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ABSTRACT In recent years, artificial intelligence (AI) approaches in computer vision and medical
technology have been combined to create various convenient and accurate tools to assist medical treatments.
In this work, we propose conditional generative adversarial networks (conditional GANs)-based pigmented
facial skin analysis system for melasma diagnosis. In the past, melasma diagnosis was based on subjective
diagnoses from doctors, and therewere few automaticmelasma analysismethods. The proposed system helps
to determine the region according to the melasma’s severity. Areas associated with melasma and hemoglobin
are detected to determine whether they may require special treatments. Furthermore, the proposed work
cooperates with HUANGDERMdermatology to collect a facial skin pigmented dataset.We divide the dataset
into 3,000 groups for training datasets and 678 groups for testing. Each group contains four categories of
images: standard white light, polarized light, melanin and hemoglobin distribution. As a result, the proposed
system successfully generates melasma and hemoglobin images and performs well with respect to subjective
and objective evaluations.

INDEX TERMS Conditional GANs, hemoglobin, melasma, pigmented facial skin analysis.

I. INTRODUCTION
The skin is an essential organ for humans. Apart from being
a reference to a person’s ethnicity, facial skin is often consid-
ered in a person’s first impression. Studies have even shown
a relevance between skin conditions and mental health [1].
As most people are eager to have clean and flawless facial
skin, they may apply various skincare products to main-
tain the quality of the facial skin. The colors of the human
skin are mainly determined by the distributions of melanin
and hemoglobin [2]. The concentrations of melanin and
hemoglobin are also related to various skin diseases. In nor-
mal skin, the melanin is evenly distributed, resulting in an
even skin tone. However, prolonged sun exposure or skin
diseases may cause excessive melanin precipitation in some
regions, giving these areas darker appearances. For example,
melasma causes the skin to turn brown, and hemoglobin
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makes the skin red. Skin diseases such as acne, rosacea and
telangiectasia can also cause changes in the structure of blood
vessels, increase the concentration of hemoglobin and cause
uneven skin tones.

This study focuses on analyzing the melasma and
hemoglobin concentrations to assist dermatologists during
treatments. Melasma is a common hyperpigmented skin dis-
ease characterized by light yellow or dark brown patches on
the surface of the face [3]. If left untreated, the patches will
gradually expand and may usually be removed through laser
treatments. However, the course of treatment for melasma
varies from long to short, and some patients cannot dis-
tinguish the difference between each melasma treatment,
leading to medical disputes.

Nowadays, the pigmented distribution can be examined
through the Canfield device developed by Canfield Imaging
Systems [4]. The Canfield device transforms skin images into
hemoglobin andmelanin distributions, which is well accepted
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among dermatologists. The facial melanin distribution map
from the Canfield device allows dermatologists to explain
the severity of melasma so that the patient is more aware
of the effectiveness of the treatment, thus avoiding medical
disputes. However, the Canfield device is expensive, andmost
dermatologists are unwilling to invest in such an instrument.

This work aims to integrate AI and computer vision tech-
nologies to develop a cost-effective pigment distribution
analysis system that generates an image with comparable
quality to that from a Canfield device. Moreover, the sever-
ity and region of melasma are also provided based on the
generated facial pigment distribution map and the proposed
melasma analysis technology. As a result, the proposed sys-
tem successfully generates melasma and hemoglobin images
and performs well with respect to the MSE (Mean Square
Error), MAE (Mean Absolute Error), PSNR (Peak Signal to
Noise Ratio) and SSIM (Structural Similarity Index Mea-
sure).

The rest of this paper is organized as follows. Section II
provides the related works. Section III presents the proposed
pigmented facial skin analysis system in detail. Experimental
results and evaluation are given in Section IV. Finally, the
concluding remarks are shown in Section V.

II. RELATED WORKS
A. SKIN CONDITION ANALYSIS
1) PIGMENTED FACIAL SKIN ANALYSIS
Nowadays, the scope of skin treatment is not limited to
diseases, and many people perform medical and cosmetic
surgeries for aesthetic purposes. Deep neural network (DNN)
based research is applied less to the fields of skin beauty
technology than in the fields of pathological skin conditions.

Chang and Huang [5] replaced traditional contact probes
with digital cameras to capture skin information and adopted
computer vision techniques to analyze skin conditions. They
proposed a series of standardized detection procedures to ana-
lyze skin features such as skin spots, wrinkles and acne and
provided objective skin condition assessment reports. Wang
and Li [6] proposed a facial pore detection algorithm that
combines the characteristics of skin pigment distribution and
optimal scale and effectively eliminates skin interference dur-
ing detection. Both the speeded-up robust features (SURF)
and scale-invariant feature transform (SIFT) algorithms were
used to detect different cortical parts and calculate a threshold
through the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) method [7]. The experimental results
showed an improvement in the accuracy of facial pore detec-
tion.

Liu et al. [8] proposed an image-processing-based facial
speckle analysis technique. They observed that the melanin
in melasma is usually distributed on the skin surface, but the
contrast between the dark spots and normal skin is negligible.
Therefore, it is difficult to separate the pigmented region from
normal skin and extract the contour from the facial spots.
However, they found that the blue channel in RGB color

space provided the clearest contour of the spots and used it
for outline extraction.

Demirli et al. [4] proposed the RBX technology, which
transfers an RGB image into the RBX color space. The
RBX technology, referred to as a new color space, is a
trading name developed by Canfield Imaging Systems. The
skin image is represented according to the melanin and
hemoglobin components taken under polarized illumination.
The cross-polarization eliminates the specular reflection on
the skin surface and improves the visibility of the epidermis
and dermis, where melanin and hemoglobin are located. The
RBX technology has been embedded in their products and is
widely used in dermatology, cosmetic medicine and aesthetic
skin care.

Sanjar et al. [9], proposed a fully convolutional network
model for skin-lesion segmentation, the model used a binary
cross-entropy loss function to compare the ground truth with
the resultant image segmentation. The weights and biases are
updated via backpropagation during training, and the final
parameter values are saved as model checkpoints. The key
advantage of this recommended architecture over the classi-
cal U-Net framework is its upsampling stage, which allows
for better accuracy in segmenting skin lesions. Ding et al. [10]
presented the automatic identification of benign pigmented
skin lesions (PSLs) using deep convolutional neural network.
The study aimed to develop a computer-aided detection sys-
tem for accurate identification of PSLs from images captured
using a digital camera or a smart phone. The authors proved
that the YOLOv5-based system can potentially be used in the
clinical identification of PSLs.

2) SKIN CONDITION DATASET
There are few skin datasets compared with face recognition
datasets, and the skin datasets are mainly used for skin dis-
eases and melanoma.

Mendonça et al. presented the PH2 dataset [11] with
200 dermoscopic images of melanocyte lesions obtained
from Pedro Hispano Hospital. The dataset has 80 common
moles, 80 atypical moles and 40 melanomas. Tschandl et
al. released the HAM10000 (Human Against Machine with
10,000 training images) dataset [12]. The HAM10000 dataset
contains dermoscopy images from different groups of people,
consisting of 10,015 images in 7 categories and informa-
tion on pigmented lesions. Combalia et al. released the
BCN20000 dataset [13] collected from hospitals in Barcelona
from 2010 to 2016 and consists of 19,424 dermatoscopic
images of skin lesions. This dataset contains lesion locations
that are difficult to diagnose, such as lesions found in nails
and mucous membranes. However, the dataset is unsuitable
for large-scale lesions and lesions with depigmentation.

B. SKIN DETECTION
1) SKIN SEGMENTATION
Skin detection is generally used to detect candidate regions
such as faces, hands or other skin surfaces in the scene. It is
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further applied to face detection, gesture analysis, and image
filtering. In 2010, Enneha et al. [14] analyzed 11 color spaces
and found that the phase pixel color converted to Hlab and
YCbCr space has the best skin detection effect. Solanke and
Gore [15] converted the image from RGB color space to
YCbCr color space with a threshold for skin detection.

However, the results of this study indicated that if only a
threshold is used as the criterion to separate the skin and non-
skin pixels, the skin detection effect is easily affected by the
background and brightness. Shaik et al. [16] used the RGB,
HSV, and YCbCr color spaces to separate skin and non-skin
regions. Experimental observations showed that if the picture
has a simple background, both HSV and YCbCr color spaces
have good results, but for a complex background, the YCbCr
color space has a slightly better performance.

Traditional algorithms are used to detect the skin in [14],
[15], and [16], but recently, researchers have applied deep
learning for skin detection. Li et al. [17] proposed a
hybrid network architecture for Traditional ChineseMedicine
Inspection. Li’s work is capable of detecting and segmenting
facial components into 6-category (left eye, right eye, lips,
tongue, face, and background) for diagnosis. With the rapid
processing speed, its work can be further integrated into real
applications. Hashemifard et al. [18] presented a robust and
efficient method for weakly supervised human skin segmen-
tation using guidance attention. They addressed challenges
such as variability in skin color, pose, and illumination, and
incorporates two attention modules and an efficient network
architecture to improve segmentation results.

2) SKIN COLOR DATASET
Datasets for skin detection in training or testing are much
more difficult to obtain than for face recognition since
they require manual marking for the skin regions, and the
dataset sizes are relatively small. The SFA dataset released
by Casati et al. [19] in 2013 was a face dataset based on
AR [20] and FERET [21]. The dataset contains 1,118 faces
with more specifications for easier segmentation of the skin
regions. Kawulok et al. [22] released the HGR (Hand Gesture
Recognition) dataset that contains 899 photos taken in a
controlled environment of the hands of 12 different people.
The HAM10000 dataset comprises 10,000 training images
used for detecting pigmented skin lesions. Tschandl et al. [23]
gathered dermatoscopic images from diverse populations,
obtained and stored through various modalities.

C. GENERATIVE ADVERSARIAL NETWORK IN COMPUTER
VISION
Goodfellow et al. [24] proposed the CNN-based GAN (Gen-
erative Adversarial Networks), which is currently widely
used in image super-resolution, image colorization, text-
to-image translation [25], image augmentation [26], and
video generator [27]. Mirza and Osindero [28] proposed
the cGAN (Conditional Generative Adversarial Networks)
framework with an additional condition for the generator,

so the discriminator has to check based on that condition.
However, the pictures generated by the traditional GAN and
cGAN have low resolution. Naglah et al. [29] overcome the
cGAN restriction and proposed a digital pathology system
that accurately detects and quantifies the footprint of fibrous
tissue in Hematoxylin and Eosin.

When there are two types of data, such as the paired
dataset Cityscapes [30], the input data of the Pix2Pix
framework [31] no longer need random codes but requires
paired correlation for the generator and discriminator. The
Pix2Pix framework [31] adopted the U-net-based framework
and patch-wise discriminators (PatchGAN) for its network
architecture. However, experimental results showed that the
Pix2Pix framework only generates 256 × 256 images, and
the generated image becomes blurred when the required
resolution is higher. A considerable improvement is made
in [32] to generate 2, 048 × 1.024 images with visually
appealing results. The key success in the improved Pix2Pix
framework includes a coarse-to-fine generator, multi-scale
discriminator and improved adversarial loss. Since paired
datasets are hard to collect, the CycleGAN [33] is presented
for unpaired data. The CycleGAN has two generators and dis-
criminators for cycle consistency to guarantee the similarity
between the generated image and the original input image.
Ko et al. [34] presented the DCR (dense consistency regu-
larization) with auxiliary self-supervision loss that enforces
point-wise consistency for the discriminator. The experiment
results demonstrated better performance than the Cycle-
GAN. In [35], the authors introduce GP-UNIT. This model
significantly enhances unsupervised image translation by uti-
lizing generative priors from pre-trained class-conditional
GANs. Furthermore, in study [36], Xie et al. have made
significant strides by introducing DECENT, a method that
leverages density estimators. Their approach focuses on map-
ping high-probability patches across different domains while
preserving semantic integrity, a crucial aspect of image trans-
lation tasks. Lastly, in [37], a new framework named EnCo
is introduced. EnCo effectively addresses the limitations of
existing GAN-based methods in unpaired image-to-image
translation. It maintains content fidelity through innovative
latent space constraints.

III. PROPOSED SYSTEM
The proposed system architecture is shown in Fig. 1. This
section mainly discusses the functionality of the facial skin
pigment distribution image generator and the other modules
used in the experiment.

The facial skin pigment distribution image generator aims
to convert the image from the RGB to the RBX-like color
space [4]. The proposed work adopts the conditional GANs
framework from [32] to implement the face pigment distribu-
tion generator. While a low resolution has been a major issue
in the GAN architecture, in pigmented skin analysis, more
accurate diagnosis recommendations may be achieved with
more retained details. Our collected dataset has a resolution
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FIGURE 1. The proposed system architecture.

FIGURE 2. The overview of Facial skin pigment distribution image
generator.

of 3, 312 × 3.808. However, due to the trade-off between
hardware limitations and computation complexity, we down-
sample the images to 1, 024 × 1.024 for input and output.
The expected output of the facial melanin distribution map
and hemoglobin are depicted in Fig. 2.

A. COARSE-TO-FINE GENERATOR
The conditional GANs framework improves image quality
through a coarse-to-fine generator and multi-scale discrim-
inator. The coarse-to-fine generator can be divided into
two sub-generators, i.e., a global generator and a local
enhancer, as shown in Fig. 1. The global generator generates
a small-scale image that preserves the overall outline of the

FIGURE 3. Data flow of the coarse-to-fine generator.

object in the image. The local enhancer deal with a large-scale
image to preserve the details of the original images.

The global generator (G1) is the image style conversion
network architecture proposed by Johnson et al. [38], which
has been proven successful in image style transformation.
The global generator consists of three parts: 1) a down-sample
convolutional network (F1), 2) a string of residual block (R1)
networks, and 3) an up-sample deconvolution network (B1).
The global generator converts a 512 × 512 face image into a
512 × 512 facial pigment distribution map.
The local enhancer (G2) network architecture is similar

to the global generator, which is also composed of three
parts: 1) a down-sample convolutional network (F2), 2) a
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FIGURE 4. The network architecture of coarse-to-fine generator.

string of residual block networks (R2), and 3) an up-sample
deconvolution network (B2). The local enhancer converts a
1024 × 1024 face image into a 1024 × 1024 facial pig-
ment distribution map. The main difference between the local
enhancer and global generator is the input of the residual
block shown in Fig. 3. The input of the global generator
comes from F1, and the input of the local enhancer comes
from the element-wise sum of the output of F2 and the input
of B1. The network architecture diagram of the coarse-to-
fine generator for the global generator and local enhancer is
shown in Fig. 4. The Conv block in Fig. 4 can be decomposed
into convolution, batch normalization and ReLU (Rectified
Linear Units). Similar to the Conv block, the deConv block is
composed of transpose convolution, batch normalization and
ReLU, respectively.

The first convolutional layer of the global generator has a
reflection padding and 64 filters (a 7 × 7 kernel and a stride
of 1). The input and output feature map size remains the
same, but the number of channels has changed. The proposed
work adopted reflection padding since it symmetrically fills
the edges to obtain better convolution results. In the down-
sampling convolutional layer, the number of filters in each
layer is doubled compared to the previous layer. The con-
volutional layers from the second to the fifth layers have
a stride of 2, zero padding, and a kernel size of 3 × 3.

Therefore, the length and width of the output feature map in
each convolutional layer are half of the input feature map.

After five layers of down-sampling convolutional layers,
the feature map enters the 10-layer residual block. When the
neural network has too many layers, the gradient disappears,
and training cannot converge. Therefore, He et al. [39] used
the residual method to train a relatively deep neural network
for image classification. Each convolution of the residual
block has an initial padding; after the feature map passes
through a series of residual blocks, the size of the feature
map and the number of channels remain unchanged. In the up-
sampling deconvolution network, the deconvolution network
is composed of a transpose convolutional layer. The available
output size of the convolutional layer is given as:

O =

⌊
I + 2P−K

S

⌋
+1 (1)

where O represents the output size, I, P, K, and S stand
for the input size, padding size, kernel size, and stride size,
respectively.

When the output size of the convolutional layer is an
integer, the output size formula of the transpose convolution
layer would be pushed back and can be presented as:

O = (I − 1) × S − 2P+ K (2)

where P and S are both from their corresponding convolu-
tional layers. The decimal will be unconditionally rounded off
if the output size O is divisible. In this case, the formula for
the output size of the transpose convolutional layer is pushed
back in the reverse direction and is corrected by:

O = (I − 1) × S − 2P+ K + α (3)

where α implies adding α columns and rows to the bottom
and right edges after padding. The network details for local
enhancers are shown in Fig. 4. The network architecture
of the local enhancer is similar to the global generator,
with differences in the number of layers and filters. The
first-layer convolutional network of the local enhancer out-
puts a feature map with 32 channels. After another layer
of the down-sampling convolutional network, a feature map
with 64 channels is outputted. The fourth layer of the deConv
output for the global generator also has a feature map with
64 channels. Therefore, an element-wise sum of these two
feature maps can be used as the input of the residual block
network in the local enhancer.

B. MULTI-SCALE DISCRIMINATOR
Fig. 5 illustrates the architecture of the multi-scale discrimi-
nator. The role of the discriminator determines whether the
image is an actual sample or a generated one. However,
the classification of high-resolution images is a challenge
for GAN. A deep neural network and extensive hardware
resources are required for calculation. In the proposed work,
the generator that implements the 1024 × 1024 pictures has
consumed most of the hardware resources. To overcome this
problem, we adopted the conditional GANs network, which
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FIGURE 5. Data flow of Multi-Scale discriminator.

FIGURE 6. The network architecture of discriminator.

uses a multi-scale discriminator. The multi-scale discrimina-
tor can be extended to more than two-scale discriminators.
In our facial pigmentation distribution image generator,
there are two discriminators targeting different image scales
(as shown in Fig. 5) with the same network architecture
(as shown in Fig. 6). One of the discriminators identifies
smaller-scale images to learn the overall integrity of the image
and the other is used to distinguish large-scale images to
retain the details.

The discriminator applies the PatchGAN from the Pix2Pix
framework [31] and outputs anN×N matrix. Each element in
thematrix represents a patch that depicts the probability value
of the sample. The average value of the output feature map
represents the result for the discriminator. The PatchGAN is
responsible for small regions in the input picture, which could
realize local image feature extraction and is more conducive
for high-resolution image generation.

According to the practical suggestion in [31], we have
adopted a patch size of 70 × 70 in our experiment, which
also represents the receptive field size of the input image and
can be depicted as follows:

RFN−1 = (RFN − 1) × S + K (4)

where RFN is the N th layer receptive field size at the (N-
1)th layer.

C. LOSS FUNCTION
In the conditional GANs, the global generator must be trained
before the local enhancer. After training the local enhancer,
we fine-tune the parameters for the local enhancer and global
generator. The training phase is shown in Fig. 7. The objective

function for training the GAN is represented as:

minG maxD LGAN (G,D) (5)

LGAN (G,D) =
[
logD (s, x)

]
+

[
log (1−D(s,G(s))

]
(6)

where s and x respectively represent the input image and
ground truth, and G(s) is the image generated by the genera-
tor. The training generator expects the result of the objective
function to be as small as possible, which means that the
generator tries to generate pictures to deceive the discrimi-
nator. When training the discriminator, we need to maximize
logD(s, x) andminimizeD(s,G(s)) for the objective function
to distinguish the real and fake pictures properly. The condi-
tional GANs framework adopts the LSGANs (least squares
generative adversarial networks) [40] as the loss function,
which takes on the value of 1.0 for real images and 0.0 for
fake images and is optimized by the MSE (mean squared
error). The loss functions for the generator and discriminator
are different. The GAN loss for the generator is

LGAN (G) =

∑T

i=1

1
Ni

[(
1 − Di(s,G(s))

)2]
(7)

and for discriminator, the GAN loss is

LGAN (G) =

∑T

i=1

1
Ni

[(
1 − Di(s, x)

)2]
+ LGAN (G) (8)

where Ni is the number of the image element. When dealing
with high-resolution images, the discriminator needs a deep
neural network or a large convolutional kernel to achieve
good results, which requires sizable memory for calculation.
Therefore, two different scaled discriminators are used to
avoid this problem. The first discriminator examines the
details in a small-scale image, and the other verifies the orig-
inal image’s completeness. After involving the multi-scale
discriminators, the objective function becomes

minG maxD1,D2

∑
k=1,2

LGAN (G,Dk) (9)

To ensure that the discriminator distinguishes the different
features between real and synthesized pictures, the objective
function integrates feature matching loss and VGG19 percep-
tual loss [20], which are proven suitable for high-resolution
image conversion. Feature matching loss sends the generated
sample and ground truth to the discriminator separately for
feature extraction. VGG19 perceptual loss extracts feature
values from generated samples and ground truth. We then
apply element-wise loss on the feature map and L1 Loss on
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FIGURE 7. Training procedure of the Pix2PixHD.

each discriminator. As a result, the generator would be more
stable during the training process, and the feature matching
loss is presented as

LFM (G,Dk) =

∑T

i=1

1
Ni

[∥∥∥Dik (s, x) − Dik (s,G (s))
∥∥∥
1

]
(10)

where T is the total number of layers, Ni is the number of
elements for the ith layer with layer index i. The VGG19
perceptual loss can be calculated as

LVGG (G) =

∑N

i=1

1
Mi

[∥∥∥F (i) (x) − F (i) (G (x))
∥∥∥
1

]
(11)

where F (i) denotes the ith layer withMi elements of the VGG
network. In total, the objective function integrates GAN loss,
feature matching loss and VGG19 perceptual loss as follows:

minG
((
maxD1,D2

∑
k=1,2

LGAN (G,Dk)
)

+λ
∑

k=1,2
LFM (G,Dk) + λLVGG (G)

)
(12)

The feature matching loss and VGG19 loss are responsible
for ensuring the content consistency and the GAN loss takes
care of the details. The experimental results show that the
performance is greatly improved after the inclusion of the
feature matching loss and VGG19 loss.

IV. EXPERIMENTAL RESULTS
A. PIGMENTED FACIAL SKIN DATASET
The pigmented facial skin dataset is collected in coopera-
tion with HUANGDERM dermatology. The proposed work
systematically organizes and labels each picture’s category.
The dataset is divided into visible light face images, RBX
hemoglobin distribution images, RBX melanin distribution
images and cross-polarized skin images. The portraits can be
further divided into right profile face, frontal face and left
profile face, as shown in Fig. 8. The original dataset has a
resolution of 3, 312× 3.808. This study has collected 14,712
pictures in 3,678 groups in total. The training data set includes
3,000 groups with 12,000 images, and the remaining images
are treated as the test data set, which involves 678 groups
with 4,712 images. The visible light face images depict the
face in the real situation, as shown in Fig. 8 (a), Fig. 8 (e)
and Fig. 8 (i). There is no reflection for the polarized light

FIGURE 8. The sample images of Pigmented Facial Skin Dataset (a) Right
profile original face image, (b) Right profile facial hemoglobin
distribution image, (c) Right profile facial melanin distribution image,
(d) Right profile facial cross-polarized image, (e) Frontal original face
image, (f) Frontal facial hemoglobin distribution image, (g) Frontal facial
melanin distribution image, (h) Frontal facial cross-polarized image,
(i) Left profile original face image, (j) Left profile facial hemoglobin
distribution image, (k) Left profile melanin distribution image, and (l) Left
profile facial cross-polarized image.

FIGURE 9. Skin detection result (a) Left profile face, (b) Frontal face, and
(c) Right profile face.

images, and the details of the face are entirely preserved. Both
the hemoglobin and the melanin distribution images were
produced by RBX equipment. This work expects to generate
facial pigment distribution maps, i.e., RBX-like images from
photos taken by digital cameras or mobile phones. Therefore,
we have chosen visible light face images as the input instead
of cross-polarized light images.
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FIGURE 10. Potential melasma region is found through facial features
and skin detection, (a) Left profile face, (b) Frontal face, and (c) Right
profile face.

FIGURE 11. Comparison of generated melanin images for different
models. (a) Dataset, (b) Proposed, (c) CycleGAN [33], (d) GP-UNIT [35],
(e) DECENT [36], and (f) EnCo [37]. The proposed image is more close to
the original image than the other models.

TABLE 1. Comparison of melanin for single image generated with
different generator.

B. FACIAL MELASMA ANALYZER
We first transform the facial melanin distribution map into
grayscale for melasma detection and apply the median blur
filter for noise reduction. The output of the potential melasma
region detection module is used as a mask. We then adopt the
melasma area and severity index (MASI) [41] to divide the
melanin into six levels. The melasma region is then deter-
mined with a severity index based on the average skin tone
level. The melasma region information would be provided to
dermatologists as a diagnosis reference.

1) SKIN DETECTION
Since training the generator is memory-intensive, skin detec-
tion is directly implemented through image processing.
We apply themulti-color space thresholds [42], which involve
three color spaces, i.e., RGB, HSV, and YCbCr, to detect the
skin region. The thresholds are set individually, the lower and

FIGURE 12. Comparison of generated hemoglobin images for different
models. (a) Dataset, (b) Proposed, (c) CycleGAN [33], (d) GP-UNIT [35],
(e) DECENT [36], and (f) EnCo [37].

TABLE 2. Comparison of hemoglobin for single image generated with
different generator.

upper bounds for RGB, HSV, and YCbCr can be represented
as:

RGBT
{
R : 108 ∼ 255, G : 52 ∼ 255, B : 45 ∼ 255

}
HSV T

{
H : 0 ∼ 120, S : 50 ∼ 150, V : 0 ∼ 255

}
YCbCrT

{
Y : 90 ∼ 230, Cb : 100 ∼ 120, Cr : 130 ∼ 180

}
(13)

When a pixel value is within these thresholds, the pixel is
treated as a skin color that conforms to all these three color
spaces. The skin detection result is presented in Fig. 9.

2) POTENTIAL MELASMA REGION DETECTION
The melasma region is labeled and trained through the pro-
posed system with help from the dermatologist. The melasma
is generally distributed on both sides of the face in a C shape.
The proposed module adopts the facial landmark detection
model from the Dlib library [43] to locate the face before
determining the potential melasma region. An additional 81-
points facial landmark model [44] is added as the melasma
may also appear on the forehead.With the integration of facial
landmarks and skin detection, the possible melasma regions
are circled and shown in Fig. 10.

3) PERFORMANCE EVALUATION OF GENERATED IMAGE
From the dermatologist’s perspective, the original RBX
image and the generated RBX-like image have 90% similar-
ity, demonstrating the comparative quality with the Canfield
device.
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TABLE 3. Average generated result of melanin for test dataset (678
images).

TABLE 4. Average generated result of hemoglobin for test dataset (678
images).

Furthermore, the proposed system also compared the gen-
erated results with the CycleGAN [33], GP-UNIT [35],
DECENT [36], and EnCo [37]methods inMSE,MAE, PSNR
and SSIM. The MSE and MAS are represented as:

MSE =
1
m

∑m

i=1

(
xi − yi

)2 (14)

MAE =
1
m

∑m

i=1

∣∣xi − yi
∣∣ (15)

where x represents the produced image, y is the ground truth,
and m is the number of elements in an image. The average
PSNR is calculated through:

PSNR = 20log10
2n − 1
MSE

(16)

where n is the bits per sample.
The SSIM is closer to the subjective perception of the

human eye. It takes the brightness (l(x, y)), contrast (c(x, y))
and structure (s(x, y)) as indicators, which are given by:

SSIM = [l(x, y)]α[c (x, y)]β [s (x, y)]γ (17)

l (x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(18)

c (x, y) =
2σxσy + C1

σ 2
x + σ 2

y + C1
(19)

s(x, y) =
σxy + C3

σxσy + C3
(20)

where α > 0, β > 0 and γ > 0 are the parameters for adjusting
the relative importance of l, c and s. µx , µy and σx , σy are the
average and variance of x and y, respectively. C1, C2 and C3
are constants.

The experimental results of different melanin distribution
generators are shown in Fig. 11, where we can see that the
proposed image is quite similar to the dataset image and is
better than the other models. Although Fig. 11 (f) appears
to closely resemble the dataset, it is important to note that
the enhanced deeper melanin near the mouth might affect

FIGURE 13. Six levels of melanin degree of severity.

FIGURE 14. Melanin quantification (a) Left profile face (b) Frontal face,
and (c) Right profile face.

FIGURE 15. Melasma region on melanin distribution image (a)Left profile
face (b)Frontal face (c)Right profile face.

decision-making during diagnosis. The evaluation results are
provided in Table 1. The experimental results of different
hemoglobin distribution generators are presented in Fig. 12,
and the evaluation results are provided in Table 2. Table 3
and Table 4 present the average test results for 678 images.
Overall, the proposed system has successfully generated
RBX-like images. From the dermatologist’s perspective, the
generated image has 90% similarity in comparison to the
RBX image. Objective comparisons with other network mod-
els also showed that the generated images perform better with
respect to the MSE, MAE, and PSNR.

4) MELANIN QUANTIFICATION
This work applies melasma region and severity index (MASI)
[41] for melanin quantification. We divide the grayscale val-
ues into six levels, i.e., (255, 230), (229, 170), (169, 110),
(109, 66), (65, 25) and (24, 1). The levels are represented
by different colors, as shown in Fig. 13. According to the
quantified face, the proposed system finds the dominant level
and treats it as the average skin color of the face. Therefore,
the possible melasma region and severity can be obtained
when the grayscale value is greater than the average skin
color. The result is shown in Fig. 14. The potential melasma
regions are further mapped onto the generated RBX-like and
the original image to provide more reference, as shown in
Fig. 15 and Fig. 16.
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FIGURE 16. Melasma region on original image (a)Left profile face
(b)Frontal face, and (c)Right profile face.

V. CONCLUSION
This work presented an accurate neural network that gener-
ates melanin and hemoglobin images for pigmented facial
skin analysis. A pigmented facial skin dataset is collected,
with 14,712 images in 3,678 groups. The experimental results
show that the generated melanin image has a 90% similarity
in comparison with the RBX image and can be adequately
used as a reference during diagnosis. Furthermore, the pro-
posed method performs better than other models with regard
to the MSE, MAE, PNSR. Overall, the proposed system
successfully demonstrates its usefulness in pigmented skin
analysis.
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