
Received 5 March 2024, accepted 18 March 2024, date of publication 22 March 2024, date of current version 28 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380912

Performance Improvement of Processor Through
Configurable Approximate Arithmetic Units in
Multicore Systems
SEYED ALI KASHANI GHARAVI AND SAEED SAFARI
School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515, Iran

Corresponding author: Seyed Ali Kashani Gharavi (a.kashani@ut.ac.ir)

ABSTRACT Multicore systems are utilized in a wide range of applications, from embedded systems
to high-performance applications. Controlling power consumption while maximizing performance under
the Thermal Design Power (TDP) becomes increasingly important when power density emerges as the
key restriction for multicore systems. Dynamic voltage-frequency scaling (DVFS) approaches have been
effective in dynamically power control and are commercially accessible. We propose a novel approach to
improve the performance of multicore systems by utilizing configurable approximate Arithmetic units. The
proposed system includes a machine learning-based framework for online power regulation and quality
monitoring of application output. This framework dynamically adjusts the frequency and precision of the
Arithmetic units to maximize performance while considering TDP constraints and the desired output quality.
The experimental results demonstrate the effectiveness of the proposed approach. Using a floating point
approximate Arithmetic Logic Unit (ALU) with three distinct configurations in each core, the multicore
system can execute approximable applications up to 19% faster than a precise multicore system, while
operating within the same TDP limit.

INDEX TERMS Approximate computing, reconfigurable approximate design, computer architecture,
machine learning.

I. INTRODUCTION
Approximate computing is a new paradigm that trades the
output quality/accuracy of error-resilient applications for
performance, area, power consumption, and energy effi-
ciency [1]. Examples of these applications include multime-
dia, image processing, video processing, machine learning,
digital signal processing, computer vision, and big data anal-
ysis. The error resilience of these applications is because
they may not require an answer specific to the golden output
or maybe functionally perfect even if there are acceptable
errors in the output. Other sources of error restoring force can
be the noise of input data, iterative characteristics of other
algorithms or error-containing outputs, and other levels of
recognition by other users [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

Approximate computing performs a trade-off between
accuracy and performance [3]. However, to take full advan-
tage of the approximation possibilities, the hardware approx-
imation system and software-controlled manner must work
together [4]. Also, decisions such as the duration and degree
of approximation can vary depending on external factors and
the data stream of the application’s input, which should be
considered at runtime. This requires a approximation sys-
tem that can be quickly switched on-demand in a controlled
manner. We propose a quality assurance component in our
framework that can also be invoked by the application itself
or by supervisory software. This component ensures that the
quality of the results is acceptable. Because the application’s
calculation quality needs may change dynamically during
runtime, it is best to adjust the approximation mode (com-
pensation for different degrees of quality effort) to fulfill the
quality requirements while avoiding superfluous calculation

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 43907

https://orcid.org/0000-0001-5233-4078
https://orcid.org/0000-0001-6940-591X
https://orcid.org/0000-0001-8336-9150

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

labor. The output quality, on the other hand, is largely depen-
dent on the input. Even though it is not impossible, selecting
an appropriate approximate mode that always meets the
intended quality standards is difficult [5].
Multicore systems can take advantage of approximate

computing to improve performance by relaxing the pre-
cision of results. Multicore processors are projected to
transform Moore’s Law into continuing performance growth
by incorporating more and more cores [6]. However, in a
general application, there are program segments that can be
approximated and others which should not be approximated.
Therefore, we propose cores that can execute approximately
when it is needed. Our proposed core targets floating point
operations for approximation because data flows are typically
implemented using integer values, while data in a program
that is sensitive to approximation is stored in floating point
format. Therefore, our core can only perform approximation
operations on floating point data.

In multicore systems, the ever-growing power consump-
tion increases the burden of heat dissipation. In order to
ensure the safety and reliability of multi- core systems, a TDP
constraint is imposed which the system power consumption
should not exceed. TDP constraint can be applied based
on the preceding observations to ensure the efficiency of
a multicore system. As a result, one of the key directions
for power/performance optimization is to improve perfor-
mance under TDP limits [7]. DVFS is being developed to
save power at runtime, in addition to static techniques of
raising the number of cores. On-chip calculations can exe-
cute more energy-efficiently thanks to the smart tweaking
of core voltage and frequency (V/F) levels. Finding the
optimal V/F level allocation, on the other hand, can be
stated as an NP-hard integer linear programming issue [8].
Several methods have been developed to discover a near-
optimal solution in polynomial time; however, they are only
effective on small multicore systems, not on systems with
many cores, and they do not address the problem of bud-
get overshooting [9]. By utilizing approximate processors,
we present a framework to improve the efficiency of multi-
core systems, which can significantly increase the efficiency
of this approximate system under TDP and minimum quality
constraints.

The primary contributions of our work can be summarized
as follows:

• Enhanced Configurable Approximate Processor: In the
proposed framework, we present the concept and archi-
tecture of a structurally revised approximate proces-
sor for more quality-configurable controllability with
extended instruction set architecture (ISA).

• Flexible Framework for Improved Performance: For
any individual application, the quality-configurable and
general-purpose framework provides a great degree of
flexibility. In fact, under a user-defined tolerable qual-
ity restriction, any error-resilient parallel program that
operates on floating-point data can speed up by this
framework.

• Leveraging Reinforcement Learning (RL) for Scalabil-
ity: The proposed framework takes advantage of the
RL approaches to improve the approximate computing
paradigm using distributed algorithms to increase the
system’s scalability.

• Intelligent Selection of Approximation Configurations:
The appropriate approximation configuration is selected
based on the output quality prediction with the highest
performance and lowest output quality degradation.

The remainder of this paper is organized as follows:
Section II summarizes and reviews the related works. The
approximation processor’s architecture and the framework’s
mapping design are provided in Section III, while the frame-
work itself and problem-solving approach is presented in
Section IV. Section V contains experimental results as well
as comparisons to precise CMP system. Finally, the paper’s
conclusion is offered in Section VI.

II. RELATED WORK
A. APPROXIMATE PROCESSOR
Many researchers have explored the use of hardware approx-
imation techniques in processors. In particular, Esmaeilzadeh
et al. propose a method called Disciplined Approximate
Programming to improve the energy efficiency of pro-
cessors. Their approach involves extending the ISA and
microarchitecture to support approximate instructions and
data storage. They use dual-voltage operation to save energy
on approximate operations. They evaluate their approach
using a variety of benchmarks and show that it can provide
energy savings up to 43% [10]. In contrast, our work uses
approximate hardware to implement approximation with the
goal of increasing processor performance. Chandrasekharan
et al. designed ProACt, a processor for high-performance
on-demand approximate as a general-purpose processor for
approximate floating-point operations. They provided an
open-source progress framework consisting of a hardware
processor and associated software tool chain [11]. In con-
trast to ProACt, our framework is designed for multicore
processors and employs quality assurance mechanism. Felz-
mann et al. [12] enhanced energy efficiency using approx-
imate computing to present Risk-5, a RISC-V architecture
extension that utilized control mechanisms to arrange mul-
tiple coexisting approximation techniques and bridge the
gap between software and hardware approximations. They
present a method for approximating the RISC-V proces-
sor. Kanduri et al. showed that DVFS and power gating
focus on the power actuation, cooperating on performance
and energy. The power management scheme is evaluated
using APPX, DVFS, and PG knobs hierarchically [13]. They
employ software-based approximation techniques, while the
multicore system lacks the ability to execute tasks in an
approximatemanner. In Peng et al., diverse approximate tech-
niques and designs have been proposed and verified the value
of relaxing the average output quality constraint utilizing a
library of 8-bit and 16-bit energy-efficient approximate array
multipliers with 20 altered settings, which are commonly

43908 VOLUME 12, 2024

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

used in image and auditory processing applications. Peng
et al. also proposed a novel neural network structure called
AXNet to rage two NNs to a holistic end-to-end trainable
NN resulted in 50.7% more requests and considerable cuts
of training time than other current neural network-based
approximate computing systems [14]. Rather than utilizing
NNs accelerator, proposed framework involves integrating
approximate modules directly into the processor, resulting in
a versatile approach to approximation.

B. POWER MANAGEMENT
Several power management methods have been proposed
for multicore systems, ranging from heuristic algorithms to
formal methods [15]. For example, Devaraj et al. proposed
a formal scheduler synthesis framework for safety-critical
systems on multicores that guarantees adherence to a system-
level peak power constraint while allowing optimal resource
utilization [16]. Additionally, they proposed a supervisory
control-based fault-tolerant scheduler synthesis scheme for
real-time tasks on multicores that maximizes fault-tolerance
and minimizes TDP [17].

But lately, reinforcement learning (RL) and machine learn-
ing methods have been applied to multicore systems, which
have demonstrated favorable performance compared to alter-
native methods [18]. Isci et al. proposed MaxBIPS, which
thoroughly searches for the optimum combination of V/F
levels that maximizes the performance due to the power con-
straint. Nevertheless, while MaxBIPS offers a great quality
solution, there is no extensible approach [19]. To address the
scalability challenges of RL algorithms, Chen et al. propose
a DVFS control technique based on Online Distributed Rein-
forcement Learning (OD-RL). This technique is designed to
improve the performance of many-core systems under power
restrictions [20]. Wang et al. present focus on improving
the energy-efficiency of multicore systems. They propose an
online DVFS control technique based on core-level Modular
Reinforcement Learning (MRL) to adaptively pick optimum
operating frequencies for each core to optimize the over-
all multicore system’s energy efficiency [21]. Xiao et al.
address the challenge of scalability of learning based power
management through the utilization of a controller based on
deep Q-network [22]. Deep Q-learning agent can be used to
overcome the scalability limitations of Q-learning in systems
with a large number of cores. Imitation learning has also been
proposed for use in large-scale multicore systems. Kim et al.
present the first architecture-independent Imitation Learning-
based methodology for dynamic V/F island (DVFI) control in
many-core systems, inspired by the recent success of imita-
tion learning in many application fields and its major benefits
over RL [23]. Martin et al. explore the use of imitation
learning to minimize temperature in a heterogeneous clus-
teredmulti-core processor whilemeeting user-defined quality
of service targets [24]. However, RL requires another step
for learning the model and determining the behavior while
learning the optimal behavior so that there is no model [25].

III. APPROXIMATE PROCESSOR AND PROBLEM
FORMULATION
A. APPROXIMATE PROCESSOR
Our proposed multicore system is a homogeneous NOC-
based system consisting of approximate processors. This
section first describes the design of these approximate pro-
cessors and then our framework’s problem in this multicore
system. The approximate processor’s schematic is shown in
FIGURE 1.

The Floating-Point Arithmetic Logic Unit (ALU) is
designed accurately and approximately with different accu-
racy, as shown in FIGURE 1. Since in proposed design only
one of the two ALUs is actively processing data at any given
time, the other ALU can be turned off to save power. In this
scheme this is done using a power gating mechanism, which
is a technique for selectively turning off parts of a chip to
reduce power consumption. Because this processor considers
numerous possible approximate units, to operate the proces-
sor in approximate mode, at first the needed configuration
must be selected, and then the approximated instructionsmust
be executed approximately.

There are several instructions to ensure the quality required
by the framework to be added to the processor, which we will
described below. When a processor as a core in a multicore
system is instructed by the framework to run in approximate
mode, it must use its approximate computational units to
execute approximate instructions. However, if the quality
controller determines that the data is not safe for approxi-
mate processing, then all approximate instructions must be
executed using precise computational units. As a result, these
two criteria have been added to the ISA of the processor as
two instructions (FIGURE 1). These two instructions set two
flags in the processor named, Data Safe to be Approximate
(DSA) and Approximate Mode (AM). The approximate unit
is utilized if the result of bitwise AND of these two flags is 1,
otherwise the precise computational unit is used. Since we
have a configurable approximate ALU, we need a configu-
ration signal called ‘‘config’’ in this schematic. This signal is
used by our framework to select the appropriate configuration
for the approximate ALU.

The processor’s ISA has been extended to include support
for approximate operations on floating point operands. This
means that the processor now has a new opcode that can
be used to perform approximate arithmetic operations on
floating point numbers.

B. PROBLEM FORMULATION
In our problem modeling process, we begin by construct-
ing a representation of the multicore system. Specifically,
we examine a multicore system comprising N processors
designed to perform approximate computations. These pro-
cessors offer a range of M distinct operating voltages.
Additionally, the system incorporates an approximate ALU
with C different configurations. So, Each processor can be
set to operate in one of C+1 modes, where the first C modes
are approximate modes and the last mode is the precise mode.

VOLUME 12, 2024 43909

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

FIGURE 1. Approximate processor architecture.

We define the set of approximation levels as:

appx =
{
appx i | i = 1,,C

}
(1)

where appx i represents the ith approximation level. Each
approximation level corresponds to a specific degree of accu-
racy and speed. The approximate levels are sorted within this
set based on their accuracy and speed.

In this processor we also consider to have M different
operating voltages defined as:

Voltage = {Vi | i = 1,,M} (2)

From (2) and also the result discussed in Section V, it could
be possible that different operating voltages and frequencies
be used for the various configurations listed in equation (1),
as well as for the precise ALU. Therefore, each core in this
system can operate at any of (C+1)·M frequency levels.
So we can define frequency levels as follow:

Freq = {Fi | i = 1,, (C + 1) ∗M} (3)

Combining the information derived from (1), (2), and (3),
we are able to establish a comprehensive set of operating
conditions for each core in our processor. This set, known as
Operating Condition Table (OCT), encompasses the various
modes, operating voltages, and frequency levels that each
core can adopt.

The OCT can be represented as follows:

OCT

=

(
mode,Vi,Fj

) ∣∣∣∣∣∣
mode =

{
app1, . . . , appxc, exact

}
i = 1, . . . ,M

j = 1,, (C + 1) ∗M

(4)

The parallel application capable of being approximated
that can run in this system can be modeled as a graph G =
(T, E, A), where:
• T = {ti | i= 1,2,. . . , k} is a set of k tasks which are graph
nodes.

• {Eij = e(i, j)} ∈ E (DAG) is a set of graph edges, where
eij = 1 if task ti is dependent on task tj, and 0 otherwise.

• A = {Ai | i = 1,2,. . . , k} is a set of 0s and 1s label
corresponding to the tasks, where Ai = 1 if task ti can be
approximated, and 0 otherwise. A task ti considered an
approximate executable task if all of the floating-point
operations used in ti are approximate operations. Pro-
grammers should use approximate operations whenever
possible.

The goal of the framework is to minimize the completion
time of the application. In other word if we consider the
completion time of each taski as finishi, our goal is as follow:

minimize max
1<i<k

finishi (5)

The framework is intend to achieve (5), subject to the
following constraints:

• The maximum power consumption during execution
does not exceed TDP.

• The output quality of the program is not less than
Qminthat is the lowest acceptable quality.

IV. METHODOLOGY
RL algorithms are designed to identify the best solution to
a sequential decision and optimization problem, and they
have been proven to work in a range of situations. When the
problem is complex, dynamic, or has a large search space.
RL algorithms can learn from their experiences and improve
their performance over time, making them well suited for
optimization tasks. However, because they are prone to state-
space explosion, they are prohibitively expensive to use in
large-scale issues. The purpose of RL is to determine the best
actions in various states so that the agent can maximize the
long-term benefit by pursuing those best actions by adopting
a policy π (s, a) which chooses an action under the conditions
of a state s. By experiencing the states, RL determines how
the agent modifies its policy. An agent aims to achieve π in a
system interaction such that in each state, the system chooses
the action with the higher long-term reward [26]. Because

1. It converges to the Bellman optimal solution in an
online and incremental manner.

43910 VOLUME 12, 2024

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

FIGURE 2. Power management framework for approximate multicore processor.

2. It does not require the model of the system, e.g., prior
information.

Q-learning [27] is one of the most important achievements in
RL. (6) give the updating rule of Q-learning:

Qnew(st , at)← Q (st , at)+ ∝

∗

[
rt + γ max

aϵA
Q (st+1, a)− Q(st , at)

]
(6)

where α is the learning rate coefficient, γ is the discount
factor coefficient between 0 and 1,and rt is the received
reward or penalty. In any learning-epoch t , the agent chooses
an action related to the system state (st). The agent starts
from state s and chooses action a. By observing the reward

r and the next state st+1,
[
rt + γ max

aϵA
Q (st+1, a)

]
gives the

expected long-term reward of the state-action pair (s, a).
Then Q-learning updates the Q value incrementally, which
is suitable when the agent experiences the state-action pairs
sequentially.

Herein, the states and actions are determined globally.
We suppose that the system has N cores with K features per
core. Each core i in the system has k features, denoted by
fik. The state space of a single core is the set of all possible
combinations of values for its features. The size of the state
table is as follow:

|Si| =
∏K

j=1
fij (7)

Since all cores are identical, the total number of possible
states in an N-core system is |S|N . The action of all N cores
will be a vector Aglobal = (a1, a2,. . . , aN), where the ai is
the action of the ith core. As a result, in the centralized
RL technique, the total number of state-action pairs grows

exponentially as the number of cores N grows. Decomposing
the actions of separate cores, in which case each core makes
its own independent decision under the global state, is one
technique to increase the linear development of the number
of state-action pairs. The number of states is decreased from
SN to SN in total. As a result, the RL-based approach to
improving performance is combined with other algorithms
and divided into two phases:
• Each core learns the optimumpolicy that maximizes per-
formance under that budget, within its allocated budget
fraction of the overall budget.

• Reallocate the power budget with heuristic algorithm,
at a coarser level to ensure greater global usage of the
overall budget.

This framework is designed to meet our goal for a flexible
and scalable system and cover various applications. This
framework, as shown in FIGURE 2, consists of three general
parts. Sections (a) and (b) are executed at each time interval,
but section (c) must be executed whenever input data has been
changed. The programmer can embed section c as part of the
program. In the following, we describe each of these three
sections and their tasks.

A. POWER MANAGEMENT AT THE CORE LEVEL:
REINFORCEMENT LEARNING ALGORITHM
Each core will use Q-learning to learn the best policy. The
Q-learning algorithm takes as input the state of the core, the
approximability of the task, and the available power budget.
It then outputs an action that the core should take, such
as setting the DVFS configurations and enabling/disabling
approximate mode that signal to the AM signal of the core.

For each core, if the assigned task is approximable and
the model located in box (c) determines that it is safe to

VOLUME 12, 2024 43911

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

execute in approximate mode, it signals the DSA and sets the
appropriate configuration from (1).

For each core, the frequency is assigned according to the
voltage and the pairs we defined in (4).

After each epoch, the Q-learning algorithm receives a
reward/penalty from the algorithm in box (a).

We defined the state space of each Q-learning machine as:

S = {IPC,CP,CVF,CAEP,AS,MFC} (8)

where IPC is instruction per clock, CP is current power,
CVF is current V/F, CAEP is current approximate execution
percentage, AS is approximate speculation andMFC is most
frequent configuration used in previous time interval. The
state space can include various features related to the core,
task behavior, and input data stream. To ensure that the state
space remains acceptable for the DVFS controller, we care-
fully select parameters that provide sufficient information
while keeping the state space size small. Also Traditionally,
the features are discretized equally [28]. Instead, we dis-
cretize feature like IPC by its statistical distribution to
minimize inter-interval oscillation due to poor discretization
threshold. This means that the bins are sized according to the
frequency of the IPC values.

We define the reward r as the core throughput, which stands
for the preference of the action that leads to higher perfor-
mance. Moreover, the budget-overshoot penalty is calculated
as:

penalty ∝ |Power Value− Power Budget| (9)

So penalty is proportional to the value of budget overshoot,
which follows the intuition that it is more desirable to elimi-
nate a higher overshoot.

When approximate tasks are considered, one scenario is
the oscillation between the processor’s actual mode in each
epoch. Because task execution times over bunch of input
data are sometimes shorter than algorithm execution times,
reducing the time interval between algorithm executions is
not justified by more than a certain amount due to overhead.
The system must be flexible and has the ability to change the
mode to control data quality. In order to prevent the system
from constantly fluctuating between the approximate config-
urations and precise states, we consider allowing each core
to change modes up to four times. This is to avoid constantly
fluctuating between the approximate and precise states, while
still allowing for some changes to the system. Therefore, the
time interval of the power controller should be adjusted so
that the approximate tasks cannot be changed more than four
times. If we do not consider this mechanism, the agent itself
will learn not to use the approximate execution mode for
very small tasks that frequently change state. Approximate
speculation is one of the issues that Q-learning considers for
approximate tasks. The approximate capacity of the system
input is estimated for the future, which is calculated by part of
its power allocation algorithm in box (a). The latest feature of
the system, which is only used in approximate mode, is called

the MFC. This feature specifies the maximum configuration
used in the previous epoch.

B. POWER BUDGET REALLOCATION BETWEEN CORES
As distributed RL maximizes performance within a given
budget at a finer grain, the power budget reallocation
algorithm shown in box (a) of FIGURE 2 will act as a global
coordinator to maximize performance and power usage at a
coarser grain. The budget reallocation algorithm estimates the
power consumption of all cores at their lowest V/F level at
each power reallocation epoch and subtracts this number from
the total budget calculating extra power. It is shown in lines 1-
4 of Algorithm 1. Then, the algorithm creates amax-heap [29]
from pairs (i, IPC∗ β

√
number of dependent task) and selects

the core with the highest priority based on the IPC value
and also task dependency as shown in line 5 of Algorithm 1.
In this formula, the core number is represented by i and
β is an experimental coefficient reducing the effect of task
dependency. At each iteration, the budget required to raise
the highest priority core to the highest V/F level is determined
and assigned to the core. If there is still a budget left over after
the first allocation, the algorithm will choose the core with
the second-highest priority and reallocate it to allow for the
highest V/F level selection. Our algorithm as shown in lines
6-17 of algorithm 1, repeats this process until no extra budget
value is left. To estimate the power consumption of core i at a
different V/F level VFi = q, we use the V 2f Scale Law, which
states that dynamic power is proportional to V2f where V is
voltage and f is frequency. Assuming core i is originally at
VFi = p, we estimate:

Pow (i.q) = Pow (i.p) ·
Volt2 (q) · freq (q)

Volt2 (p) · freq (p)
· β (i) (10)

where β(i) is the discount factor of core i accounting for
the transition cost of V/F level, and Volt (p) and freq(p)
are the voltage and frequency of V/F level p, respectively.
Because subthreshold leakage power is usually stable for a
given voltage, we subtract it from total power first, then do
the V2f scale on dynamic power, and then add the leakage
power of the new voltage back to total power to improve
power estimation accuracy. The subthreshold leakage power
of different voltages is dignified during the idle machine
period.

Another feature of this algorithm is to guess the approxi-
mate execution. Only if the approximate task is executed on
core i, this estimation needs to speculate the V/F level. If the
following epoch data is also estimated to be approximate,
the maximum V/F value is set to the average frequency of
the approximate configurations based on the log acquired
from the approximate configuration in the previous period.
Several speculation methods can be used here according to
the interdependence of the data in some algorithms. However,
we assume that the data behaves similarly to the prior epoch
to consider the overall state of the problem. As a result,
we expect random data to mislead the results of this section
50% of the time.

43912 VOLUME 12, 2024

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

As depicted in Algorithm 1, the incorporation of a max-
heap for core prioritization serves as the primary contributor
to the computational complexity, yielding a complexity of
Nlog(N). This approach effectively mitigates the exponen-
tial growth of the state space by employing distributed
Q-learning. Additionally, Algorithm in box (b), under worst-
case scenarios, exhibits a complexity of O(N·log(N)). Con-
sequently, these factors contribute to the scalability of our
system, enabling seamless expansion of the processing core
count.

Algorithm 1 Budget Allocator
Input: IPC, DAG, Global Budget, N
Output: Budget i for a core i, 1<i<N
variable: residual Budget

1. for i=1,..,N do
2. Budgeti← PowerEstimator(i,V/Fi =lowest)
3. end for
4. residual Budget← Global Budget -

∑N
i=1 Budget i

5. Build aMAX-heap of core-feature based on IPC values
∗ power(DependentTasks(DAG, getCoreTask()), 1/β)

6. while residual Budget > 0 do
7. pop the max-heap and get the tuple (i, core-feature i)
8. speculate task approximation to set the maximum

V/F(config approx log)
9. 1 ← PowerEstimator(i,VFi = highest) -

PowerEstimator(i,V/Fi =lowest)
10. if 1 <= residual Budget then
11. Budgeti← Budgeti + 1

12. residual Budget = residual Budget - 1

13. else
14. Budgeti = Budgeti + residual Budget
15. break
16. end if
17. end while

C. QUALITY MANAGEMENT
Here, we must specify minimum acceptable quality. The
problem of whether the data output in a given approximate
mode meets the minimum stated quality can be described
as a classification problem, and various machine-learning
methods can be employed to address it. As a result, a machine
learning model is learned here in box (c) of FIGURE 2
for each application, which can declare at any point, based
on the program’s input data, whether the user’s acceptable
quality is predicted to observed if the task is completed
approximately. Assuming that the declared mode is appxi,
the procedure for this section is that as long as i > 1, the
appxi MLmust determine whether the data has an acceptable
quality. If the quality condition is met, the appropriate appxi
is selected to configure approximate ALU. Otherwise, the
value of i is decreased by one, and this process continues.
Finally, if the quality condition is not met in any approxi-
mate case, the precise calculation mode is selected. In other
words, this section is looking for a configuration that has a

higher frequency and guarantees quality conditions within the
declared quality range. Because some programs contain small
tasks executed multiple times with different data throughout
an epoch interval, this component must be implemented by
lightweight machines. As a result, we choose to learn the
simplest machine learning algorithm for each program and
approximation configuration that produces high accuracy in
predictions for use in this section.

V. EXPERIMENTAL SECTION
A. EXPERIMENTAL SETUP
The proposed framework is implemented in the Sniper
simulator, a CMP simulator that supports the RISC_V pro-
cessor [30]. The instructions mentioned in section III that are
added to ISA are also added to the simulator. We also use
our approximation instruction to code the approximate parts
of the Axbench [31] benchmarks and also convert them into
parallel programs.

Our proposed framework is also implemented by Python
script in the simulator. These scripts are called at each time
interval and set V/F and operating mode of the processors.
To take into account the execution time of the quality man-
agement part, we embed it to the program codes as a task so
that its execution time is included in the program execution
time. To achieve optimal results in RL algorithms, it is crucial
to justify certain parameter choices. For instance, the value
assigned to the penalty parameter significantly influences the
performance and budget overshoot in RL. To determine the
most suitable values for these parameters, we conducted a
comprehensive study across various benchmarks and core
configurations. Through rigorous experimentation, we iden-
tified the values that yield the best outcomes, ensuring the
effectiveness and efficiency of our approach.

To estimate the processor’s operating frequency in var-
ious modes, we implemented the approximate processor
by extending the RISC_V processor [32]. In this pro-
cessor, we considered three different configurations for
floating-point approximations. In Conf1, we used the
LREA(32,8) adder [33], the Drum16 [34] multiplier, and
the approximate 16-bit divider presented in [35]. In Conf2,
an LREA(16,4), DRUM12 multiplier and 12-bit divider, and
Conf3, LREA(16,4), DRUM8multiplier, and an 8-bit divider
were utilized. Within our framework, designers have the
flexibility to choose any desired arithmetic unit. In our pur-
suit of enhancing the processor’s frequency, we focused on
identifying units that possess shorter critical paths during
the synthesis stage. Additionally, we considered the com-
putational accuracy of these units in relation to competing
alternatives as another criterion for selection between the
arithmetic units [36].

To obtain the operating frequency, the above proces-
sors are implemented and synthesized using 45nm Nangate
library [37]. In each operating mode, it is assumed that mod-
ules that should be off are eliminated. As shown in Table 1,
the operating frequencies of the processor are obtained in the
approximate and precise modes.

VOLUME 12, 2024 43913

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

TABLE 1. V/F of processor in each operating mode.

TABLE 2. Benchmark setups and ml model for quality assurance.

B. RESULTS AND ANALYSIS
The efficiency parameters of the proposed framework are
studied in this section. In order to establish a standardized
and equitable experimental environment, we integrated the
approximate processors into the Sniper simulator. To main-
tain consistency and establish a level playing field for all
experiments, we conducted evaluations using an 8-core mul-
ticore processor. This selection ensures that the comparative
analysis of different approaches is conducted under equal
conditions, enabling meaningful and reliable conclusions to
be drawn from the results. In addition, many classification
algorithms have been tested for implementation in the quality
recognition section on the input data for various applica-
tions. As previously stated, the purpose of this section is
to guarantee that the output is of acceptable quality in the
event of an approximate implementation. In Table 2, the best
algorithm in terms of accuracy and simplicity is chosen for
each benchmark. This table also shows the error bound con-
sidered for each benchmark and shows the metric to measure
the program’s output quality.

If approximate methods are deployed, our suggested sys-
tem, according to the results of Table 1, can run error-resilient
programs more quickly. It is designed to use this feature and
improve the system’s efficiency and is responsible for quality
assurance according to the error bound and to ensure system
constraints, which is TDP here. To evaluate this framework,
we have compared it with the system that just has one approx-
imate configuration. The next comparison is with the case
where the approximate calculation dimension is omitted from
the problem.

The framework and solution known as QQ in [20] are used
by changing it and adjusting it to our non-approximate state’s
framework. As a result of these modifications, we refer to

FIGURE 3. Comparison of normalized performance.

the framework as QQ if the approximation feature is removed
from our framework, and we compare the output of the two
modes. We also evaluate our proposed system to the situation
that we have an approximation, but without configuration,
which means there is only one situation in approximation.
We consider conf1 as the ALU in this situation.

To evaluate the effectiveness of our system, we first
analyze its performance improvement, adherence to TDP
regulations, and output quality. We conduct a comparative
study between the proposed framework and the Conf1 and
QQ frameworks. By evaluating these factors, we aim to deter-
mine whether our system is superior in terms of its overall
performance.

FIGURE 3 compares the system’s normalized performance
with the QQ technique. Using just Conf1 in this framework,
we are able to increase the efficiency of the CMP system from
5% to 15%, while with the three mentioned configurations;
we can increase the system’s efficiency from 6% to 19%.

Different parameters affect the efficiency of this frame-
work. The percentage of approximate code in the overall
code is the first aspect to consider. This proportion changes
according to the application. An application can also loop
over an approximate kernel regularly for various data. As a
result, the number of input data for a certain application can
affect this percentage.We used a large enough amount of data
in this comparison to get the most benefit from the estimated
performance.

Another factor is the percentage of data approximated
under the quality conditions listed in Table 2. Here we did
not change the approximation ratio in the input data of
the Axbench applications. Another important factor is the
distribution of inputs that can execute approximate and accu-
rate inputs and predicting the possibility of approximate or
accurate execution. To reduce the effect of the inputs on
the prediction accuracy. The more accurately this algorithm
estimates, the better the policy Q-learning algorithm is, and
the more efficient the framework is expected to be. Rewards
and penalties are other factors that affect the performance
of the system. Higher penalties lead the system policy to

43914 VOLUME 12, 2024

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

FIGURE 4. Comparison of power overshoots.

mitigate the TDP condition better. In contrast, a lower penalty
will further increase the system’s efficiency and, in return,
will have less commitment than the TDP. The effect of mod-
ifying the value of those results is not substantial because we
considered this penalty to be the same for both methods, and
the results were normalized.

A comparison of TDP violations normalized to QQ is
shown in FIGURE 4. This violation increases the burden
of the cooling system and has a negative impact on the
reliability of the system. In benchmarks, the blackscholes and
inversk2j have the least increase in the amount of overshoot,
so that in the case that we have only one configuration, this
happened just 3% more than in the QQ mode, and in the
case that we have three configurations, it has increased by
5% to 8%. On the other hand, in Kmeans, jpeg, and Sobel,
we have the highest percentage increase in TDP violation
compared to QQmode. In these benchmarks, in Conf1 mode,
overshoot has increased by about 20%. In the case of the
three configurations, however, this increase has risen to 32%.
This overshoot can be mitigated for these benchmarks by
increasing the penalty in the Q-learning method. As another
factor, the more correctly the approximate execution specu-
lation method predicts, the lower the amount of violation.

The percentage of outputs for which the system main-
tained the quality criterion is shown in FIGURE 5. The
QQ algorithm produces outputs with perfect precision; yet,
because our system can execute instruction approximately,
the quality criteria may not be met. Except for the jpeg and
sobel benchmarks, the system has convinced us that the out-
puts are acceptable in conf1 mode (about 94%) and the three
configuration modes (around 93%). The input data has been
down-sampled in these two benchmarks to make the quality
management unit as lightweight as it can. In truth, there is
a trade-off between improving performance and maintaining
output quality in some applications. In other words, the more
confident we are in quality assurance, the more complicated

FIGURE 5. Comparison of accuracy degradation.

FIGURE 6. Comparison of speed up with 95% target output quality.

the machine will become, resulting in overhead when the
application is run.

In the next evaluation, we allowed the system to have
up to a 5% decrease in output quality. We compared our
framework to the Conf1 and QQ architectures in terms of
performance improvement, adherence to TDP regulations,
and output quality.

FIGURE 6 shows the increase in system efficiency in
exchange for accepting 5% lower output quality compared
to Table 2. The results of this practical test show that in the
case of the three configurations in all benchmarks, the system
can benefit more from its approximation ability to increase
efficiency than in Conf1. Of course, if we consider the per-
centage of increase in efficiency, in some benchmarks such as
kmeans, Conf1 has experienced more growth. It can also be
seen that some benchmarks such as Sobel have benefited the
most in this situation. As we can see, by accepting a 5%more
drop in quality, we can increase the efficiency of the system
by an average of 1.25% to 1.4%. In general, it can be claimed
that the efficiency of the system can be increased by accepting
the loss of quality. Of course, as we can see in FIGURE 7

VOLUME 12, 2024 43915

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

FIGURE 7. Sobel speed up in comparison with quality degradation.

FIGURE 8. Comparison of power overshoot with 95% target output
quality.

about the Sobel benchmark, other system limitations prevent
the increase in efficiency by decreasing the quality.

In FIGURE 8, we can see that this increase in efficiency,
taking into account the quality loss, did not mean more
violations of the TDP limit. Although TDP violations have
increased in some benchmarks such as jmeint, no significant
difference can be observed in most benchmarks. The same
conditions are true for the accuracy of the outputs. As we can
see in FIGURE 9, this decrease in quality finally up to 3%
was able to affect the number of outputs that did not meet
the desired quality, which even had a positive effect in some
benchmarks and configurations.

VI. CONCLUSION AND FUTURE WORK
We propose the utilization of approximate processors in mul-
ticore systems, demonstrating that they can effectively oper-
ate in approximate modes at higher frequencies. To address

FIGURE 9. Comparison of accuracy degradation with 95% target output
quality.

the challenge of TDP limitations and ensure output quality
in approximate mode, we introduce an online framework
that leverages machine learning techniques. This framework
consists of two components: one dedicated to assuring out-
put quality, and the other employing the amplification RL
algorithm to determine core frequencies and operating modes
based on power budgets. Our experimental results showcase
the potential of this approach, revealing that by employ-
ing three distinct approximate configurations, we achieve a
notable 19%boost inmulticore system efficiencywhilemain-
taining a high reliability of 83% compared to an acceptable
quality threshold. However, it is important to note that there
is a trade-off, as TDP violations increase by up to 32%.

As for future work, we plan to focus on further enhancing
the power controller of the multiprocessor system. Addi-
tionally, we aim to explore the integration of approximate
accelerators alongside the multicore system. These future
endeavors will contribute to advancing the performance and
efficiency of multicore systems through the application of
approximate computing methodologies.

REFERENCES
[1] Q. Xu, T. Mytkowicz, and N. S. Kim, ‘‘Approximate computing: A sur-

vey,’’ IEEE Des. Test. IEEE Des. Test. Comput., vol. 33, no. 1, pp. 8–22,
Feb. 2016.

[2] K. S. Mohamed, ‘‘Approximate computing: Towards ultra-low-power
systems design,’’ in Neuromorphic Computing and Beyond: Parallel,
Approximation, Near Memory, and Quantum, 2020, pp. 147–165.
[Online]. Available: https://scholar.googleusercontent.com/scholar.bib?q=
info:AudPmWNsQfwJ:scholar.google.com/&output=citation&scisdr=
ClEC6nSkEMyy8gCXbs4:AFWwaeYAAAAAZf6Sds46N806zAP0HbH0
iczABvk&scisig=AFWwaeYAAAAAZf6SdmhaWBxXFOP8q0DwFaUV
Gjg&scisf=4&ct=citation&cd=-1&hl=en and https://link.springer.com/
chapter/10.1007/978-3-030-37224-8_5

[3] V. Gupta, T. Li, and P. Gupta, ‘‘LAC: Learned approximate comput-
ing,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022,
pp. 1169–1172.

[4] V. Leon, M. Abdullah Hanif, G. Armeniakos, X. Jiao, M. Shafique,
K. Pekmestzi, and D. Soudris, ‘‘Approximate computing survey, Part I:
Terminology and software & hardware approximation techniques,’’ 2023,
arXiv:2307.11124.

43916 VOLUME 12, 2024

S. A. K. Gharavi, S. Safari: Performance Improvement of Processor

[5] F. Baharvand and S. G. Miremadi, ‘‘LEXACT: Low energy N-modular
redundancy using approximate computing for real-time multicore proces-
sors,’’ IEEE Trans. Emerg. Topics Comput., vol. 8, no. 2, pp. 431–441,
Apr. 2020.

[6] J. Shalf, ‘‘The future of computing beyond Moores Law,’’ Philos. Trans.
R, Soc. A, vol. 378, no. 2166, 2020, Art. no. 20190061. [Online]. Available:
https://scholar.googleusercontent.com/scholar.bib?q=info:sDfA_BfmqY8J:
scholar.google.com/&output=citation&scisdr=ClEC6nSkEMyy8gCRBo0:
AFWwaeYAAAAAZf6UHo1bdnD9XDY0jvfhI2uxVC0&scisig=AFW
waeYAAAAAZf6UHt0ndAdA_V9c7CyQN9gdJ68&scisf=4&ct=citation
&cd=-1&hl=en

[7] A. K. Singh, S. Dey, K. McDonald-Maier, K. R. Basireddy, G. V. Merrett,
and B. M. Al-Hashimi, ‘‘Dynamic energy and thermal management of
multi-core mobile platforms: A survey,’’ IEEE Des. Test. IEEE Des. Test.
Comput., vol. 37, no. 5, pp. 25–33, Oct. 2020.

[8] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri, ‘‘Dynamic
voltage and frequency scaling in NoCs with supervised and reinforcement
learning techniques,’’ IEEE Trans. Comput., vol. 68, no. 3, pp. 375–389,
Mar. 2019.

[9] S. Zhao, X. Dai, and I. Bate, ‘‘DAG scheduling and analysis on multi-core
systems by modelling parallelism and dependency,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 12, pp. 4019–4038, Dec. 2022.

[10] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, ‘‘Architecture sup-
port for disciplined approximate programming,’’ ACM SIGARCH Comput.
Archit. News, vol. 40, no. 1, pp. 301–312, Apr. 2012.

[11] A. Chandrasekharan, D. Große, and R. Drechsler, ‘‘ProACt: A processor
for high performance on-demand approximate computing,’’ in Proc. Great
Lakes Symp. VLSI, May 2017, pp. 463–466.

[12] I. Felzmann, J. F. Filho, and L. Wanner, ‘‘Risk-5: Controlled approxima-
tions for RISC-V,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 39, no. 11, pp. 4052–4063, Nov. 2020.

[13] A. Kanduri, M.-H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch,
H. Tenhunen, and N. Dutt, ‘‘Accuracy-aware power management for
many-core systems running error-resilient applications,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2749–2762,
Oct. 2017.

[14] Z. Peng, X. Chen, C. Xu, N. Jing, X. Liang, C. Lu, and L. Jiang, ‘‘AXNet:
ApproXimate computing using an end-to-end trainable neural network,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2018,
pp. 1–8.

[15] B. Kocot, P. Czarnul, and J. Proficz, ‘‘Energy-aware scheduling for high-
performance computing systems: A survey,’’ Energies, vol. 16, no. 2,
p. 890, Jan. 2023.

[16] R. Devaraj, A. Sarkar, and S. Biswas, ‘‘Supervisory control approach and
its symbolic computation for power-aware RT scheduling,’’ IEEE Trans.
Ind. Informat., vol. 15, no. 2, pp. 787–799, Feb. 2019.

[17] R. Devaraj and A. Sarkar, ‘‘Resource-optimal fault-tolerant scheduler
design for task graphs using supervisory control,’’ IEEE Trans. Ind. Infor-
mat., vol. 17, no. 11, pp. 7325–7337, Nov. 2021.

[18] N. Wu and Y. Xie, ‘‘A survey of machine learning for computer archi-
tecture and systems,’’ ACM Comput. Surveys, vol. 55, no. 3, pp. 1–39,
Feb. 2022.

[19] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
‘‘An analysis of efficient multi-core global power management poli-
cies: Maximizing performance for a given power budget,’’ in Proc. 39th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2006,
pp. 347–358.

[20] Z. Chen andD.Marculescu, ‘‘Distributed reinforcement learning for power
limited many-core system performance optimization,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2015, pp. 1521–1526.

[21] Z. Wang, Z. Tian, J. Xu, R. K. V. Maeda, H. Li, P. Yang, Z. Wang,
L. H. K. Duong, Z. Wang, and X. Chen, ‘‘Modular reinforcement learning
for self-adaptive energy efficiency optimization in multicore system,’’ in
Proc. 22nd Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2017,
pp. 684–689.

[22] X. Li, L. Chen, S. Chen, F. Jiang, C. Li, and J. Xu, ‘‘Power management
for chiplet-based multicore systems using deep reinforcement learning,’’
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2022,
pp. 164–169.

[23] R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu, and
R. Marculescu, ‘‘Imitation learning for dynamic VFI control in large-scale
manycore systems,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 9, pp. 2458–2471, Sep. 2017.

[24] M. Rapp, H. Khdr, N. Krohmer, and J. Henkel, ‘‘NPU-accelerated imita-
tion learning for thermal optimization of QoS-constrained heterogeneous
multi-cores,’’ ACM Trans. Design Autom. Electron. Syst., vol. 29, no. 1,
pp. 1–23, Jan. 2024.

[25] L. Chen, X. Li, F. Jiang, C. Li, and J. Xu, ‘‘Smart knowledge
transfer-based runtime power management,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), 2023, pp. 1–6. [Online]. Available:
https://scholar.googleusercontent.com/scholar.bib?q=info:CiXTdO6jOFYJ:
scholar.google.com/&output=citation&scisdr=ClEC6nSkEMyy8gCWoIo:
AFWwaeYAAAAAZf6TuIq0RCozVLs4cOY-Bv0fQRU&scisig=AFW
waeYAAAAAZf6TuLDoDGuDVS3hAevkd9d2u3Q&scisf=4&ct=citation
&cd=-1&hl=en

[26] E. F. Morales and H. J. Escalante, ‘‘A brief introduction to
supervised, unsupervised, and reinforcement learning,’’ in Biosignal
Processing and Classification Using Computational Learning and
Intelligence. Elsevier, 2022, pp. 111–129. [Online]. Available: https://
scholar.googleusercontent.com/scholar.bib?q=info:DqNpXsLO6jYJ:
scholar.google.com/&output=citation&scisdr=ClEC6nSkEMyy8gCRvtU:
AFWwaeYAAAAAZf6UptXzCDXcUHz78UpoWEvWXtU&scisig=
AFWwaeYAAAAAZf6Upp8MUjU-8_NjJhnhhs1q79A&scisf=4&ct=
citation&cd=-1&hl=en

[27] M.-A. Chadi and H. Mousannif, ‘‘Understanding reinforcement learning
algorithms: The progress from basic Q-learning to proximal policy opti-
mization,’’ 2023, arXiv:2304.00026.

[28] L. Peng, W. Qing, and G. Yujia, ‘‘Study on comparison of discretization
methods,’’ inProc. Int. Conf. Artif. Intell. Comput. Intell., vol. 4, Nov. 2009,
pp. 380–384.

[29] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte, ‘‘Min-max
heaps and generalized priority queues,’’ Commun. ACM, vol. 29, no. 10,
pp. 996–1000, Oct. 1986.

[30] N. B. Mallya, C. Gonzalez-Alvarez, and T. E. Carlson, ‘‘Flexible timing
simulation of RISC-V processors with sniper,’’ Simulation, vol. 4, no. 1,
2018.

[31] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
‘‘AxBench: A multiplatform benchmark suite for approximate comput-
ing,’’ IEEE Des. Test. IEEE Des. Test. Comput., vol. 34, no. 2, pp. 60–68,
Apr. 2017.

[32] A. K. Asanovic, R. Avizienis, J. Bachmeyer, and C. F. Batten, ‘‘The
RISC-V instruction set manual v2.2,’’ in Proc. IEEE Int. Conf. Ind. Tech-
nol., Jun. 2012, pp. 1–32.

[33] R. Zhou and W. Qian, ‘‘A general sign bit error correction scheme for
approximate adders,’’ in Proc. Int. Great Lakes Symp. VLSI (GLSVLSI),
May 2016, pp. 221–226.

[34] S. Hashemi, R. I. Bahar, and S. Reda, ‘‘DRUM: A dynamic range unbiased
multiplier for approximate applications,’’ in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2015, pp. 418–425.

[35] S. Hashemi, R. I. Bahar, and S. Reda, ‘‘A low-power dynamic divider
for approximate applications,’’ in Proc. 53rd ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2016, pp. 1–6.

[36] S. Reda and M. Shafique, Approximate Circuits. Cham, Switzerland:
Springer, 2019.

[37] NanGate, Inc., ‘‘NanGate 45nm Open Cell Library,’’ 2008. [Online].
Available: http://www.nangate.com/?page id=2325 and https://mflowgen.
readthedocs.io/en/latest/stdlib-freepdk45.html

SEYED ALI KASHANI GHARAVI received the
B.S. degree in computer engineering from the
Amirkabir University of Technology (AUT) and
the M.S. degree from the University of Tehran,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering. He is a member of the Computer
Architecture Laboratory, University of Tehran.

SAEED SAFARI received the Ph.D. degree in com-
puter architecture from the Computer Engineer-
ing Department, Sharif University of Technology,
Tehran, Iran, in 2005. Since then, he has been a
Faculty Member with the Electrical and Computer
Engineering Department, University of Tehran,
Tehran. From May 2009 to September 2010,
he collaborated with TeleRobotics and Appli-
cations (TERA) Laboratory, IIT, Genoa, Italy,
working on different aspects of low-power paral-

lel implementation of machine vision applications. His research interests
include artificial intelligence, high performance computing, computer archi-
tecture, and computer arithmetic.

VOLUME 12, 2024 43917

