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ABSTRACT The application of time series forecasting utilizing historical data has become increasingly
essential across a variety of industries including finance, healthcare, meteorology, and industrial sectors.
The assessment of bond transaction rates in the interbank bond market serves as a crucial indicator for
assessing bank risk. In this paper, we proposed a composite model to forecast the transaction interest rates
of China’s interbank bonds over a long period. Specifically, our model integrates an intrinsic complete
ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) model along with various
long-term prediction models including long short-term memory network, temporal convolutional network,
transformer, and autoformer. Our findings reveal that: 1) predictive performance of different long-term
prediction models varies across different frequencies of single time series data; 2) predictive efficacy of
diverse model combinations differs across varying prediction time lengths; 3) best results can be realized by
using different prediction model combinations for high-frequency, medium-frequency and low-frequency
data under different time steps.

INDEX TERMS Long-term forecasting, ICEEMDAN, machine learning, interbank bond rate.

I. INTRODUCTION
Long-term time series forecasting plays a pivotal role in
decision-making within the financial sector. It aids investors
in formulating more rational expectations about future eco-
nomic trends and enables regulatory authorities to extract
potential risk factors from historical data for early warning
purposes.

Initial time series forecasting models predominantly relied
on linear predictive models such as autoregressive inte-
grated moving average (ARIMA), seasonal autoregressive
integrated moving-average (SARIMA), generalized autore-
gressive conditional heteroskedasticity (GARCH), exponen-
tial generalized autoregressive conditional heteroskedasticity
(EGARCH), and vector autoregression (VAR). However,
these linear models often suffer from poor noise reduction
capabilities and the inability to extract nonlinear signals,
limiting their effectiveness in extracting comprehensive infor-
mation from complex financial time series data, thereby
hindering long-term and high-accuracy predictions [1].
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Recent studies have commonly focused on nonlinear pre-
dictive models based on time series [2]. Uppala et al. [3]
compared ARIMA, SARIMA, and long short-term memory
(LSTM) networks in forecasting sales profits, finding that the
LSTM model shows superior performance. Yang et al. [4]
leveraged the LSTM model for global stock index predic-
tions, finding that it preforms better accuracy than support
vector regression (SVR), mobile location protocol (MLP),
andARIMAmodels in terms of precision and stability. Schol-
ars have enhanced traditional LSTMmodels using techniques
like whale algorithm, particle swarm optimization (PSO),
least absolute shrinkage and selection operator (LASSO), and
principal component analysis (PCA) for univariate forecast-
ing of short-term financial data, improving various aspects
of the traditional LSTM algorithm [1], [2], [5]. However,
there still exist issues such as the lack of muti-factors and
short forecasting steps. Bai et al. [6] proposed the tempo-
ral convolutional network (TCN), which effectively captures
local dependencies in sequential data, making gradient prop-
agation more stable compared to traditional convolutional
neural networks (CNN) algorithms. Reference [7] proposed
a short-term forecasting approach of multilayer perceptrons
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FIGURE 1. Scale of interbank bond trading.

FIGURE 2. Interbank AAA+ debenture transaction rates of China.

ensembles, combined dynamically with a long-term fore-
casting, achieving the continuous dynamical combination of
forecasts. Reference [8] investigated LSTM and gated recur-
rent unit networks, demonstrating success in long-term load
forecasting in hybrid distribution feeder systems.

With the development of the self-attention mechanism
in the field of sequential data processing [9], deep learn-
ing frameworks based on transformer have demonstrated
excellent performance in natural language processing [10],
[11], audio processing [12], computer vision [13], [14], and
other sequential data applications. Li et al. [15] introduced
local convolution into the traditional Transformer model and
proposed the LogSparse attention mechanism to select time
steps, thereby reducing the time complexity toO

(
L (logL)2

)
,

achieving the application of transformer-based models in
time series prediction. Some literature [16], [17], and [18]
applied the self-attention transfer mechanism to the tradi-
tional transformer model to reduce the computational time
complexity of the model, while sacrificing information uti-
lization. The autoformer model proposed in [19] replaced
the point-to-point connection attention mechanism with the
autocorrelation mechanism, achieving sequence-level con-
nection and a time complexity of O (L logL). Sun et al.
proposed the frequency decomposition transformer model
(FD-Transformer), which improved the long-term prediction
capability of the transformer model by introducing a fre-
quency decomposition multi-head attention mechanism [20].
Specially, Yang et al. employed various machine learning
methods and new generative pre-trained transformers for
physical systems. Reference [21] proposed a new hybrid
machine learning architecture named fast learning to under-
stand and investigate dynamics with a generative pre-trained

transformer, which shows excellent performance in predict-
ing particle trajectories and erosion on an industrial-scale
steam header geometry. Reference [22] harness CNN and
LSTM machine learning methodologies to predict com-
plex surface erosion profiles in steam distribution headers,
achieving elevated precision and markedly accelerated com-
putational efficiency compared to conventional models. Ref-
erence [23] present an efficient deep reinforcement learning
approach to automatically construct time-dependent optimal
control fields that enable desired transitions in dynamical
chemical systems. OpenAI trained the large language model
chatGPT based on the transformer framework. Reference [11]
trained GPT-3 and tested its performance in a small sample
setting, finding that GPT-3 achieved strong performance on
many natural language processing datasets as well as some
tasks that required immediate inference or domain adaptation.

As the research extends into the microstructure of financial
markets and the psychology of trading behavior deepens,
scholars increasingly recognize the inefficiency of single
models in effectively mining and fitting the multidimensional
rules of price and volume changes in complex financial
markets. Hybrid or ensemble models, integrating method-
ologies from econometrics, signal processing, and machine
learning, can identify different data patterns through their
sub-modules, thereby aggregating and uncovering the com-
plete change rules inherent in the data of high-precision
financial time series forecasting. Colominas et al. [24]
innovatively proposed the empirical mode decomposition
(EMD) method. This approach hierarchically decomposes
time series signals into intrinsic mode functions (IMFs)
of different characteristic scales, theoretically enabling the
decomposition of non-stationary and nonlinear time series
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FIGURE 3. ACF and PACF of Interbank AAA+ debenture rates.

signals [25]. Addressing issues of incomplete decompo-
sition and the emergence of false components in EMD,
Wu et al. improved the EMD method by introducing uni-
formly distributed auxiliary noise, leading to the development
of ensemble empirical mode decomposition (EEMD) which
effectively resolves the problem of mode mixing. However,
the Gaussian white noise added during the process is chal-
lenging to eliminate [26]. Torres et al. further enhanced
EEMD by incorporating adaptive white noise, proposing
the complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) method that effectively over-
comes the issues of incomplete decomposition and large
reconstruction errors in EEMD, though it may still result in
false components in the decomposed outcome. The intrinsic
complete ensemble EMD with adaptive noise (ICEEMDAN)
eliminates the problems of noise residue and false compo-
nents in the derived intrinsic [27], [28]. The decomposed
IMFs are relatively simple and independent, providing favor-
able conditions for fully extracting the volatility features of
IMF sub-sequences, thus significantly reducing the difficulty
of financial time series forecasting modeling [29]. EMD
was mainly applied to signal denoising and meteorologi-
cal science in the early days and has been introduced to
economic and financial fields in recent years. Yang et al.
improved the accuracy of exchange rate prediction by using
the IMF input extreme learning machine obtained by EMD
decomposition of exchange rate series [30]. Zhang et al.
proposed to construct a mixed prediction model of EEMD
and LSTM in the prediction of surface temperature, and the
empirical results show that the prediction effect of this model
is better than that of macshine learning prediction mod-
els such as Recurrent Neural Network (RNN), LSTM, and
EMD-RNN. Reference [31] developed a two-stage hybrid
model, including ICEEMDAN-recurrent deterministic pol-
icy gradient (RDPG) and variational mode decomposition-
RDPG, to forecast the solar irradiance. Reference [32]
proposed a hybrid influent forecasting model based on mul-
timodal and ensemble-based deep learning, showing a good

performance in predicting the long-term and short-term loads
of circuits.

However, these studies use the same machine learning
model to fit different frequency data, but the characteristics
of different IMFs are significantly different, indicating that it
may be better to use different models to fit them separately.

With the increasing marketization of bond trading in China
and the expansion of the transaction scale, the fluctuation in
interbank bond rates is increasingly influenced by external
factors. Accurate interest rate forecasts, which are deeply
considered by financial market participants, banks, firms, and
policymakers, are essential for making informed investment
decisions and formulating monetary policies. To ensure sta-
bility and growth in the financial market, scholars have made
a series of predictions around bond interest rates. Avery et al.
analyzed the sensitivity of the interest rate spread between
bank related debt and comparable Treasury bills to bank risk
measurement [33]. Lu et al. [34] found that when the zero
bound is reached, the uncertainty of inflation and output
gap forecasts increases, while the uncertainty of interest rate
forecasts decreases. Özbekler, et al. [35] demonstrated that
prior to the financial crisis, the information content of inter-
est rate forecasts would affect market expectations of future
short-term interest rates. Forecasting the long-term inter-bank
bond transaction rate plays an important role in preventing
financial risks and strengthening bank supervision. Most
of the current research in the field of price forecasting
takes the autoregressive approach to time series forecasting,
using the time series of the price past to predict the future. The
efficient market theory proposed by E. F. Foama pointed out
that only in a perfectly efficient market can the price include
all the information of itself. In reality, however, the price is
often affected by factors such as securities index, market price
index, exchange rate fluctuations, etc. Therefore, we take into
account other influence factors as prediction indicators.

Previous research have made many useful attempts to fore-
cast the bond market. Fan et al. [36] predicted the return
volatility of major European government bond markets using
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TABLE 1. Comparison of time series forecasting strategy.

the heterogeneous autoregressive (HAR) model. Cochrane
and Piazzesi et al. [37] proposed a smoothed or projected
principal component analysis (PCA) to forecast US bond risk
premia. Huang et al. [38] found that a single tent-shaped
linear combination of forward rates can be a good predictor of
excess returns on one to five year bonds. Despite the achieve-
ments listed above, there is still room for improvement in the
breadth and accuracy of their predictions.

In this paper, we use several factors such as SSE Index,
Shibor rate, U.S. dollar index, gold price and so on to forecast
interbank bond rates. A composite model is constructed based
on ICEEMDAN with a variety of long-term series prediction
models (LSTM, TCN, Transformer, Autoformer), which can
adapt to different time steps. Based on different frequency and
different forecasting steps of the time series, the long-term
forecast of the bond transaction rate of Chinese banks is
achieved. The main contributions of this paper are as follows.

1) A novel approach is introduced for employing different
prediction models suited to various frequency components
within different time steps in time series data. This strat-
egy strategically harnesses the strengths of each prediction
model, thereby enhancing overall forecasting accuracy. Sim-
ulation results substantiate the effectiveness of the proposed
methodology, demonstrating superior performance compared
to conventional time series prediction methods that rely
on a single prediction model. The comprehensive use of
diverse prediction models optimizes forecasting accuracy
across different frequency domains within the time series
data, presenting a notable advancement in predictive analytics
methodologies.

2) Delves into the multi-factor prediction of interbank
bond trading interest rates. Conventional single-factor time
series forecasting encounters challenges in capturing intricate
interdependencies among multiple factors, comprehensively

assessing the collective influence of various factors on predic-
tion outcomes, and forecasting long-term trends accurately.
By employing multi-factor and prediction methodologies,
these limitations can be mitigated, allowing for a more com-
prehensive consideration of diverse influencing factors. This
approach enhances prediction accuracy and resilience by
accommodating a broader spectrum of variables affecting
prediction outcomes.

3) Introduce the ICEEMDANmodel to decomposing inter-
est rate data from interbank bond transactions. Conventional
time series models encounter challenges such as exces-
sive noise, inadequate stationarity, and diminished prediction
accuracy in forecasting financial data. Through ICEEMDAN
decomposition, we partition the original data into distinct
intrinsic mode functions (IMFs), subsequently aggregating
them into high, medium, and low-frequency components by
evaluating the fuzzy entropy of each IMF. This approach
effectively addresses the nonlinear and non-stationary char-
acteristics of the data, thereby enhancing the performance of
predictive models on the original dataset.

4)A long-term prediction of interest rates in the interbank
bond market has been conducted. Compared to a large num-
ber of literature on short-term predictions of the financial
market, this paper is able to achieve long-term prediction,
which is relatively more practical. Moreover, the improve-
ment of the prediction performance of the proposed model
compared to other traditional models increases with the
increase of steps. In addition, the interbank bond interest rate
release reflects the internal risk of banks, and there is little
literature predicting the interbank bond market. This article
fills this gap by using ICEEMDAN and various machine
learning algorithms to predict it.

The rest of the paper is structured as follows. A compre-
hensive description of the data is provided in Section II and
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TABLE 2. ADF test for time series.

Section III describes the model. In Section IV, the framework
of combination models to forecast the long-term data is pro-
posed. Section V discusses the results. Finally, Section VI
draws the conclusion.

II. DATA PROCESSING AND FACTORS SELECTING
A. TARGET DATA
In recent years, the share and influence of the interbank
bond market in China has experienced significant growth.
As shown in Fig. 1, the average daily trading volume of inter-
bank bonds has notably increased from 8.852 billion yuan
in late 2004 to 1322.521 billion yuan in September 2023.
From the secondary market trading volume view, the average
daily trading volume of interbank spot bonds has risen from
34.774 billion yuan in August 2004 to 7,385.375 billion yuan
in 2023.

The interbank bond market has firmly established itself as
the dominant player in China’s bond market, and the transac-
tion rate within this market has a considerable impact on the
profitability and risk exposure of banks. This study focuses on
examining the transaction rate of one-year AAA+ corporate
bonds in China’s interbank bond market (referred to as OT).
As shown in Fig. 2, the time series data of 3111 trading days,
spanning from December 15, 2009, to September 23, 2023,
was obtained from iFinD. The dataset was divided into two
subsets for analysis: 2811 sets of data from December 15,
2009, to June 17, 2022, were selected as the training set, and
300 sets of data from June 18, 2022, to September 23, 2023,
were chosen as the test set.

This paper uses statsmodels in python3.11 to perform sta-
tionarity and autocorrelation tests on OT:

1. In this paper, we performed the augmented Dickey-
Fuller (ADF) test on the original time series data of OT [36].
The p-value obtained from this test was 0.2684. The ADF test
statistic after first-order differencing was –37.0732, which
is lower than the critical value of –2.8624 at a 5% sig-
nificance level, indicating that the null hypothesis of data
non-stationarity can be rejected. Therefore, OT is considered
to be stationary after first-order differencing.

2. Ljung-Box test is used to investigate autocorrelation
within the OT time series [37]. The test was conducted with
lag terms ranging from 1 to 10, and all resulting p-values were
0.00, as shown in Table 3. Therefore, the original hypothesis
of a purely random sequence can be rejected, verifying that
the time-series data OT is not a white-noise sequence but has
strong autocorrelation.

TABLE 3. Ljung-box test.

3. The autocorrelation function (ACF) and partial auto-
correlation function (PACF) of the OT original time series
were calculated, as depicted in Figure 3. The line height in
the figure represents the autocorrelation coefficients of each
order, while the blue area represents the 95% confidence
interval for these coefficients. If the autocorrelation coeffi-
cient exceeds this confidence interval, it indicates statistical
significance. The ACF plot reveals a significant tail, with
all autocorrelation coefficients lying outside the blue range.
Additionally, the PACF exhibits a truncated tail at the third
order. These findings suggest the presence of strong auto-
correlation and long-term dependence within the OT time
series, implying that past historical data can provide valuable
insights into future trends. The stationarity test results and
autocorrelation test results of time series OT are summarized
in Table 4:

TABLE 4. Statistical tests for OT.

From the test results, it can be found that the first-order
difference of the time series data of the transaction rate of
one-year AAA+ corporate bonds in China’s interbank bond
market is stationary, and there is an obvious long-term depen-
dence on the target data.

B. OTHER INFLUENCING FACTORS
The transaction rate of interbank corporate bonds is influ-
enced by various factors. However, previous studies in
the financial field mostly focused on forecasting the time
series trend itself, which led to issues of incomplete
information acquisition and inadequate credibility. In this
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FIGURE 4. Flow chart of prediction model building.

paper, the Shanghai stock exchange (SSE) index, Shibor
overnight rate, U.S. dollar index, gold price, commodity
research bureau (CRB) index, fuel oil futures prices, treasury
yield(10Year), interest rate swap(1Year), and other factors
affecting the turnover interest rate of interbank corporate
bonds are included in the input range, so that more infor-
mation can be captured while studying the bond’s closing
rate.

1) SSE INDEXES
The SSE Indexes are vital indicators of stock price volatility
in China as they reflect the price changes of stocks listed
on the Shanghai Stock Exchange. The relationship between
stock prices and the bond market is essential, as stock prices
indicate changes in market confidence, economic cycles, and
the market’s perception of enterprise sustainability [39]. This,
in turn, affects bond interest rate fluctuations in the interbank
bond market. On the one hand, due to the stock and bond
tilting effect, the rise of the SSE Index leads to the flow of
funds to the stock market, and the attractiveness of corporate
bonds decreases, increasing the transaction interest rate of
corporate bonds. On the other hand, the higher the SSE index
reflects the economic upswing, the stronger the overall prof-
itability of the enterprise, the smaller the corresponding risk
premium for corporate bonds, and the lower the transaction
rates. Some scholars have found that there is a significant
long-term correlation between the SSE Indexes and China’s
bonds, and there is a one-way Granger causality [40]. The
relationship and the degree of influence of the SSE Indexs on
China’s bonds depend on the results of the above two power
games.

2) SHIBOR OVERNIGHT RATE
The Shibor overnight rate directly affects the short-term
financing costs and capital operation strategy of the bank.
Changes in Shibor can reflect the tightness of capital supply
and demand, which subsequently influences the bond trad-
ing market and the trading rate due to a certain degree of

substitution relationship. Reference [41] found that the dif-
ference between the Shibor overnight rate and the interbank
bond repo rate can be used as an effective indicator tomeasure
the risk of the interbank money market.

3) US DOLLAR INDEX
The U.S. dollar index provides a comprehensive measure
of the exchange rate of dollar against a basket of currencies in
the international foreign exchange market. It affects Chinese
bond yields by influencing inflation through the Fisher effect.
According to [42], the U.S. dollar index can affect Chinese
bond yields by influencing inflation and thus through the
Fisher effect. In addition, some scholars found that exchange
rate fluctuations caused by changes in the US dollar index
would lead to changes in the investment desire of American
investors in China, which would have a significant impact on
the Chinese bond market [43].

4) GOLD PRICE
Gold prices serve as a haven asset during periods of market
instability or uncertain economic outlooks. When the market
is volatile, investors tend to purchase gold for value preserva-
tion. Reference [44] found that there is a significant negative
correlation between the price of gold and bonds. In other
words, gold was a hedge against bonds.

5) CRB INDEX
The CRB index is a measure of commodity price movements,
which can reflect the public’s inflation expectations to a
certain extent, and thus affect bond prices. Reference [45]
revealed a two-way spillover effect and interaction between
the commodity market and the financial market.

6) FUEL OIL FUTURES PRICE
Fuel oil futures prices reflect macroeconomic risks, such
as global supply chain conditions, geopolitical conflicts,
and fluctuations in global demand. Reference [46] found a
long-term equilibrium relationship between fuel oil futures
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prices andmacroeconomic growth, making it an indicator of a
country’s economic growth and development. Reference [47]
studied the interaction between corporate bond yield and
crude oil price, and found that there is a significant Granger
causality between them.

7) TREASURY YIELD (10YEAR)
Treasury yield (10 years) represents the risk-free rate and
serves as an important benchmark for evaluating bond yields.
Reference [48] studied the risk transmission mechanism
between treasury bonds and corporate bonds through the
corporate bond spread and treasury yield VAR regression
analysis and found that the market risk between treasury
bonds and corporate bonds will be transmitted to each other,
and there is a strong link between the two. In addition,
[49] found that the yield to maturity of treasury bonds also
contains complex macroeconomic information, reflecting the
overall economic environment of business operations.

8) INTEREST RATE SWAP(1YEAR)
Interest rate swap(1 year) is a derivative trading tool in the
Chinese interbank bond market. It reflects the credit risk
and liquidity of the financial market. Some scholars stud-
ied the correlation between China’s inter-bank bond market
and interest rate swap market and found that there were
significant two-way price guidance and long-term and short-
term volatility spillover effects between the two markets. The
negative correlation between these markets tends to gradually
increase [50].

TABLE 5. Data source.

To ensure the stationarity of the data, the augmented
dickey-fuller (ADF) test was conducted to assess the sta-
tionarity of the time series of other influencing factors, and
the results are shown in Table 2. The p-value in the table is
a parameter used to determine the result of the hypothesis
test. Generally speaking, the smaller the p-value, the stronger
the rejection of the null hypothesis. The original time-series
data for the Shibor overnight rate, the U.S. dollar index, and
the fuel oil futures price were found to be smooth, the SSE
index, the price of gold, the CBD Index, the treasury yield
(10Year), and the interest rate swap (1Year) are integrated of
order one I(1).

Johansen co-integration test is widely used in finance,
economics and other fields to reveal the long-term relation-
ship between different economic indicators, with the original

TABLE 6. Johansen test for time series.

hypothesis that there is no cointegration between the time
series data. By applying the Johansen cointegration test, it has
been determined that there are four cointegration relation-
ships among the nine time series at the 95% confidence level,
as shown in Table 6. i.e., there is at least one cointegration
relationship, indicating that there is a long-term equilibrium
relationship between variables, and no first-order difference
processing is required for the data.

III. METHODOLOGY
The utilization of machine learning and deep learning tech-
niques for the prediction of time series data has become com-
monplace. Currently, research in this area typically involves
the following steps: data acquisition, data decomposition,
integration of sample mode and other data preprocessing
steps, selection and establishment of prediction models,
model evaluation, and result output. This paper adopts the
conventional predictive modeling approach, and the specific
modeling process is illustrated in Figure 4.

A. ICEEMDAN DECOMPOSITION AND FUZZY ENTROPY
CEEMDAN is an improvement on EMD and EEMD by
adding multiple sets of independent and identically dis-
tributed white Gaussian noise to the time series. The averag-
ing of results obtained after each EMD helps to effectively
resolve the issue of mode aliasing. ICEEMDAN further
enhances the early-stage problems of false components and
mode aliasing in CEEMDAN, significantly reducing residual
noise in the intrinsic mode function (IMF), and improving
computational efficiency and algorithm performance [47].

Let x (t) be the original data, the main steps of ICEEM-
DAN are as follows:

1) Decompose the original data x (t) to construct a denoised
composite signal of the original data:

x(i) (t) = x (t) + β0E1

(
w(i)

)
(1)

where β0 is the signal-to-noise ratio (SNR) obtained during
the first decomposition, w(i) is the ith Gaussian white noise
added, E1 (·) is the first IMF component of EMD.

2) Repeat the previous step to obtain x(i) (t), and then
calculate the average of all local mean function values to
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obtain the first residual component:

r1 =
1
N

N∑
i=1

M
(
x(i) (t)

)
(2)

where M (·) is the local mean function, derived from the
original data minus the IMF value, r1 is the first residual
component.

3) Subtract the first residual component from the original
data to obtain the first mode d1:

d1 = x(t) − r1 (3)

4) Calculate the local mean function value after the kth
decomposition to obtain the kth residual component. Subtract
the residual result from the previous residual component to
obtain the kth modal dm:

dm = rk−1 − rk (4)

rk =
1
N

N∑
i=1

M
(
rk−1 + βk−1Ek

(
w(i)

))
(5)

where rk is the kth residual component.
5) Repeatedly execute step (4) until the residual after

decomposition does not exceed the two extreme points of
EMD and the residual components cannot be decomposed.

The measurement of temporal disorder in signals is com-
monly done using entropy value. There exist three methods
for calculating entropy, which are approximate entropy,
sample entropy, and fuzzy entropy. Fuzzy entropy offers
advantages of both approximate and sample entropy while
enhancing the continuity and independence of the original
signal in the extraction process, thereby increasing signal
robustness. In this paper, fuzzy entropy is used to extract
the features of the original data. First, the N-point sampling
sequence is defined as [u (1) ,u (2) , . . ., u (N)], and the
similar capacitance limit r and phase space dimension are
defined as m, thus the phase space is reconstructed as:

X (i) = [u (i) ,u (i+ 1) , . . . ,u (i+m− 1) − u0 (i)] (6)

where i = 1, 2, 3, . . .,N − m + 1, u0 (i) is the mean of m
consecutive u (i), namely u0 =

1
m
∑m−1

j=0 u (i+ j). Then, the
distance dmij between any two sequences X (i) and X(j) is
calculated by the formula:

dmij = max (|u (i+ p− 1) − u0 (i)|

− |u (j + p− 1) − u0 (j)|) (7)

where p = 1, 2, . . . ,m. Fuzzy membership function is intro-
duced to calculate the distance between two sequences:

Amij =


0, x = 0

exp

−ln (2)

(
dmij
r

)2
 , x > 0

(8)

where ax is a fuzzy membership function, which can trans-
form the uncertainty of a variable into a value that can be

FIGURE 5. LSTM framework chart.

calculated. For each i, the average value Cm
i (r) can be cal-

culated to get:

Cm
i (r) =

1
N −m

N−m+1∑
j=1,j ̸=i

Amij (9)

Thus define:

8m (r) =
1

N −m+ 1

N−m+1∑
i=1

Cm
i (r) (10)

At this point, the fuzzy entropy is obtained:

F (m, n, r,N) = lim
N→∞

[
ln8m (r) − ln8m+1 (r)

]
(11)

B. LSTM
LSTM is a specialized type of RNN capable of preserving
long-term memory, achieved through a complex structure
known as the LSTM Unit. This unit, the core of LSTM, com-
prises memory units designed for information storage and
leverages a control gate mechanism for information updates,
primarily through three distinct gates: the input gate, the
forget gate, and the output gate [48]. The LSTM unit structure
is shown in Figure 5.

Let xt be the input at time t, ht−1 and ht represents the
output of the previous time and the output of time t, ct is the
memory unit value at time t. The main steps in the LSTM unit
calculation process are as follows:

1) Calculate the candidate memory unit value c̃t at time t:

c̃t = tanh (wc · [ht−1, xt] + bc) (12)

where wc is the weight matrix, bc is the corresponding offset.
2) Calculate the value of the input gate it , which is used

to control the current input data to update the memory unit
status value:

it = σ
(
wi ·

[
ht−1, xt

]
+ bi

)
(13)

where σ (·) is the Sigmoid function.
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3) Calculate the value of the forget gate f t , which is used
to control the update of historical data to memory unit status
values:

f t = σ
(
wf ·

[
ht−1, xt

]
+ bf

)
(14)

4) Calculate the value of the memory unit at the current
moment ct :

ct = f t ·ct−1 + it ·c̃t (15)

where · represents the dot product. As can be seen from
the above equation, the update of the memory unit depends
on the values of the previous memory unit and candi-
date units, and is controlled by the input gate and forget
gate.

5) Calculate the value of the output gate, which controls
the output of the memory unit state value:

ot = σ
(
wo ·

[
ht−1, xt

]
+ bo

)
(16)

6) Calculate the output of the LSTM unit ht :

ht = ot ·tanh (ct) (17)

In the actual calculation process, some gradient descent opti-
mization algorithms, such as the Adam algorithm, are often
used to calculate the weight matrix. Furthermore, to mitigate
overfitting, the incorporation of a Dropout mechanism is
essential to enhance the network’s robustness. In other words,
traditional LSTM models perform poorly in predicting high-
frequency sequences, thereby necessitating the exploration of
alternative prediction techniques. Furthermore, the inherent
gating mechanism in LSTM models tends to deteriorate over
time, resulting in superior short-term memory but limited
long-term memory capabilities. Consequently, the efficacy
of processing long-term dependent information remains a
challenge for LSTM models. Hence, alternative approaches
are warranted for addressing this limitation.

C. TCN
TCN are variants of CNN that can be used to process
time series. The basic idea is to obtain sufficient receptive
fields(RFs) through a multi-layer network structure, mak-
ing the CNN very deep [6]. Considering the benefits of
large-scale parallel processing, TCN not only economizes
time but also extracts more intricate data features.

1) CAUSAL CONVOLUTION
TCN needs to ensure that the output length of the network is
the same as the input length and that future data will not leak,
so 1D Full Convolutional Network and causal convolution
are adopted. The following part is the definition of causal
convolution, X = (x1, x2, . . ., xt) is a time series, F =(
f 1, f 2, . . ., f t

)
is a wave filter, and the causal convolution

at xt is:

(FX) (xt) =

K∑
k=1

f kxt−K+k (18)

FIGURE 6. The transformer - model architecture.

2) EXPANSION CONVOLUTION
Since simple causal convolution cannot obtain longer time
series, TCN adopts dilation convolution. The definition of
expansion convolution with expansion factor d at xt are as
follows:

(FdX) (xt) =

K∑
k=1

f kxt−(K−k)d (19)

3) RESIDUAL MODULE
To solve the problem of gradient vanishing or exploding
caused by the introduction of causal convolution and dilation
convolution, TCN introduces a residual module and weights
the input x of the model into the output F (x) of the model,
ultimately obtaining the output y:

y = Activation (x+ F (x)) (20)

where Activation is the activation function.
In TCN, each layer uses the same filter, so convolution

can be completed in parallel. Long input sequences can be
processed as a whole in TCN, unlike sequential processing in
RNN. Moreover, TCN can change the size of receptive fields
in various ways, such as stacking more dilated convolutional
layers, using a larger expansion factor, etc., to better control
the memory size of the model and easily adapt to different
domains. Additionally, TCN can accept input of any length
through a one-dimensional convolution kernel, and the con-
volution window size increases over time, meaning that TCN
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FIGURE 7. The Autoformer - model architecture.

can capture features of the long term. When shifting from
smaller k and d domains to much larger k and d domains,
TCN may fail to determine the overall trend of data changes
over a long term due to insufficient receptive fields, indicating
weak migration ability.

D. TRANSFORMER
The transformer model was introduced in 2017 as a
solution to the sequence-to-sequence problem, utilizing a
self-attention mechanism to replace the LSTM model [9].
This approach eschews the traditional decoder-encoder that
must combine the inherent patterns of CNN or RNN and
leverages parallel computing to enhance efficiency, improved
results and reduced computational complexity. Its struc-
ture consists of encoder and decoder parts, as shown in
Figure 6.
Among them, the encoder has two sub-layers, one is the

multi-head attention layer, which uses self-attention to learn
the internal relationships of time series, and the other is
the feed forward layer, which is a simple fully connected
network that performs the same operations on the vectors
of each position, including two linear transformations and a
ReLU activation function. The output is then passed to the
decoder, and the entire process adopts parallel computing
to improve efficiency. The decoder consists of three sub-
layers, two of which are multi-head Attention layers. The
attention layer utilizes self-attention to learn the internal
relationships of the target, and the output obtained is input
together with the results transmitted by the encoder into
the attention layer above, which uses multi-head attention.
Finally, after a negative feedback layer similar to the encod-
ing part, the decoder output is obtained. However, due to
the use of the self-attention function in both the encoder
and decoder, the transformer has high time complexity and
memory utilization increases twice within length L, result-
ing in memory bottlenecks when applied to time series
prediction.

E. AUTOFORMER
Wu et al. [17] have introduced a novel transformer vari-
ant, termed the autoformer, which incorporates stochastic
processes to enhance its predictive capabilities. Depart-
ing from conventional sequence decomposition approaches,
the autoformer integrates an embedded deep decomposition
architecture and auto-correlation mechanism to facilitate pro-
gressive sequence decomposition and connection, thereby
overcoming limitations in information utilization for time
series data. The autoformer architecture structure is shown
in Figure 7.

1) DEEP DECOMPOSITION ARCHITECTURE
The deep decomposition architecture embeds sequence
decomposition as an embedded module of autotransformer
into the encoder and decoder. During the prediction process,
the model achieves progressive decomposition, continuously
separating periodic and trend terms from hidden variables.
The Series decomposition block is based on the idea of
moving average, smoothing the periodic term ofX∈Rs×1 and
stripping out the trend term. This process is defined as:

Xt = AvgPool (Padding (X))

Xs = X − Xt (21)

whereXs, Xt ∈ Rs×1 are trend terms and periodic terms. Slid-
ing average is achieved throughAvgPool(·), while Padding (·)

maintains the sequence length. The above equation can also
be written as Xt , Xs = SeriesDecomp (X).
The input of the Autotransformer encoder is the past I = T

time steps Xen∈RI×1, decoder input includes periodic com-
ponents Xdes and trend component mathcal Xdet , both belong
to R(I/2+O)×1.

In the encoder, the trend term is gradually eliminated to
obtain the periodic term:

Sl,1en ,− =SeriesDecomp
(
Auto − Correlation

(
Xl−1
en

)
+Xl−1

en

)
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Sl,2en ,− = SeriesDecomp
(
FeedForward

(
Sl−1
en

)
+ Sl−1

en

)
(22)

In the decoder, the autocorrelation mechanism aggregates
subsequences with similar processes in different periods to
obtain periodic terms, and gradually extracts and reconstructs
trend terms from the predicted latent variables using a cumu-
lative approach:

S
l,1
de , T

l,1
de = SeriesDecomp (Auto − Correlation

×

(
χ l−1
de

)
+ χ l−1

en

)
S
l,2
de , T

l,2
de = SeriesDecomp (Auto − Correlation

×

(
S
l,1
de , χN

en

)
+ Sl,1en

)
S
l,3
de , T

l,3
de = SeriesDecomp

(
FeedForward

(
S
l,2
de

)
+ Sl,2en

)
Tlde = Tl−1

de + Wl,1∗T
l,1
de + Wl,2∗T

l,2
de + Wl,3∗T

l,3
de
(23)

Progressive decomposition enables autotransformer to alter-
nately perform sequence decomposition and prediction result
optimization.

2) AUTOCORRELATION MECHANISM
autoformer achieves efficient sequence level connectivity
through auto-correlation mechanisms, including periodic
dependency discovery and delay information aggregation.
The discovery of periodic dependence can be explained as:
the similarity between a real discrete time process Xt and its
τ -order delay Xt−τ can be characterized by the autocorrela-
tion coefficient RXX (τ ):

RXX (τ ) = lim
L→∞

1
L

∑L−1

t=0
XtXt−τ (24)

The similarity of this delay can be seen as the confidence level
for period estimation. Secondly, sequence level connectivity
is achieved through the step of time delay information aggre-
gation, using Roll (·) to align information based on period
estimation:

τ1, . . . , τk = argTopk
τ∈{1,...,L}

(
RQ,K (τ )

)
R̂Q,K (τ1) , · · · ,R̂Q,K (τk) = SoftMax

(
RQ,K (τ1) ,

· · · ,RQ,K (τk)
)

Auto − Correlation (Q,K ,V ) =

k∑
i=1

Roll (V , τi)R̂Q,K (τi)

(25)

select k = ⌊c× logL⌋Top cycles with strong correlation,
and use fast fourier transform (FFT) to ensure efficient cal-
culation of auto-correlation coefficients:

SXX (f ) = F (Xt) F∗ (Xt) =

∫
∞

−∞

Xte−i2π tf dt∫
∞

−∞

Xte−i2π tf dt

RXX (τ ) = F−1 (SXX (f )) =

∫
∞

−∞

SXX (f ) ei2π f τdf (26)

where F and F−1 represent FFT and its inverse transfor-
mation, respectively. The self phase shutdown system has a
lightweight time complexity ofO (LlogL) . Thanks to the use
of autocorrelation mechanism, autoformer can improve both
computational efficiency and information utilization com-
pared with self-attention family.

F. MODEL EVALUATION
In terms of model evaluation, we use common indicators,
including the mean squared error (MSE), the mean absolute
error (MAE), the mean absolute percentage error (MAPE),
and the mean squared percentage error (MSPE). The mathe-
matical formulas are equations (27) — (30):

MSE
(
y, ŷ
)

=
1
n

n∑
i=1

(
yi − ŷi

)2 (27)

MAE
(
y, ŷ
)

=
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (28)

MAPE =
100%
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (29)

MSPE =
100%
n

n∑
i=1

(
yi − ŷi
yi

)2

(30)

where ŷi is the predicted value, yi is the original true value, n
is the total number of predicted values, and y is the average of
the original values. ForMSE andMAE, their values represent
the error between the original and predicted values. If MSE
and MAE are closer to 0, it indicates that the model has a
smaller error. MAPE and MSPE is similar to MSE and MAE.
A MAPE or MSPE of 0% indicates that this is a perfect
model.

Given that the aforementioned metrics only evaluate mod-
els based on their fitting performance, we introduce infor-
mation criteria as indicators for model selection. Akaike’s
information criterion (AIC) was initially proposed by Akaike
in 1973 [52]. This criterion operates on the principle that
the quality of a fitted model should be determined not
only by its fitting performance but also by the model’s
complexity, including the number of unknown parameters.
Schwarz et al. [53] and Hannan and Quinn [54] respec-
tively introduced the Schwarz Bayesian information criterion
(SBIC) and the Hannan-Quinn information criterion (HQIC),
which enhance the penalization of model complexity in
different ways compared to AIC. However, in this study,
the sample size is significantly smaller than the number of
parameters in several machine learning models. Furthermore,
considering that the model selection set in this study com-
prises TCN, LSTM, Transformer, and Autoformer, there are
significant differences in the parameters between different
models. TCN utilizes the CNN framework, LSTM operates
on the RNN framework, while Transformer and Autoformer
leverage attention mechanisms and their model complexities
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TABLE 7. The total parameters of each model.

often exceed those of TCN and LSTM. Employing the men-
tioned information criteria evaluationmetrics could introduce
a bias towards favoring simpler models. Akaike information
criterion with a correction for finite sample sizes (AICc)
[55] is a corrected version of AIC, specifically designed for
situations with small sample sizes, aiming to alleviate the
issue of AIC excessively penalizing model complexity under
conditions of limited sample sizes. In situations with small
sample sizes, AICc is more suitable for model selection as
it mitigates the problem of overly favoring simpler models.
Therefore, utilizingAICc as an evaluationmetric aligns better
with the models presented in this study. The formula for AICc
is as follows:

AICc = 2k − 2ln (L) +
2k (k + 1)
n− k − 1

(31)

where k represents the number of parameters in the model,
L represents the likelihood function value of the model, and n
represents the number of samples. It can be proven that as the
sample size approaches infinity, AICc is equivalent to AIC.

G. PARAMETER SETTING OF EACH PREDICTION MODEL
1) LSTM
According to previous literature, data characteristics and con-
tinuous attempts, the LSTM structure parameters constructed
in this paper are as follows: The number of nodes in the input
layer is the number of lag periods, which is set as 36 here.
Usually, the LSTM layer is set to be less than four layers and
the number of cells is set to be less than 200, because too
many layers or cells will lead to too long calculation time
with only slightly improved prediction accuracy. Therefore,
three LSTM layers are selected in this paper, with 128, 64 and
32 cells, respectively. At the same time, the structure also
includes three Droupout layers with coefficients of 0.2 and
a dense layer output, all of which are tanh functions. The
optimizer uses an Adam optimizer with a mean square error
(MSE) loss. In addition, the batch size for the fast calculation
is 16, epochs is 5000, and the patience to adaptively reduce
the learning rate is 100 runs.

2) TCN
Regarding existing literature and continuous attempts, the
number of convolutional layers in TCN was set to 64, the
kernel size of convolutional layers in TCN was set to 2, and
the expansion rates of convolutional layers were set to 1, 2,
4, 8, respectively, the larger the expansion rate, the larger
the receptive field. Meanwhile, the number of samples in
each batch was set to 100 during training, with a total of
5000 iterations.

3) TRANSFORMER AND AUTOFORMER
We have the same parameter Settings for autoformer and
transformer. The number of layers of the coding layer is set
to 2, the number of layers of the decoding layer is set to 1,
each layer contains 3 factors, the input dimension of both
the coding layer and the decoding layer is 9, and the output
dimension of the decoder is 1. The decoder we used is an
Exponential decoder.

The total parameters of each model are shown as table:
It can be observed that the parameter size of the four

selected models is significantly larger than the sample size to
be tested, and the Transformer and Autoformer models boast
a notably larger parameter count compared to the LSTM and
TCN models. Thus, the incorporation of AICc of the infor-
mation criterion as an evaluation metric serves to mitigate
potential biases in model selection, ensuring a more balanced
appraisal.

IV. FRAMEWORK OF COMBINATION MODEL
We first test the stationarity and autocorrelation test for the
raw data of the forecasting target and other influencing fac-
tors. Then, the ICEEMDAN algorithm is used to divide the
processed forecasting target data and influencing factors data
into different IMFs. By calculating the fuzzy entropy of each
IMF, the chaos degree in each IMF is measured, and based
on this, all IMFs of the forecasting target and different factors
are classified as data sequences of high, medium, and low fre-
quencies. After that, multiple long-term sequence prediction
models are used to predict the data of high frequency, medium
frequency, and low frequency under different prediction time
steps. The model with the best prediction performance at
each step is selected as the sub-model. Combined with the
long-term forecasting sub-models with the best prediction
performance for the different frequency data of forecasting
targets, a long-term forecasting combination model based on
ICEEMDAN and machine learning is established.

A. MODE DECOMPOSITION
Use the ICEEMDAN algorithm mentioned above to perform
mode decomposition on the forecasting target and other influ-
encing factors. Obtain the intrinsic mode function i of the
forecasting target and factor j, naming them as IMF0j and
IMFij. As shown in Figure 8, the smaller the number of i, the
greater the degree of confusion in modifying the modality.
In order to improve the calculation speed of the model and
reduce the time complexity of the model, the fuzzy entropy
value of each modality is calculated based on formula (7)
to formula (11) in the previous text. According to the fuzzy
entropy of IMF0j, the i-th IMF of data j, multiple modes
are divided into three frequencies: high-frequency, medium-
frequency, and low-frequency. Among them, high-frequency
time series data has themost severe fluctuations and the great-
est chaos degree, mainly reflecting the short-termfluctuations
and the impact of unexpected events in the original time
series data; The fluctuation of intermediate frequency data
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FIGURE 8. Framework of combination model.

is relatively slow compared to high-frequency data, mainly
reflecting the periodic fluctuation of the original data in the
time series; The low-frequency data fluctuates very slowly,
reflecting the long-term trend term in the original data of the
time series.

B. MACHINE LEARNING MODELS TRAIN AND TEST
Different Frequency data of forecasting target High −

Frequency0, Mid − Frequency0,Low− Frequency0 and fac-
torsHigh−Frequencyj,Mid−Frequencyj, Low−Frequencyj
are taken as the input of machine learning models. Test the
predictive performance of eachmodel at different frequencies
and then select the model with the best prediction perfor-
mance for different frequency data under k steps respectively.

C. INTEGRATE THE BEST MODEL AND OBTAIN THE
COMBINED MODEL
Select the models with the best performance under dif-
ferent steps and combine the forecasting results of the
three models with the best prediction performance for
high-frequency, mid-frequency, and low-frequency data as
sub-models. Finally, combine the optimal sub-models and
obtain the best-integrated model under k steps.
In the next section, we take the interest rate of China’s

interbank bond as the prediction target and use the impact
indicators selected in Section II as factor j to predict it using
the combination model. The forecasting step k is 4, 8, 12, 18,
24, and 36, respectively. The LSTM, TCN, transformer, and
autoformer are selected as the long-term forecasting models
in the next section.

V. RESULTS AND COMPARATIVE ANALYSIS
When training themodel, if the fluctuation of the original data
is too large, themodelmay be unstable.We normalize the data
and unify the range of data into a specific range to improve
the stability and generalization ability of the model.

Then, the model introduced and designed in Chapters
3 and 4 was used to predict the target data through Python,
and equations (26)-(29) were calculated to evaluate the
results. The results of different prediction models under high-
frequency data, mid-frequency data, and low-frequency data
were compared respectively.

A. THE RESULT OF ICEEMDAN
The left part of Figure 9 shows the raw time series data
and 9 IMF series of our forecasting target, where IMF9 is the
residual. The horizontal coordinate represents the time series
and the vertical coordinate represents the interest rate values.
It can be found that from IMF1 to IMF9, the fluctuations
of the time series become smaller and smaller. IMFs with
large fluctuations tend to contain short-term information and
noise, IMFs with slower fluctuations tend to contain cyclical
information of the time series, and IMFs with flat fluctuations
contain trend information. In this paper, we use fuzzy entropy
to measure the complexity of the above IMF series. The fuzzy
entropy value of each IMF calculated when the parameter n
and r take different values is plotted as shown in the middle of
Figure 9.Where the horizontal coordinates represent different
IMF sequences and the vertical coordinates represent the
values of fuzzy entropy.

It can be found that the fuzzy entropy values of IMF1 and
IMF2 are much larger than that of other IMFs regardless
of the parameter value variations, so IMF1 and IMF2 can
be combined as a high-frequency sequence (H-IMF).Taking
IMFs with fuzzy entropy significantly smaller than the other
sequences (IMF6,IMF7,IMF8 and IMF9) as low-frequency
sequence (L-IMF), and combine IMF3, IMF4, and IMF5 as
medium-frequency sequence (M-IMF), the final decomposi-
tion results are shown in the right of Figure 9.
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FIGURE 9. ICEEMDAN, Fuzzy Entropy, and integration results.

FIGURE 10. AICc and MAE of each prediction model at high frequency.

B. HIGH-FREQUENCY DATA
The calculation results of each evaluation index of differ-
ent models for high-frequency data are shown in Table 8.
Figure 10 shows the AICc and MAE of each model at high
frequency, and it can be found that the two results are the same
on the optimal model. It can be seen from the above table that
under high-frequency data, TCN has the best performance
among the four evaluation indicators under all step prediction.
We believe that this is because TCN has good long-range
dependency modeling ability. In high-frequency data, short
term fluctuations between time series data are severe, and
the distance between these time steps is really short, which
make the short-distance dependency easier to be captured.
and the characteristics of the data can be reflected more
fully, thus amplifying the advantage of TCN. In order to
more intuitively present the prediction effect, we perform
the prediction results in the 8 steps situation as shown in
Figure 11.

The MAE and AICc values corresponding to different
models under different steps are shown in the following
figure. The red markers mark the values of the evaluation

indicators corresponding to the most effective model among
all models at the corresponding number of steps. Due to the
advantages of TCN in high-frequency data mentioned above,
it can be observed that for high-frequency data, the TCN
model exhibits the best fitting performance at all steps in case
of both MAE and AICc.

C. MID-FREQUENCY DATA
The calculation results of each evaluation index of differ-
ent models fors mid-frequency data are shown in Table 9.
Figure 12 shows the AICc and MAE of each model at mid-
frequency, and it can be found that the two results are the same
on the optimal model.For the medium frequency data, LSTM
performs optimally in the four evaluation indexes when the
number of steps is low (4 steps). However, because LSTM
controls the information flow of short-termmemory and long-
term memory through the gating mechanism of forgetting
gate and input gate to realize the modeling of time series,
it has short-term memory and forgetting property. As the
step length increases, the information of past time step is
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TABLE 8. Calculation results of each index under high-frequency data.

FIGURE 11. 8 steps prediction results for high-frequency data.

forgotten, and the prediction effect becomes worse, which is
reflected in that the prediction result of LSTMwith more than
4 steps is worse than that of TCN. The prediction results of
8 steps are shown in Figure 13.

D. LOW-FREQUENCY DATA
The calculation results of each evaluation index of differ-
ent models for low-frequency data are shown in Table 10.
Figure 14 shows the AICc and MAE of each model at low
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TABLE 9. Calculation results of each index under mid-frequency data.

FIGURE 12. AICc and MAE of each prediction model at high frequency.

frequency, and it can be found that the two results are the
same on the optimal model.

The LSTM prediction model performs best under low
number of steps (4 steps and 8 steps) just as it does

under medium frequency data, while the prediction results
of autoformer stand out when the number of steps is
increased. The prediction results of 8 steps are shown in
Figure 15.
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FIGURE 13. 8 steps prediction results for mid-frequency data.

FIGURE 14. AICc and MAE of each prediction model at high frequency.

FIGURE 15. 8 steps prediction results for low-frequency data.

E. FINAL RESULT
We added and integrated the predicted values of the opti-
mal prediction model under each component to obtain
the optimal model, which is also the final model of this
paper.

The process of obtaining the 8-step final prediction model
is shown in Figure 16.

For other steps, the obtaining steps are the same as for
8 steps. The final calculation results of each evaluation index
are shown in Table 11. In all tested steps, compared with each
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TABLE 10. Calculation results of each index under low-frequency data.

FIGURE 16. 8 steps prediction process diagram.

other long-term forecasting models, the composite model
we proposed always shows better performance in terms of

AICc and MAE, which indicates that our model has better
prediction accuracy at different time steps.
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TABLE 11. The results of each evaluation index under the final model.

FIGURE 17. Comparison of AICc and MAE calculation results between our method and other single models under asynchronous number.

Figure 18 shows the optimal prediction model under each
step number by our method is highly coincident with the
original data, which can better reflect the trend of the original
data, and is significantly better than the result obtained by
using a single model.

As can be seen from Table 11, for the four evaluation
indicators, the method we proposed is superior to other single
models at different steps. Compared with only using LSTM,
the accuracy of the model in terms of MAE from 4 steps to
36 steps was improved by 38.21%, 58.61%, 56.41%, 70.43%,
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FIGURE 18. Final forecast result graph.

71.51%, and 80.49%, respectively. Comparedwith only using
TCN, the accuracy of the model is improved by 68.30%,
71.43%, 61.66%, 44.15%, 69.71%, and 55.91%, respectively.
Compared to only using transformer, model accuracy is
improved by 80.15%, 29.82%, 63.51%, 82.66%, 80.58%, and
83.02%, respectively; Compared with only using autoformer,
the model accuracy is improved by 61.16%, 46.46%, 32.20%,
36.46%, 46.12% and 56.78%, respectively. Then focus on
the improvement of AICc, Compared with only using LSTM,
the accuracy of the model in terms of AICc from 4 steps to
36 steps was improved by 22.28%, 32.65%, 37.05%, 44.76%,
49.31% and 68.17%, respectively. Compared with only using
TCN, the accuracy of the model is improved by 58.26%,
48.57%, 52.04%, 15.76%, 44.69% and 29.68%, respectively.
Compared to only using transformer, model accuracy is
improved by 68.20%, 13.81%, 42.34%, 42.66%, 67.53% and
80.03%, respectively; Compared with only using autoformer,
the model accuracy is improved by 37.99%, 20.82%, 6.75%,
17.13%, 20.90% and 28.47%, respectively. At the same time,
from the prediction result chart, the curve predicted by our
method is highly coincident with the original data, which can
better reflect the trend of the original data, and is significantly
better than the result obtained by using a single model.

VI. CONCLUSION
The interbank bond rate serves as a crucial indicator in
the financial secondary market and offers insight into the
liquidity and risk conditions of the banking industry. This
study introduces a novel hybrid model based on ICEEM-
DAN, fuzzy entropy, and various long-term forecast models
to predict the interbank bond rate. Compared to the traditional
forecasting models such as LSTM, TCN, transformer, and
autoformer, the proposed model demonstrates superior accu-
racy and long-term prediction capabilities. The results show
that: 1) in the tested case, the forecasting accuracy of the
proposed model in 4steps, 8steps, 12steps, 18steps, 24steps,
36steps is respectively improved by 38.21%, 29.82%,
32.20%, 36.46%, 46.12%, and 56.78% compared with the
best performance among the contrastive models; 2) as the
prediction step size increases, the advantages of the proposed
model in improving prediction accuracy become more appar-
ent compared with the contrastive models, indicating that the
proposed model has better long-term prediction ability.

This paper contributes to the literature on interbank bond
rate prediction in three ways. Firstly, the application of
ICEEMDAN and fuzzy entropy facilitates the decomposi-
tion of raw data into high-frequency, mid-frequency, and
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low-frequency components, thereby enhancing the model’s
capacity to capture the volatility characteristics of interbank
bond market transaction rates. Secondly, the incorporation of
multiple influencing factors into the model’s input compre-
hensively captures financial market information in the time
series. Thirdly, the utilization of different models for different
frequencies significantly improves the accuracy of long-term
interbank bond rate forecasts compared to a single model
approach. Different model combinations have been proposed
at different prediction time steps. Overall, we also present
variousmodel combinations at different prediction time steps,
further advancing the understanding of long-term interbank
bond rate prediction.
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