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ABSTRACT Electrocardiogram is a non-invasive, inexpensive, and widely used diagnostic tool for arrhyth-
mia diagnosis in clinics. Deep learning techniques have shown great promise in electrocardiogram signal
analysis, enabling automatic and accurate detection of various cardiac arrhythmia. This paper proposes an
automated multi-label cardiac arrhythmia classification network based on a convolutional neural network.
The network aims to detect and classify 45 different cardiac arrhythmia classes using 12-lead electrocar-
diogram data. Unlike previous studies, our approach incorporates both the residual structure and channel
attention mechanism. Thus, we developed two key schemes to improve classification performance: the
Global Channel Attention Block and the Short Residual Block. The Global Channel Attention Block
incorporates dilated convolutions to preserve overall features. It focuses on the important characteristics
of each arrhythmia class from the original electrocardiogram data during the training process. The Short
Residual Block employs a residual structure to enhance classification accuracy. The network’s performance
is evaluated using a large-scale 12-lead electrocardiogram database for arrhythmia study on PhysioNet and
the 2018 China Physiological Signal Challenge dataset. In particular, the proposed classification network
shows the highest scores in average precision, recall, F1 score, area under the receiver operating charac-
teristic, and accuracy compared to existing convolutional neural network-based arrhythmia classification
networks in a large-scale 12-lead electrocardiogram database for arrhythmia study on PhysioNet.

INDEX TERMS 12-lead electrocardiogram, deep learning, convolutional neural network, multi-label
classification, cardiac arrhythmia classification.

I. INTRODUCTION
According to the World Health Organization (WHO), heart
diseases cause millions of deaths globally [1]. In such
diseases, Electrocardiogram (ECG) is a non-invasive, inex-
pensive, and widely used diagnostic tool for arrhythmia
diagnosis in clinics. It records the heart’s electrical activities
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over time through electrodes attached to the skin surface.
As shown in Fig. 1, a standard 12-lead ECG can be acquired
from ten skin surface sensors, including four limb leads (right
arm (RA), left arm (LA), right leg (RL), and left leg (LL)) and
six chest leads (VI, V2, V3, V4, V5, and V6).

An ECG is a graph depicting voltage with respect to
time that reflects the electrical activities of cardiac muscle
depolarization followed by repolarization during each heart-
beat [2]. As shown in Fig. 2, the ECG graph of a normal
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FIGURE 1. Illustration for 12-lead ECG system.

beat consists of a sequence of waves: a P-wave presenting
the atrial depolarization process, a QRS complex denoting the
ventricular depolarization process, and a T-wave representing
the ventricular repolarization. Other signal portions include
the PR, ST, and QT intervals. Automatic arrhythmia detection
is an important topic in the field of cardiology.

Recently, an automated interpretation of ECG is of great
significance for early prevention and diagnosis of cardiac
arrhythmia [3]. Specifically, many approaches have been
presented for cardiac arrhythmia detection using single-lead
ECG [4], [5], [6], but it is insufficient for precisely diagnosing
various kinds of heart diseases using only single-lead ECG.
Therefore, 12-lead ECG, which is the standard clinical ECG
test has attracted increasing interest from researchers.

Over the past decade, a large number of automatic arrhyth-
mia detection algorithms using machine learning (ML) and
classifiers have been introduced [7], [8], [9], [10], [11],
[12]. Although these researches improve the accuracy of car-
diac arrhythmia classification, they still have some common
defects [13]. First, they must rely on experts to design and
extract the characteristics of ECG signals, other potential
information in the original signal is neglected. Second, the
artificial definition of different disease characteristics may be
slightly different, therefore, the generalization ability of the
model is restricted.

Deep learning techniques have shown great promise in
ECG signal analysis, enabling automatic and accurate detec-
tion of various cardiac arrhythmia [13], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28] and [37], [38], [39],
[40]. Deep neural network (DNN) realizes the effective
combination of feature extraction and cardiac arrhythmia
classification through end-to-end learning. However, deep
learning-based cardiac arrhythmia classification still has
some limitations. First, the existing studies [13], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [37], [38], [39],
and [40] have either utilized many publicly available datasets
or collected their own datasets using individual approaches.
However, there is still a lack of studies that classify various
arrhythmia classes. Specifically, previous studies [13], [19],

FIGURE 2. Fiducial points and features of ECG signal.

[20], [21], [22], [23], [24], [25], [26], [27], [28], [37], [38],
[39], and [40] focused on classifying a single class or only
around ten arrhythmia classes. According to [18], more than
60 types of arrhythmia classes exist in various manifes-
tations. In particular, a previous study [37] attempted to
classify 26 types of arrhythmia classes, but it is still insuffi-
cient. Therefore, automated cardiac arrhythmia classification
using deep learning is essential to detect and classify many
arrhythmia classes. Second, the CNN-based cardiac arrhyth-
mia classification using 12-lead ECG data mainly depends
on residual structures in other studies. To classify multi-
label arrhythmia classes, it is essential to incorporate both
residual structure and channel attention mechanism, such as
SENet [30]. P. Nejedly et al. [37] applied the multi-head-
attention mechanism. However, channel attention mechanism
such as SENet [30] is suitable for processing ECG signals.
These structures allow the model to focus on important fea-
tures within ECG signals during the learning process.

This paper proposes automated multi-label cardiac
arrhythmia classification based on convolution neural net-
work (CNN) using 12-lead ECG data. The proposed network
can detect and classify 45 cardiac arrhythmia classes using
the PhysioNet’s a large-scale 12-lead electrocardiogram
database [18], which contains 51 arrhythmia classes. Unlike
previous studies, our approach incorporates both the residual
structure and channel attention mechanism. In other words,
we introduce short residual block (SRB) and global channel
attention block (GCAB) to focus on the important character-
istics of each arrhythmia class from the original 12-lead ECG
data during the training process.

The main contributions are summarized as follows:

1) We developed an automated multi-label cardiac
arrhythmia classification network, which detects and
classifies 45 cardiac arrhythmia classes using 12-lead
ECG data. Additionally, using convolution kernels
with different receptive fields, our proposed network
outperforms the other CNN-based cardiac arrhythmia
classification networks.
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FIGURE 3. The proposed automated multi-label cardiac arrhythmia classification network architecture.

2) We propose SRB and GCAB to focus on the main
characteristics of each arrhythmia class from the orig-
inal 12-lead ECG data during the training process.
By modifying the channel attention block [29], our
proposed network can improve detection and classi-
fication performance. By incorporating this proposed
channel attention structure and residual structure into
our network, we can detect and classify 45 cardiac
arrhythmia classes.

3) We evaluate the proposed network for cardiac arrhyth-
mia classification on a publicly available ECG dataset
(a large-scale 12-lead electrocardiogram database for
arrhythmia study [18]) and compare it with other
state-of-the-art CNN-based cardiac arrhythmia classi-
fication networks. Furthermore, we performed addi-
tional experiments using another public ECG dataset,
which is CPSC 2018 [16]. The experimental results
demonstrate the classification ability of our proposed
network.

The remainder of this paper is structured as follows.
Section II presents the related works on traditional methods,
recurrent neural network (RNN) based methods, and existing
CNN-basedmethods. Section III describes the proposed auto-
mated multi-label cardiac arrhythmia classification network
in detail. Section IV describes the datasets and parameters
used for training and testing and presents experiment results.
Section V discusses the limitations of our work and previous
works. In addition, we discuss how future research should
proceed. Finally, we summarize and conclude the paper in
Section VI.

II. RELATED WORKS
A. TRADITIONAL METHODS USING MACHINE LEARNING
AND CLASSIFIER
The existing methods [7], [8], [9], [10], [11], [12]
consist of machine learning algorithms and classifiers.

Homaeinezhad et al. [7] presented a heartbeat recognition
algorithm using the support vector machine (SVM). The
existing methods [8] based on machine learning (ML) algo-
rithms are of two stages; these methods require experts
to engineer useful features or extract features using signal
processing techniques and then use these features to buildML
classifiers [8]. Detta et al. [9] developed a feature-oriented
method with a two-layer cascaded binary classifier. They
performed best in the 2017 PhysioNet/CinC Challenge for
atrial fibrillation classification from single-lead ECGs. On the
other hand, feature extraction methods exist in the existing
methods [10], [11], [12]. The first and most important step
is feature extraction, which needs to be manually designed
and extracted from the raw signal. Early approaches mainly
rely on classical waveform features, such as amplitudes, Her-
mite coefficients [10], morphological features [11], heartbeat
interval features [12], etc.

B. RECURRENT NEURAL NETWORK-BASED METHODS
RNN can be one of the classification methods to clas-
sify cardiac arrhythmia. Zhang et al. [41] proposed a
multi-lead-branch fusion network for multi-label arrhyth-
mia classification based on the bidirectional gated recurrent
unit (BiGRU). They integrated multi-loss optimization to
jointly learning the diversity and integrity of 12-lead ECG.
Additionally, their proposed network classifies 23 types
of cardiac arrhythmia classes. Xie et al. [42] presented
multi-label 12-lead ECG classification based on bidirectional
long short-term memory (Bi-LSTM). Zhang et al. [41] and
Xie et al. [42] attempted to classify 23 and 27 cardiac arrhyth-
mia classes, respectively. However, it is still insufficient
to address numerous types of cardiac arrhythmia classes.
Furthermore, He et al. [43] and Yao et at. [44] proposed
LSTM combined with CNN architectures to classify cardiac
arrhythmias.
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C. CONVOLUTIONAL NEURAL NETWORK-BASED
METHODS
Recently, CNN has achieved remarkable performance in
cardiac arrhythmia classification. Hannun et al. [19] pre-
sented an end-to-end DNN to detect and classify arrhythmia
using 91,232 single-lead ECGs from 53,549 patients. They
showed superior performance than cardiologists for diag-
nosing twelve rhythm classes. Zhang et al. [20] presented
a DNN based on residual structure for automatic diagnosis
of 12-lead ECG. Their proposed DNN could classify nine
rhythm classes using the CPSC 2018 dataset and achieved
superior performance than four ML methods on average F1
score. Duan et al. [21] proposed an end-to-end DNN structure
based on SENet [30] to classify cardiac abnormalities of
12-lead ECG. Riberio et al. [22] also presented an automatic
diagnosis of the 12-lead ECG using DNN. They collected a
dataset consisting of 2,322,513 ECG records from 1,676,384
different patients of 800 counties inMinas Gerais/Brazil from
the Telehealth Network of Minas Gerais (TNMG) [31]. Their
proposed network could detect and classify six arrhythmia
classes from 12-lead ECG. Park et al. [23] presented CNN-
based ST-elevation myocardial infarction (STEMI) detection
from 12-lead ECG. They co-worked at Seoul National Uni-
versity Bundang Hospital (SNUBH) and trained 265 ECG
records using VGGNet [32] and ResNet [33] for STEMI
detection.

III. PROPOSED METHOD
This paper proposes an automated multi-label cardiac
arrhythmia classification network using CNN, which can
detect and classify 45 cardiac arrhythmia classes. To enhance
the performance of the cardiac arrhythmia classification,
we propose GCAB and SRB. We describe the details of the
whole procedure below.

A. THE PROPOSED CLASSIFICATION NETWORK
ARCHITECTURE TO CLASSIFY 45 CARDIAC
ARRHYTHMIA CLASSES
Generally, 2D CNN is used for image processing. However,
unlike image processing, ECG signals require 1D CNN.
Hence, all computational processes used in the proposed clas-
sification network were implemented using 1D CNN [34].
The proposed classification network takes 12-lead raw ECG
signals x ∈ R{nsamples×12} (nsamples is 5,000) as input and
outputs a multi-label classification result y ∈ R1×45.
Fig. 3 illustrates the proposed automated multi-label car-

diac arrhythmia classification network structure, consisting
of an initial feature extraction block, one GCAB to focus
on important features from the 12-lead ECG signals, four
SRBs, and a pooling layer to make predictions. Within the
initial feature extraction block, we employ one convolu-
tion layer for extracting features, one parametric rectified
linear unit (PReLU) activation layer, and one average pool-
ing layer. We focused on extracting meaningful features
in the initial stages to improve classification performance.

TABLE 1. Architecture of the proposed 12-lead ECG classification
network.

Consequently, we opted for the trainable activation function
PReLU, as shown in Eq. (1).

PReLU(x) =

{
x, if x ≥ 0
αx, otherwise

(1)

Unlike previously known networks [13], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [37], [38], [39], [40],
the proposed classification network classifies 45 different
cardiac arrhythmia classes. Therefore, different kernel sizes
were applied to each block to improve classification perfor-
mance. The kernel sizes and other variables for each block
are summarized in Table 1. Following the initial stages, the
features FGCAB and FSRB can be obtained through the GCAB
and SRB, respectively, and then they are combined through
element-wise sum, as shown in Eq. (2).

z = FGCAB ⊕ FSRB (2)

The feature map z obtained by GCAB and SRB adopts
globalmax pooling (GMP) and global average pooling (GAP)
layers as Eq. (3), and then followed by a concatenation of the
results of these two operations. Finally, after a fully connected
(FC) layer, predictions for the 45 multi-label arrhythmias are
generated. The generated z is used as input data of the GMP
and GAP and can be expressed as follows:

y = fFC [Concat.(fGMP(z), fGAP(z))] (3)

where Concat. denotes concatenated sum. As a result, the
proposed automated multi-label cardiac arrhythmia classifi-
cation network could achieve higher performance compared
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to other existing networks [19], [20], [21], and [23]. Detailed
explanations regarding the experimental results are provided
in Section IV.

As mentioned earlier, we focused on extracting feature
maps in the initial stages. Moreover, we proposed GCAB,
which additionally extracts the significant characteristics of
each arrhythmia class from the features delivered in the ini-
tial stage. The proposed GCAB is detailed in Section III-B.
In addition, the kernel sizes and other variables for GCAB are
introduced in Table 1.

As depicted in Fig. 3, the proposed network com-
prises 4 SRBs. Generally, the residual structure is widely
used in 2D CNN and has demonstrated excellent perfor-
mance, particularly in image classification tasks. Despite
cardiac arrhythmia classification using ECG signals employ-
ing 1D convolution instead of 2D convolution-like images,
the residual structure still performs well in the context of
1D convolution. Consequently, we propose the SRB utilizing
1D convolution, and its detailed explanation is covered in
Section III-C. In addition, the kernel sizes and other variables
for SRB are also summarized in Table 1.

B. GLOBAL CHANNEL ATTENTION BLOCK (GCAB)
Applying only the residual structure can lead to high perfor-
mance in many arrhythmia classification networks [19], [20],
[21], [22], [23]. However, as the number of arrhythmia classes
increases, the application of other methods, such as the atten-
tion mechanism as well as the residual structure, is required
to achieve high performance. We applied an attention mecha-
nism to preserve and convey the main characteristics of each
arrhythmia class as much as possible in the initial stages.

Like the residual structure, the attention method was
initially introduced for image classification [29]. How-
ever, we modified the existing attention method for
one-dimensional operations such as ECG signals. In other
words, we propose the GCAB for multi-label 12-lead ECG
classification.

Fig. 4 illustrates the structure of the proposed GCAB.
We employed the dilated convolution technique to preserve
and capture overall features within the attention block. The
dilated convolution expands the receptive field size, making
it possible to extract meaningful information from features
obtained through the average pooling (AP) and max pooling
(MP) layer in GCAB. Mathematically, for an input sequence
x ∈ RT and a convolutional kernel w ∈ RK , the 1D-dilated
causal convolution operation G on element n of the sequence
is defined as:

G[n] =

K−1∑
i=0

w[i] · x[n− d · i] (4)

where d is the dilation factor, T is the sequence length, K is
the filter size, and (n− d · i) accounts for the direction of the
past samples. Eq. (4) can be interpreted as the convolution of
input x and a filterwwith a dilation factor d . The dilated filter
is obtained by introducing holes between the kernel elements

FIGURE 4. The proposed global channel attention block.

of w based on d . Furthermore, if d = 0, Eq. (4) becomes a
standard 1D convolution operation. First, as shown in Eq. (5)
and (6), the input sequence x undergoes a convolution opera-
tion, passing through both an AP and an MP layer.

Xa1 = Gd=2(fAP(Gd=0(x))) (5)

Xa2 = Gd=2(fMP(Gd=0(x))) (6)

Secondly, each feature map, represented as Xa1 and Xa2
is added through an element-wise sum and then activated
through a sigmoid activation function. Finally, by performing
element-wise multiplication as shown in Eq. (7), followed by
a ReLU activation layer, the final result FGCAB is obtained.
To prevent overfitting during the learning process of the
proposed network, we applied the dropout technique [35] to
the proposed GCAB. Additionally, we defined the kernel size
of the 1D convolution layer as 17 and applied the kernel size
of the dilated convolution layer as 3.

C. SHORT RESIDUAL BLOCK (SRB)
The initial proposal of the residual structure was in
ResNet [32]. ResNet exhibited excellent performance in the
2D domain of image classification and demonstrated good
results in the 1D domain of cardiac arrhythmia classifi-
cation [19], [20], [21], [22], [23]. Unlike 2D CNN, input
sequences are less complex in 1D CNN, which can lead to
overfitting during the learning process. Additionally, using
larger kernel sizes in convolution operations can significantly
assist in extracting overall features from input data. Consid-
ering these factors, unlike conventional residual structures,
the proposed SRB incorporates a dropout layer to mitigate
overfitting [35].
Moreover, the kernel size is defined as 13. As shown in

Fig. 5, the proposed SRB consists of two convolutional layers,
two batch normalizations, two ReLU activation functions,
and a dropout layer. The proposed SRB can be expressed as
follows:

FSRB = Gd=0(Dropout(Gd=0(x))) ⊕ x (7)
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FIGURE 5. The proposed short residual block.

Unlike the GCAB described earlier, SRB does not incor-
porate dilated convolutions to focus on more specific features
during training. It also has a higher risk of overfitting than the
GCAB because the proposed classification network uses four
SRBs. Consequently, we defined the dropout rate as 0.5 to
avoid overfitting in SRBs.

IV. IMPLEMENTATION RESULTS
In this section, implementation details and experimental
results are given. In addition, it analyzes the performance of
the proposed automated multi-label cardiac arrhythmia clas-
sification network by comparing it with existing CNN-based
cardiac arrhythmia classification networks. We choose two
12-lead ECG datasets for validating the proposed auto-
mated multi-label cardiac arrhythmia classification net-
work. In addition, we select SENet-34 [30] and ResNet-34
[32] as baseline networks to compare with our proposed
network.

A. DATASETS DESCRIPTION
1) A large-scale 12-lead ECG database for arrhythmia

study [18]: This multi-label dataset was from the Phys-
ioNet open databases. This database comprises 45,152
ECG data from the Shaoxing People’s Hospital and
Ningbo First Hospital. The ECG records are sampled
at 500 Hz, and the signal length of the data is 10 sec-
onds. We utilized 10 seconds of data for both our
CNN training and testing. There are 51 classes with
various distinct manifestations, such as sinus bradycar-
dia (SB), atrial tachycardia (AT), premature ventricular
contraction (PVC), and other irregular rhythms with
missing or distorted wave segments and intervals. The
most common and pernicious arrhythmia type is atrial
fibrillation (AFIB). It is associated with a significant
increase in the risk of severe cardiac dysfunction and
stroke. We designed a classification network to pre-
dict and classify arrhythmias for a total of 45 classes,
excluding the six classes with less than ten data samples
such as atrial bigeminy (ABI), fragmented QRS wave

TABLE 2. Data details for a large-scale 12-lead ECG database for
arrhythmia study.

(FQRS), junctional premature beat (JPT), ventricular
bigeminy (VB), ventricular escape trigeminy (VET),
and sinus atrium to atrial wandering rhythm (SAAWR)
among the 51 classes. Finally, Table 2 shows the details
of the data.

2) CPSC 2018 [16]: This multi-label dataset was derived
from the China Physiological Signal Challenge 2018:
Automatic identification of the rhythm/morphology
abnormalities in 12-lead ECGs, which contains 6,877
12-lead ECG records from 11 hospitals for training and
testing. The ECG records are sampled at 500 Hz, and
the signal length of the data is from 6 to 60 seconds.
The labels of these records include one normal type and
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FIGURE 6. Our 12-lead ECG data division and the 9-fold cross-validation
method.

eight abnormal types, which are detailed as sinus nor-
mal rhythm (SNR), atrial fibrillation (AF), first-degree
atrioventricular block (1AVB), left bundle branch block
(LBBB), right bundle branch block (RBBB), prema-
ture atrial contraction (PAC), premature ventricular
contraction (PVC), ST-segment depression (STD) and
ST-segment elevated (STE). As the CNN requires
inputs to be the same length, the data longer than
10 seconds were cropped, and those smaller than
10 seconds were padded with zeros.

B. IMPLEMENTATION DETAILS
1) k-fold cross-validation: For the proposed network

training, evaluation, and testing, we applied a 9-fold
cross-validation approach. First, the dataset was ran-
domly divided into ten folds. Secondly, we utilized
eight out of the ten folds for training and one-fold out
of the ten folds for validation in each iteration. Finally,
the remaining fold is used for testing, and the average
performance of the proposed classification network is
produced. Fig. 6 shows our 12-lead ECG data division
and the 9-fold cross-validation method.

2) Training details: The proposed network is imple-
mented on the Intel(R) Xeon(R) Gold 6138 processor,
AMD Ryzen Threadripper 3960X 24-Core proces-
sor, NVIDIA RTX 3090 GPU, Python 3.7.11, and
Pytorch framework version 1.12.0+cu1 02. We con-
ducted 200 repeated training sessions on the 45,152
12-lead ECG data. The fixed learning rate was set to
0.0001, and we used the Adam optimizer [36]. The
batch size = 64, and nine iterations were run for each
epoch since we adopted the 9-fold cross-validation
method. Due to the multi-label classes in the dataset,
we use the binary cross entropy (BCE) with logits loss
(BCEWithLogitsLoss) function, which combines the
sigmoid layer and the BCE loss to achieve numerical
stability.

C. EVALUATION CRITERIA
This paper adopts the average precision, recall, F1 score, area
under the receiver operating characteristic (AUROC) curve,
and accuracy score for classification performance. The details
are as follows:

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1 Score =
2 × (Precision × Recall)

Precision + Recall
(10)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

True positive (TP) is the number of true positive samples
correctly predicted as positive. In other words, it indicates
the cases where the model correctly classifies true posi-
tives. True negative (TN) represents the number of true
negative samples correctly predicted as negative. This shows
the cases where the model correctly classifies true neg-
atives. False positive (FP) is false positive, the number
of true negative samples incorrectly predicted as positive.
This indicates the cases where the model wrongly classifies
false positives. False negative (FN) represents the number
of true positive samples incorrectly predicted as negative.
This shows the cases where the model wrongly classifies
false negatives. To better evaluate the multi-label classifica-
tion performance, the average of five metrics among classes
was calculated to give a final evaluation. Among these met-
rics, the F1 score mainly assesses the recognition effect,
the most critical evaluation metric in cardiac arrhythmia
classification.

D. IMPLEMENTATION RESULTS USING A LARGE-SCALE
12-LEAD ECG DATABASE FOR ARRHYTHMIA STUDY
To validate the performance of our proposed network,
we compared it with recently developed CNN-based cardiac
arrhythmia classification networks. Table 3 compares aver-
age precision, recall, average F1 score, average AUROC,
and average accuracy between six reference models and
our proposed network for arrhythmia classification. These
evaluations were conducted using a large-scale 12-lead ECG
database for the arrhythmia study dataset [18]. Consider-
ing the F1 score of each CNN-based cardiac arrhythmia
classification network, the proposed network shows the
highest performance. Specifically, SENet-34 has an F1
score of 0.385, and ResNet-34 has an F1 score of 0.261.
Compared to SENet-34 and ResNet-34, the proposed clas-
sification network achieved an F1 score of 0.028, higher
than SENet-34 and 0.125 higher than ResNet-34. More-
over, the proposed classification network exhibits higher
F1 scores of 0.07, 0.166, 0.152, and 0.098 compared
to other CNN-based networks [19], [20], [21], and [23],
respectively.

We compared AUROC and accuracy as well as F1 scores.
Table 3 shows that the proposed network exhibits the highest

VOLUME 12, 2024 44533



H. K. Kim, M. H. Sunwoo: Automated Cardiac Arrhythmia Classification Network for 45 Arrhythmia Classes

TABLE 3. Classification performance results on a large-scale 12-lead ECG database for arrhythmia study.

TABLE 4. Classification performance results on CPSC 2018 dataset.

FIGURE 7. Confusion matrix for AF, SA, TWC, and RBBB.

AUROC and accuracy. Specifically, comparing the AUROCs
of SENet-34 and ResNet-34 improved by 0.003 and 0.087,
respectively. When compared with the other four cardiac
arrhythmia classification networks [19], [20], [21], and [23],
it can be seen that the AUROC is improved by 0.003, 0.074,
0.070, and 0.034, respectively. In addition, improvements of
0.001, 0.099, 0.022, 0.150, 0.074, and 0.046 were observed
when comparing the six different classification networks in
accuracy, respectively.

In summary, the proposed classification network performs
well in all average evaluation metrics (precision, recall,

FIGURE 8. AUROC curve for AF, SA, TWC, and RBBB.

F1 score, AUROC, and accuracy). Table 3 shows the average
of each evaluation metric. Furthermore, the F1 score results
for each arrhythmia class using a large-scale 12-lead ECG
database for arrhythmia study in the proposed network and six
other 12-lead ECG classification networks are summarized in
Table 5. In Table 5, 0.000 means that the network failed to
perform a single classification. Additionally, we present the
confusion matrix and AUROC curve for atrial flutter (AF),
sinus irregularity (SA), T wave change (TWC), and RBBB
in Fig. 7 and 8. Confusion matrix and AUROC curve are
used to verify that an implemented network. In addition,
a large AUROC curve area means that the network performs
well. Specifically, our proposed network shows superior
performance for AF, SA, TWC, and RBBB, as shown
in Fig. 7 and 8.
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TABLE 5. F1 score results in each arrhythmia class using a large-scale
12-lead ECG database for arrhythmia study.

E. IMPLEMENTATION RESULTS USING
CPSC 2018 DATASET
To verify the performance of the proposed cardiac arrhyth-
mia classification network not only on a large-scale 12-lead
ECG database for arrhythmia study but also on other

datasets, we conducted additional experiments using the
CPSC 2018 dataset [16]. Table 4 compares the average preci-
sion, average recall, average F1 score, average AUROC, and
average accuracy of the proposed network and the six refer-
ence models using CPSC 2018. Contrary to the experimental
results in a large-scale 12-lead ECG database for arrhythmia
study, the proposed network did not perform well in all
evaluation metrics when tested on the CPSC 2018 dataset.
However, the proposed classification network outperforms
other CNN-based classification networks because it per-
forms best in the most important evaluation metric, the F1
score. As a result, the proposed network shows superior
performance in terms of precision compared to SENet-34,
ResNet-34, [19], [21], and [23]. However, the precision lags
slightly [20] by 0.020.
Nevertheless, the proposed network outperforms [20] in

the recall by 0.047, resulting in a noticeable improve-
ment in the F1 score by 0.012. Meanwhile, the proposed
network outperforms the other six classification networks
regarding recall, F1 score, and accuracy. However, com-
pared to [20], performance is weak regarding precision and
AUROC. In summary, the proposed network exhibits lower
average precision and average AUROC compared to [20].
Still, it ensures classification performance due to its strong
performance in the most important performance metric, the
F1 score. The F1 score results for each arrhythmia class
using the CPSC 2018 dataset in the proposed network and six
other 12-lead ECG classification networks are summarized in
Table 6. Also, we present the confusion matrix and AUROC
curve for atrial fibrillation (AF), LBBB, RBBB, and PAC
in Fig. 9 and 10. As shown in Fig. 9 and 10, our proposed
classification network performs well for AF, LBBB, RBBB,
and PAC.

FIGURE 9. Confusion matrix for AF, LBBB, RBBB, and PAC.
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FIGURE 10. Confusion matrix for AF, LBBB, RBBB, and PAC.

TABLE 6. F1 score results in each arrhythmia class using CPSC 2018.

V. DISCUSSION
The paradigm shift toward training deep learning networks
has significantly impacted the size of datasets used to train
models. On the other hand, the most convincing papers
using deep learning or mixed approaches have constructed
large datasets, ranging from 3,000 to 100,000 patients, for
training their networks [15], [19], [22], [45], and [46].
Although the datasets used in their research was large,
there were still limitations in the types of arrhythmias
collected.

In our study, we employed a large dataset [18] contain-
ing 51 arrhythmia classes and Jiewei Lai et al. [47] used a
large-scale dataset to classify 60 cardiac arrhythmia classes.
However, there were still insufficient data samples for some
classes, such as ventricular pre-excitation (VPE), second-
degree atrioventricular block: type one (2AVB1), ventricular
fusion wave (VFW), counterclockwise rotation (CCR), etc.
As a result, our proposed network showed limitations in
prediction performance in some classes. To address this
issue, future studies should focus on acquiring a variety of
arrhythmias and a larger number of ECG data samples. This
approach is essential to improve classification performance

further. In particular, we believe future arrhythmia classi-
fication studies will yield more meaningful and clinically
valuable results if they collaborate with cardiologists.

Unlike previous studies, the proposed network integrates
both the residual structure and channel attention mechanism.
As a result, we were able to achieve significant performance
improvements. We believe that this will be a great motivation
for future research.

VI. CONCLUSION
In this paper, we conduct the research based solely on ECG
data collected to interpret cardiac rhythm disorder [16],
[18]. We propose an automated multi-label cardiac arrhyth-
mia classification network based on CNN, which detects
and classifies 45 cardiac arrhythmia classes using 12-lead
ECG data. Specifically, we developed short residual and
global channel attention blocks during training to focus on
the main characteristics of each arrhythmia class from the
original 12-lead ECG data. The proposed network showed
a precision of 0.394, recall of 0.533, f1 score of 0.413,
AUROC of 0.962, and accuracy of 0.956 on a large-scale
12-lead ECG database for the arrhythmia study dataset [18].
Moreover, additional experiments conducted using the CPSC
2018 dataset [16] showed that the proposed network exhib-
ited a precision of 0.793, recall of 0.776, f1 score of 0.775,
AUROC of 0.951, and accuracy of 0.957. Compared with the
existing CNN-based arrhythmia classification networks, our
proposed network shows outstanding performance for cardiac
arrhythmia classification on two public datasets. The exper-
imental results convince the effectiveness of the proposed
method.
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