC microgrids involving electric vehicles (EV) and energy
storage systems (ESS), employing dynamic mode decom-
position and instantaneous frequency. This approach was
tested in MATLAB 2019b on a single-bus DC microgrid and
successfully detected various faults under noise distortions
in measured signals. Similarly, in [12] authors proposed an
empirical-mode decomposition (EMD) based fault detection
method for the protection of DCmicrogrids with PV/EV/ESS
systems. In [13] authors proposed a novel scheme based
on Teager energy differences and resistance estimation to
address the limitations in traditional fault detection for DC
microgrids. Authors in [14] introduced a local current-based
scheme for DC microgrid protection. This method enhances
reliability by incorporating a central controller that serves as
a backup in case of communication failures. A new protec-
tion method was proposed for DC microgrids [15], utilizing
Shannon entropy to evaluate current waveform information
for fault detection and classification. An improved com-
posite strategy for DC microgrids was proposed in [16],

addressing issues with communication-dependent protection
and high-impedance short circuits. Reference [17] introduced
a high-speed protection scheme for medium-voltage DCDS
using MMA on energy signals, swiftly identifying, and clas-
sifying faults based on polarity detection. Similarly, a local
current-based high impedance fault detection scheme was
proposed in [18] for DC microgrid clusters using MMA,
depicting fast and accurate fault detection without relying
on communication channels. Reference [19] presented a dif-
ferential current-based fault detection and location scheme
for multiple Photovoltaic-based DC microgrids, addressing
various fault types including pole-to-pole, pole-to-ground,
and high resistive DC arc faults. A new traveling-wave-based
method was proposed in [20], for rapid detection, classifi-
cation, and location of different DC fault types in MVDC
microgrids.

Some modern artificial intelligence (AI) and machine
learning (ML) methods were also presented in previous
literature. A novel method for resonant grounding DCDS
was proposed in [21], utilizing continuous wavelet and con-
volutional neural networks for adaptive feature extraction
and simultaneous fault detection. A data-driven fault detec-
tion and load monitoring solution for all-electric warships
was presented in [22] using wavelet transform and com-
putationally light machine learning, effectively identifying
abnormal disturbances in load current profiles. In [23] a
fault detection and isolation technique was proposed for
DC microgrids using Wavelet transform and artificial neural
networks, enabling fast and accurate fault detection without
network de-energization. A fault detection and classification
methodology for renewable microgrids was proposed in [24],
utilizing the discrete wavelet transform and neural networks
to enhance fault detection in nonlinear systems. In [25] an
autoencoder neural networks-based protection scheme was
developed to identify faults in DCDS. An online fault pro-
tection method was presented in [26] for low-voltage DC
microgrids, leveraging a transfer learning-based convolu-
tion neural network, achieving 99.78% accuracy. In [27],
a pseudo-data-driven method was proposed using analytical
and model-based neural networks to localize both under-
damped and over-damped faults without communication
broadly. Previous works tried to address protection issues of
the DCDS in depth but still have some limitations.

1. Fault detection methods may sometimes give false
alarms, indicating a fault when there is none, or may
fail to detect a fault when it is present.

2. Some fault detection methods may require complex
algorithms or extensive calculations, making them
difficult to implement.

3. Additionally, certain methods may only work effec-
tively under specific conditions, limiting their appli-
cability in different scenarios. Some fault detection
methods rely on specific system parameters or models.

4. Changes in the system configuration, component char-
acteristics, or load conditions can render these methods
ineffective or inaccurate.
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5. Implementing a few fault detection methods may
involve significant costs, including the installation of
monitoring equipment, data processing systems, and
ongoing maintenance.

6. Some methods did not cater to noisy measurement
conditions.

This research article presents a UHSFD scheme for DCDS
utilizing two signal processing tools named the DMF and
MMA. Initially, the DMF is applied to the noisy read-
ings of the current signal acquired from the measurement
unit of the relay. The DMF is used to estimate the true
state of the current signal and reduce the measurement noise.
In the second stage, the MMA computes a fault diagnosis
criterion called DCR. This is the mathematical difference
between the filtered output of MMA and the DMF’s esti-
mated current signal. The computed DCR variations are then
compared with a pre-defined threshold setting to identify
all the faults in the DCDS. The fault classification and
section identification are done through the polarity of the
computed MMABE. The proposed UHSFD scheme is tested
on the DCDS test beds using MATLAB/Simulink 2022b
software, theWindows 11 Home 64-bit Version: 22621.3155,
and microprocessor 12th Gen Intel(R) Core (TM) i7-1255U.
The results show that the suggested UHSFD scheme suc-
cessfully identifies different types of DC faults quickly and
accurately, without any false tripping or blinding. Several
state-estimation algorithms have been utilized in previous
research for fault detection which includes. Kalman filter [3],
discrete Kalman filter [28], unscented Kalman filter [29], and
some intelligent artificial learning andmachine learning algo-
rithms [30]. However, the most prominent and novel aspect
of the proposed UHSFD method is that the utilized discrete
median filter does not require difficult parameterization and
tuning and has very low computational latency as compared
to existing tools. The contribution of the proposed work
includes.

1. Novel utilization of DMF & MMA in the time domain
for fault diagnosis in DCDS.

2. Ultra High-speed fault diagnosis under 2.5 millisec-
onds with minimal computational burden.

3. Design of a simple fault diagnosis criterion indepen-
dent of fault type and system conditions.

4. Autonomous handling of noisy sensor data by DMF
and MMA to prevent false alarms.

5. Validation of the proposed UHSFD scheme up to a
resistance of 300 ohms.

6. Low implementation cost without the need for
high-cost devices like PMUs.

The arrangement of the remaining article is as follows.
Section II focuses on the mathematical model and theoret-
ical principles of the DMF and MMA algorithms, DCDS
dynamics, and fault detection, classification, and location
index computation. Section III depicts themethodology of the
proposed UHSFD scheme step by step. Section IV presents
the study test system of DCDS. The results and discus-
sions of the proposed method are explained in section V.

Finally, the paper is concluded with some future recommen-
dations in section VI.

II. MATHEMATICAL MODEL OF THE PROPOSED UHSFD
SCHEME
A. DYNAMICS OF THE DCDS
The proposed protection scheme is reliant on the DCR of the
current signal. Therefore, this section focuses on defining
the basic current signal model and its basic characteristics.
In DCDS, the measured current signal exhibits dynamic
behavior described by the fundamental relationship of Ohm’s
law, I=V/R, where I represents the measured current, V sig-
nifies the voltage across the system or component, and
R stands for the resistance encountered by the current path.
This equation encapsulates the intricate dynamics within
DCDS. These dynamics manifest as transient spikes or drops
in the measured current, influenced not only by the inher-
ent characteristics of the distribution system such as line
impedance and capacitance but also by external factors like
noise, interference, and environmental conditions, thereby
necessitating robust signal processing techniques for accurate
interpretation and effective system management.

In the proposed UHSFDmethod, we exclusively employed
the current signal to extract the necessary information for
fault detection, classification, and localization. Therefore, the
mathematical depiction of the current signal in DCDS is as
follows.

In = e−ω1t ik
/
W1L + sinωk + noise (1)

The measured current In contains a lot of measurement and
some arbitrary noise. Hence, should a fault arise at any seg-
ment of the DCDS, the fault current can be computed using
Eq (1). Tanking the trigonometric derivative of Eq (1) results
in an iterative discrete and nonlinear noisy state-space version
of the measured current signal at the nth sample as follows.

In = e−ω1t in
/
W1L + sinωk + ε (2)

where ‘‘ε’’ is the random error. However, the state space
model of the current signal with the measurement equation
is given as follows.

Ŷ(n) = h
(
x(n)

) (
I(n)

)
= P(n) + A(n) + I(n) (3)

And

X(n+1) = F(x(n)) + g(X(n))(U(n)) +Wn (4)

where the X(n+1) is the estimated state, h is the measure-
ment metrics, and Ŷ(n) is the current measurement. With
specific initial states and parameterization, the equations are
employed by the DMF to process measured DC current
signals within a DCDS.

B. DISCRETE MEDIAN FILTER
The rationale behind the use of a discrete median filter for
fault diagnosis in DCDS lies in its ability to effectively
remove impulse noise and spikes from the observed signals.
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In DCDS, faults can occur due to various factors such as short
circuits, ground faults, or insulation failures. These faults
can result in sudden and transient changes in the voltage
or current signals. When a fault occurs, it produces high-
frequency components that appear as spikes or impulse noise
in the system’s signals. By definition, the DMF is a state
estimation and noise reduction algorithm used to deal with
non-linear and noisy sensor data.

They are mostly used as a location estimator, fault diag-
nosis, signal processing tools, noise reduction, and image
processing tools. In the past, they have been used to gen-
erate smooth information and minimize noise. Additionally,
they are less computationally challenging than other signal-
processing algorithms. Although the DCDS also exhibits a
non-linear feature while the DMF is a non-linear filter. As a
result, in an extremely short period, the DMF generates the
most auspicious feature estimation of electrical magnitudes
from the set of non-linear and noisy sensor measurements.
The step-by-step workflow of the discrete median filter
algorithm is presented in FIGURE 1. While the pseudocode
is presented in TABLE 1.

FIGURE 1. The Step-by-step depiction of the DMF algorithm.

The DMF computed the moving median using the sliding
window method (SWM) as follows.

1. In this approach, the DMF generates the median from
the data in a specified window that traverses over a
particular channel on a current signal sample-to-sample
for a defined length.

2. As a result, in SWM, each sample’s results were the
median of its latest sample and its (Len-1) prior sam-
ples, where Len is the window’s length.

3. The procedure filled the window with zeros for dimen-
sion when the window did not yet contain enough data
to compute the first Len1 outputs [2], [31], [32].

4. Finally, the estimated current signal using the DMF is
presented as follows.

În = in + n (5)

TABLE 1. Pseudo code of DMF.

FIGURE 2. The measured and DMF-estimated DC-current signals.

where În depict the estimated current with random noise n.
FIGURE 2 shows the visual depiction of DMF-estimated
current and measured current.

C. MATHEMATICAL MORPHOLOGY ALGORITHM
FIGURE 3 depicts the step-by-step workflow of MMA.
Furthermore, the Pseudocode of MMA is depicted in
TABLE 2. The utilization of mathematical morphology fil-
ters in fault diagnosis for DCDS is justified by their ability
to capture and analyze signal variations, reduce noise, per-
form structural analysis, adapt to changing conditions, and
provide fast and efficient processing. MMA, also known
as morphological operators, are fundamental tools in this
field used for tasks like noise reduction, edge detection, and
image enhancement. There are two primary morphological
operators: erosion and dilation depicted in FIGURE 4. These
operators work with two key components: a structuring ele-
ment (a small matrix or kernel) and an image, or signal.
Applying mathematical morphology filters to an DMF’s esti-
mated current signal involves similar principles to working
with images but in a one-dimensional signal domain [17],
[18], [33], [34].

D. DCR CALCULATION USING MMA
Detecting faults in the DCDS presents unique challenges
therefore, MMA plays a critical preprocessing step in the
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TABLE 2. Pseudo code of MMA.

fault detection algorithms for the DCDS in the proposed
UHSFD method. By enhancing signal quality, extracting
relevant features, and enabling structural analysis, MMA
significantly contributes to the accuracy and effectiveness of
fault detection indices, ultimately enhancing the reliability
and safety of DC distribution systems. MMA process of
erosion, and dilation, the algorithm presented in the previous
stage is utilized to compute residual from the estimated DCR
using Eq (5). MMA can highlight areas in the signal that
deviate significantly from the surrounding values, potentially
indicating anomalies or unusual events in the current sig-
nal. Adjusting the structuring element size and performing
additional processing can refine the identification of relevant
deviations in the signal. The DCR signature obtained repre-
sents areas where significant deviations occurred compared
to the surrounding values. The mathematical steps involved
in calculating current residuals using an MMA algorithm are
as follows.

Step 1: Signal Preprocessing
Start with a discrete current signal În = [Î1 + Î2 +

Î3 . . . . . . Îk ], where Îk represents the value of the estimated

FIGURE 3. The Step-by-step depiction of the MMA algorithm (a) MMF
Erosion Algorithm for Current Signal, (b) the MMF Dilation Algorithm for
Current Signal.

FIGURE 4. The original, eroded, and dilated Signature of MMA.

signal at time k . Choose a structuring element S with a
specific size and shape. It could be a simple window or kernel
for local operations.

Step 2: Erosion Operation
The erosion operationE on the signal Îkwith the structuring

element S is represented as

E(Ik ,S) (6)

For each Ik from 1 to k , calculate the eroded signa Ikeroded as:

Ikeroded [k] =minjϵS(I[k + j]) (7)
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Here, j iterates over the indices within the structuring
element S and finds the minimum value in the neighborhood
of each Ik within the signal I.

Step 3: Dilation Operation
The dilation operation D on the eroded signal Ikeroded with

the same structuring element S is represented as.

D(Ikeroded ,S) (8)

For each Ik from 1 to k , calculate the dilated signal Ikdilated as:

Ikdilated[k] =minjϵS(Ikeroded [k + j]) (9)

Here, j iterates over the indices within the structuring element
S and finds the maximum value in the neighborhood of each
eroded Ikeroded [k].
Step 4: Calculate Residuals
Subtract the dilated signal Ikdilated [k] from the original sig-

nal În to obtain the current residuals also stated as DCR.

DCRk = În − Ikdilated [k] (10)

DCRk indicates the estimated DC residuals at kth sample.
This produces a signal where deviations or anomalies
from the local maxima within the structuring element are
highlighted as residual values. These steps outline the
mathematical operations involved in computing DCR using
mathematical morphology filters. The erosion and dilation
operations manipulate the signal based on the structuring
element to isolate and extract deviations in the original signal,
leading to the computation of the residuals. Adjusting the
structuring element size and type can impact the sensitivity
of anomaly detection in the signal.

E. MMABE CALCULATION USING MMA
In the context of mathematical morphology applied to current
signals, the concept of ‘‘energy’’ might differ from traditional
signal processing applications. Morphological operations,
when applied to signals like currents, might involve analyzing
and extracting features.

A time series f current values represented by În(t), where
t denotes time. Then, apply morphological operations like
erosion and dilation to extract features from the current sig-
nal. For instance, if the extracted features represent variations
or anomalies in the current, you might calculate the sum of
squared feature values:

MMABEn =

∑
În(dilate

+ eroded nonfundamental features) (11)

where, Feature ‘‘t’’ represents the value of the extracted
feature at time. It is observed by detailed simulations that the
MMABE exhibits different polarity during different faults.
the MMABE during the pole-to-pole fault is.{
MMABEn is negative on one while
zero on other end .

}
= pole to pole fault

(12)

And the MMABE during the positive pole to ground
fault is. {

MMABEn is opposite on both
ends.

}
= positive pole to ground fault (13)

FIGURE 5. The DCDS study test bed for detailed DC fault analysis.
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While during negative pole to ground faults the MMABE is
depicted as follows.{

MMABEn is negative on
both end .

}
= negative pole to ground fault (14)

Hence, the polarity in Eqs 12, 13 and 14 are utilized for the
decision of fault classification and localization.

F. THRESHOLD SETTING
An accurate and precise threshold setting is necessary for
any scheme to avoid malfunctioning relays. For that purpose,
the proposed scheme has been tested for different worst sim-
ulation conditions. The maximum and minimum operation
conditions are cross-checked for the estimation of correct
values. It is observed that the ideal value of DCR for no
fault condition is noted as 0 but a practically little bit more
than zero, therefore, the threshold is on the safe side chosen
as 5 absolute values, because we had a very huge margin
to choose from the threshold value. The proposed scheme
has been tested for different fault conditions like pole-to-
pole (P-P) and positive pole-to-ground (PP-G) faults on these

threshold settings. Hence the scheme operated successfully
under all regimes.

III. STUDY DCDS-TEST SYSTEMS
The DCDS test bed engaged for validation and extensive per-
formance analysis of the proposed UHSFD scheme have been
modeled in MATLAB/Simulink software. The single-line
diagram of the study test bed is depicted in FIGURE 5.
Different fault locations are depicted in the figure on distri-
bution line segments. It consists of four feeders and is further
segregated into nine buses from B 0 to B 8. In addition,
the whole DCDS is connected to a utility grid via IGBT-
based three-level VSC. The VSCmaintained the voltage level
of both study DCDS test beds at ± 2.5Kv. Two PV-based
DGs are also feeding the DCDS penetrated at B0 and B3
respectively. Two switches, S 1 between B6 and B7 while S 2
between B1 and B2 are used for test system configurational
changes like radial, loop and meshed. Each PV-based DG
unit is comprised of 2MW power capacity. The data set of
DC distribution set used in the proposed method is generated
through an extensive and comprehensive simulation under
various operation conditions, locations, different buses, and
various fault impedance values [20], [31].

FIGURE 6. The schematic diagram the proposed UHSFD method.
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IV. METHODOLOGY OF PROPOSED UHSFD SCHEME
A structured methodology, termed UHSFD, has been devel-
oped specifically for fault detection in DC distribution
systems (DCDS). This method is meticulously organized into
five clear sections represented in FIGURE 6.

The process begins with the acquisition of the current sig-
nal from the measurement unit embedded within protective
relays. These signals, however, exist in an analog format
initially and undergo transformation through an Analog-
to-Digital Converter (ADC) with a sampling frequency
of 1600 Hz, converting them into a digital form. It is impera-
tive to note that the ADC plays a pivotal role in capturing and
processing not just ordinary signals but specifically targets
anomalous, highly fluctuating readings that might signify
potential faults or disturbances within the system. Moreover,
the antialiasing of the current signal is done using a Bezel
filter with a cut-off frequency of 3.5 kHz.

In the second stage, following the conversion into discrete
signals, these current signals undergo preprocessing facili-
tated by the DMF. The role of DMF encompasses two pivotal
steps aimed at enhancing the quality of the acquired discrete
current signals. 1st, using the DMF framework, a state esti-
mation process is initiated on the discrete current signal. 2nd,
the DMF focuses its operations on the refining the signal by
employing noise reduction process, ensuring a clearer, more
refined representation that minimizes unwanted distortions or

interferences present within the signal duringmeasurement or
any random noise.

In third stage, Upon the completion of state estimation and
noise reduction within the DMF, the refined and estimated
signal is directed towards a specialized filtering mechanism
known as the Mathematical Morphology Filter. The primary
objective of the MMA is to scrutinize the estimated signal,
seeking out deviations that might signify potential faults
or disturbances within the DCDS. Leveraging mathematical
operations rooted in morphological analysis, the MMA com-
putes DCR using Eq 10, which serve as fault detection index.
These computed DCR serve as pivotal indicators, providing
a clearer delineation between normal system behaviour and
potential fault conditions, thereby enhancing the fault iden-
tification capabilities of the DCDS. Secondly, the MMABE
is computed for fault classification and section identification
using Eq 11.

Fourth stage involves a comparison of the computed DCR
within the PR against predefined threshold values. This com-
parison serves as a critical checkpoint, evaluating the mag-
nitude of deviation from normal behaviour. If the observed
variations exceed the pre-specified threshold values,
indicating a fault condition and the protective relay triggers
an isolation logic.

Finally, this activation results in the generation of a trip sig-
nal, a vital safetymechanism designed to isolate the identified

FIGURE 7. The DC current signature, DCR signature, and MMABE signature during P-P fault at
DC line segment 1.
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faulty section from the rest of the system promptly. This swift
disengagement of the faulty segment ensures the preservation
of the overall system integrity, preventing potential cascading
effects that could jeopardize the entire system’s operation and
safety.

V. RESULTS AND DISCUSSION
On the DCDS test beds, numerous simulations have been
run to assess the robustness of the proposed UHSFD
scheme. Different fault conditions were simulated for the
DC faults under various system conditions. The PP-G,
NP-G, and P-P faults are addressed in this study. Moreover,

several case studies were also carried out with differ-
ent parameters to authorize the robustness of the pro-
posed UHSFD scheme with varying fault resistance and
location.

A. POLE-TO-POLE FAULTS
This subsection illustrates the detailed testing of the proposed
scheme during P-P faults. Therefore, multiple such faults
are tested on various locations of the DCDS test bed as
depicted in TABLE 3. But due to lack of space and ease of
readers understanding, few cases are elaborated on here for
the validation of the proposed UHSFD scheme.

TABLE 3. Various faults cases on DCDS test bed.

FIGURE 8. The DC current signature, DCR signature, and MMABE signature during PP-G fault at DC
line segment 2.
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A P-P fault was initiated on the DC line segment 1 at the
time instant of 0.25 m sec, 20 km away from the B0. The
DC-current signature and DCR signatures during this fault
are depicted in FIGURE 7. The results show that after the
occurrence of a fault, the corresponding relay 11 instantly
detects the fault in less than 2.5 m sec successfully. However,
the polarity of PR 11 is negative, and PR 22 is zero
which indicates the presence of P-P fault in the DC line
segment 1.

B. POSITIVE POLE-TO-GROUND FAULTS
This subsection illustrates the detailed testing of the proposed
UHSFD scheme during PP-G faults. Therefore, multiple such
faults are tested on various locations of the DCDS testbed as
illustrated in TABLE 3. However, due to lack of space and
ease of readers’ understanding, few cases are elaborated on
here for the validation of the proposed UHSFD scheme.

A PP-G fault occurred on the DC line segment 2 at the time
instant of 0.3m sec, 50 km away from the B1. TheDC-current

FIGURE 9. The DC current signature, DCR signature, and MMABE signature during NP-G fault at DC
line segment 4.

FIGURE 10. The DCR signature at DC line segment 8 during different resistances.
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and DCR signatures at 33 during this fault are depicted in
FIGURE 8. The results indicate that after the occurrence of a
fault, the corresponding relay 33 instantly detects the fault
in less than 2.5 m sec successfully. However, the opposite
polarity of PR 33, and PR 44 indicates the presence of PP-P
fault in DC line segment 2.

C. NEGATIVE POLE-TO-GROUND FAULTS
This subsection illustrates the detailed testing of the proposed
UHSFD scheme duringNP-G faults. Therefore, multiple such
faults are tested on various locations of the DCDS testbed as
illustrated in TABLE 3. However, due to lack of space and
ease of readers understanding, few cases are elaborated on
here for the validation of the proposed UHSFD scheme.

An NP-G fault occurred on the DC line segment 4 at the
time instant of 0.1m sec, 20 km away from the B2. The
DC-current and DCR signatures at PR 77 during this fault
are depicted in FIGURE 9. The results indicate that after
the occurrence of a fault, the corresponding PR 77 instantly
detects the fault in less than 2.5 m sec. However, the polarity
is negative, on both the PR 77 and PR 88 which indicates the
presence of NP-P fault in the DC line segment 4.

D. RESULTS DURING VARYING RESISTANCE FAULTS
This section illustrates the detailed testing of the proposed
UHSFD scheme during the various values of fault resistance.
Therefore, multiple P-P and P-G faults are tested on several

locations with different values of resistances. However, due to
a lack of space and ease of readers’ understanding, one case is
elaborated on here for the validation of the proposed UHSFD
scheme.

A P-P fault occurred at the DC line segment 8 at the time
instant of 0.2 m sec, 65 km away from the B4 with the fault
resistance of 0, 100, 200, and 300 0hm. The DCR signatures
at relay 51 during this fault are depicted in FIGURE 10.
The results indicate that after the occurrence of a fault, the
corresponding relay 51 instantly detects the fault in less than
2.5 m sec successfully for all values of the resistances.

E. DIFFERENT GRID CONFIGURATIONAL CHANGES
RESULTS
This section illustrates the detailed testing of the proposed
UHSFD scheme during the various configurational changes
like radial, loop, and meshed network. Therefore, multiple
P-P and P-G faults are tested with several configurational
changes. However, due to a lack of space and ease of readers’
understanding, one case is elaborated on here as proof, while
some cases were also mentioned in TABLE 3.
A NP-G fault occurred at the DC line segment 3 at the time

instant of 0.45 m sec, 15 km away from the B0 with loop
configuration when S1 is open and S2 is close. Moreover, the
PV-based DG 1 is out of operation during the simulation of
this case to check the DG’s intermittency. The DCR signature
at relay 55 during this fault is depicted in FIGURE 11.

FIGURE 11. The DC current signature, DCR signature, and MMABE signature during NP-G fault at DC
line segment 3 when PV-based DG 1 is out to check DG’s intermittency and looped configuration.
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The results indicate that after the occurrence of a fault, the
corresponding relay 55 instantly detects the fault in less than
2.5 m sec successfully.

F. NOISY MEASUREMENT CONDITIONS RESULTS
This section illustrates the detailed testing of the proposed
UHSFD scheme during the various noise measurement con-
ditions as depicted in TABLE 3. Therefore, multiple P-P

and P-G faults are tested on several locations with different
values of resistances based on noisy measurement conditions.
However, due to a lack of space and ease of readers’ under-
standing, one case is elaborated on here for the validation of
the proposed UHSFD scheme.

A P-P fault occurred at the DC line segment 6 at the time
instant of 0.022 m sec, 17 km away from the B3 with meshed
configuration when both S1 and S2 are close. Moreover, this

FIGURE 12. The DC current signature, DCR signature, and MMABE signature during P-P fault at DC
line segment 6.

FIGURE 13. The DC current signature and DCR signature during a NP-G and P-P fault at DC line
segment 7.
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FIGURE 14. The (a) Computational latency and (b) Accuracy.

FIGURE 15. The radar chart of Speed of action.

fault is tested with the gaussian random noise of 5 db. Besides
that, theDCR signature at relay 12 during this fault is depicted
in FIGURE 12. The results indicate that after the occurrence
of a fault, the corresponding relay 12 instantly detects the
fault in less than 2.5 m sec successfully.

G. PROPOSED UHSFD SCHEME FAILURE CONDITIONS
RESULTS
This section illustrates the detailed testing of the proposed
UHSFD scheme during the various false failure conditions
as depicted in FIGURE 13. It is depicted that an NP-G fault
occurred at 0.2 m sec with fault resistance of 305 ohms; the
scheme fails to detect this high impedance fault. Similarly,
another P-P fault was simulated at 0.25 m seconds with fault
resistance of 310 ohms; the scheme fails to detect this high
impedance fault.

VI. COMPARATIVE ANLYSIS
This subsection mainly focuses on the accuracy, computa-
tional burden, and speed of action of the proposed method

TABLE 4. Comparative analysis of PF with existing methods.

with some other existing schemes like polarity-based meth-
ods, AI&DSP-based methods, and current derivative (CD)-
based methods [2], [3], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30] as
depicted in TABLE 4. Firstly, the computational latency com-
parison of the presented method is shown in FIGURE 14 (a).
Secondly, a lot of case studies were performed, and the overall
accuracy has been calculated as depicted in FIGURE 14 (b),
while accuracy is computed as.

Accuracy =
sucessful operations

total performed operation
(15)

The third parameter used for the performance analysis of
the proposed scheme is the speed of action. The results
in the radar chart shown in FIGURE 15 indicate that the
proposed scheme shows better performance as compared to
existing schemes. conclusively, the suggested technique oper-
ates quickly and is easy to apply. The proposed scheme is
superior to most of the previous benchmark schemes in some
aspects.
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VII. CONCLUSION
The proposed Ultra High-speed Fault Diagnosis scheme
using a Discrete Median Filter and Mathematical Morphol-
ogy Algorithm proved to be effective in fault diagnosis for
DCDS. The DMF preprocessing stage successfully estimated
the state and reduced noise in the acquired current. The
UHSFD Scheme computed the DCR using the MMFA on
the DMF-estimated current signal, allowing for the detection
of faults by crossmatching variations in the computed DCR
with pre-defined threshold settings. Then, the Mathematical
Morphology algorithm-based Energy computed in the third
stage facilitated fault classification and section identification.
The results indicate that the proposed scheme has very low
computational latency, having 99.5 % accuracy, operation
time less than 2.5 m sec, and capable of detecting DC faults
in radial, looped, and meshed topology. Furthermore, the
hardware implementation of the proposed scheme is aimed
at future work.
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