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ABSTRACT The Indonesian government has announced the initiation of carbon trading in 2023,
commencing with coal-fired power plants (PLTUs). Despite this, certain PLTUs in Indonesia, including
one examined in this research, still rely on manual identification of greenhouse gas (GHG) emissions and
need more data to support forthcoming carbon trading endeavors. To address this gap, this study focuses
on developing a predictive model using The Cross Industry Standard Process for Data Mining (CRISP-
DM) methodology to forecast carbon emissions, coal fuel consumption, and gross electricity. The predictive
model integrates time series models to forecast each variable, followed by a regression model for carbon
emission prediction. Evaluation metrics, including MAE, RMSE, and MAPE, are utilized, and model
training employs five machine learning models: Linear Regression, Support Vector Regression, Decision
Tree Regression, Random Forest Regression, and LightGBM. Results reveal that for PLTU Units 3 and 7,
the Linear Regression model performs optimally in time series modeling, whereas for PLTUUnit 8, Random
Forest Regression is most effective. Across all units, Linear Regression emerges as the superior model in
regression modeling. This study equips PLTUs with predictive insights into carbon emissions, facilitating
strategic planning for emission reduction. By considering predicted outcomes of coal fuel consumption and
gross electricity alongside carbon emission forecasts, PLTUs can comprehensively assess environmental and
financial impacts, guiding effective mitigation strategies.

INDEX TERMS Coal-fired power plants, emissions prediction, greenhouse gas emissions, machine learning.

I. INTRODUCTION
Global warming is a phenomenon of increasing global
temperature on Earth due to the effect of Greenhouse Gases
(GHG), thus increasing environmental problems around the
world [1], [2], [3]. One source of GHGs is emissions
from burning coal for power generation. More than 40%
of total carbon dioxide (CO2) emissions associated with
energy are attributable to the process of burning fossil fuels
for electricity generation purposes [4], [5]. The Indonesian
government is dedicated to achieving a 29% reduction in
greenhouse gas (GHG) emissions by 2030, amounting to
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834 million tons of CO2e. Emphasizing the energy sector as
a key focus, a target of 314 million tons of CO2e reduction
has been set [6]. The government is actively curbing GHG
emissions from coal-fired power plants through a carbon
trading mechanism, slated to commence in 2023, per the
Ministry of Energy andMineral Resources [7]. Consequently,
each power generation unit is mandated to calculate GHG
emissions, and various agencies must optimize efforts to
minimize carbon emissions according to the Carbon Eco-
nomic Value implementation mechanism. This necessitates
power plants to operate electricity generation efficiently in
compliance with relevant legal provisions [8], [9].

The case study in this research takes one of Indonesia’s
private coal-fired power plants (PLTU). This power plant has
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three operating units: Unit 3, Unit 7, and Unit 8. The power
plant has identified GHG emissions based on activity data per
fuel type but has yet to develop a system to predict carbon
emissions. Awareness of the importance of information on
future emission levels is one of the crucial steps in planning
to reduce GHG emissions [10]. Based on this, emission
prediction can be used to implement emission reduction
strategies effectively [11]. At the United Nations COP26
Conference on Climate Change in 2021, opportunities to
reduce GHG emissions were examined in 28 different axes
as part of efforts to prevent global warming. One of the
axes examined is the influence of machine learning on GHG
emission prediction in assisting informative decision-making
to reduce and manage GHG emissions [12]. Based on this,
carbon emission prediction analysis can be implemented
using a variety of methods, including machine learning-based
approaches [13], [14], [15], [16].

Currently, several studies have implemented machine-
learning approaches to carbon emission prediction. The
majority of existing research only uses global or country
carbon emissions data for the process of developing predic-
tive models [15], [17], [18], [19]. Furthermore, some other
studies only use internal data, so they do not consider various
external factors that may relate to emissions prediction [16].
Getting real-time data on fuel combustion activities at a coal-
fired power plant that can be processed into carbon emission
data in model development is a big challenge. Based on this,
this study will develop a carbon emission prediction model
using historical data on fuel combustion activities by utilizing
features related to emission prediction, one of which is the
use of coal feeder equipment at PLTU to identify coal fuel
consumption and electrical energy generated in real-timewith
granularity per day.

This research will focus on developing a hybrid time
series and regression models. This research will develop a
prediction model for each feature related to carbon emission
prediction (such as coal fuel consumption, the electrical
energy produced, weather data, and others) using a time series
model to make a prediction feature that will be used as input
to the regression model to predict emissions utilizing the
relationship of independent and dependent variables. Thus,
the resulting model will combine the time series model as a
prediction feature whose results will be integrated with the
emission prediction model using a regression model so that it
can produce emission predictions.

With accurate predictions of carbon emissions, PLTU
would be able to estimate future carbon trading decisions.
Similarly, with insights into predicted fuel consumption
and gross electricity output, PLTU can easily determine
fuel consumption estimates based on emission predictions
and carbon trading decisions. Thus, integrating predictive
models for carbon emissions, fuel consumption, and gross
electricity becomes paramount for informed decision-making
in carbon trading and emission reduction strategies. These
models enable PLTU to anticipate environmental impacts and
facilitate financial planning and risk management in future

trading endeavors. By leveraging advanced data mining
methodologies such as The Cross Industry Standard Process
for Data Mining (CRISP-DM) and employing various
machine learning algorithms like Linear Regression, Support
Vector Regression, Decision Tree Regression, RandomForest
Regression, and LightGBM, this research aims to develop
robust predictive models tailored to the complexities of
PLTU operations. Synthesis of time series and regression
models allows the study to provide PLTU with actionable
insights into emission trends, fuel consumption patterns,
and electricity generation dynamics, empowering proactive
carbon management strategies and sustainable operational
practices.

II. RELATED WORKS
This section will discuss all related works that are used as the
primary reference and used in developing solutions.

A. CALCULATION OF GHG EMISSIONS IN THE POWER
GENERATION SECTOR
The types of GHG emissions calculated by fossil-fuel power
generation units and biomass-based fuels are carbon dioxide
gas (CO2), methane gas (CH4), and nitrous oxide gas (N2O).
In total, three types of gases need to be calculated so that
it is necessary to convert non-CO2 GHG emissions into
carbon dioxide equivalent (CO2e) using the Global Warming
Potential (GWP) value contained in the Second Assessment
Report of IPCC (2nd AR of IPCC) [8]. The calculation of
CO2 emissions uses a calculation and measurement-based
approach. Each power plant can choose various calculation
methods according to the data availability in the field. The
Ministry of Energy and Mineral Resources has provided
guidelines for calculating emissions using four methods. The
emission calculationmethod uses activity data per type of fuel
at each coal-fired power plant (Method 1, Method 2, Method
3) and emission calculation using the Continuous Emissions
Monitoring System (CEMS) or Method 4 [8]. This research
will useMethod 1 in calculating CO2 emissions. The formula
for calculating CO2 emissions in Method 1 can be seen in
Formula 1.

ECO2 = DA × FE (1)

Activity data is fuel consumption data that has been
converted into units of energy. The formula for converting
coal fuel consumption data from units of mass (tons) to units
of energy (TJ) in calculating activity data in calculating CO2
emissions Method 1 can be seen in Formula 2.

DABB = FBB × NCV×10−3 (2)

Description:
DABB :Coal Activity Data (TJ)
FBB :Coal consumption (ton)
NCV :The Net Calorific Value (NCV) of coal (TJ/Gg),

the NCV value of specific coal-generating units,
or default national
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The coal-fired power plant uses diesel fuel in addition
to it. Diesel fuel is included in the category of Fuel Oil
(BBM). The formula for converting fuel consumption data
from kilo liters to units of energy (TJ) in calculating activity
data in calculating CO2 emissions Method 1 can be seen in
Formula 3.

DABBM = FBBM × ρ × NCV×10−6 (3)

Description:
DABBM : Fuel oil Activity Data (TJ)
FBBM : Fuel oil consumption (kiloliters)
NCV : The Net Calorific Value (NCV) of fuel

(TJ/GgBBM), the NCV value of specific fuel oil-
generating units, or default national

ρ : The specific gravity of fuel (kgBBM/m3)
This power plant also uses biodiesel as an additional fuel.

Biodiesel fuel falls into the category of liquid biomass. The
formula for converting fluid biomass consumption data from
kilo liters to units of energy (TJ) in calculating activity
data in calculating CO2 emissions Method 1 can be seen in
Formula 4.

DABM = FBM × NCV × ρ (4)

Description:
DABM :Liquid biomass activity data (TJ)
FBM :Consumption of liquid biomass (kilo liters)
NCV :The Net Calorific Value (NCV) of liquid biomass

(TJ/Gg), the specific NCV value of generating unit
or default national

ρ :The specific gravity of liquid biomass (kg/m3)
In addition to calculating CO2 emissions, each plant

must calculate CH4 and N2O emissions into carbon dioxide
equivalent (CO2e) using the GWP value. CH4 and N2O
emissions from fuel combustion can be calculated using
Method 1. The following is a formula for calculating CH4
and N2O emissions using Method 1 for coal fuel, fuel, and
liquid biomass. The formula for calculating CH4 and N2O
emissions of coal fuel can be seen in Formula 5.

ECH4 and N2O BB = (FBB × NCV) × FE×10−6 (5)

Description:
ECH4,N2O :Emission Factor (kg CH4/TJ or kg N2O/TJ)

FBB :Coal consumption (ton)
NCV :The Net Calorific Value (NCV) of coal

(weighted average, TJ/GG)
The formula for calculating CH4 and N2O emissions of Fuel
Oil (BBM) can be seen in Formula 6.

ECH4 and N2O BBM = (FBBM × NCV × ρ) × FE×10−9

(6)

Description:
ECH4,N2O :Total CH4 and N2O emissions (tonnes)

FE :Emission Factor (kg CH4/TJ or kg N2O/TJ)
FBBM :Fuel oil consumption (kilo liters)

NCV :The Net Calorific Value (NCV) of fuel
(weighted average, TJ/GG)

ρ :The specific gravity of fuel oil (kgBBM/m3)
The formula for calculating CH4 andN2O emissions of liquid
biomass fuel can be seen in Formula 7.

ECH4 and N2O BM = FBM × ρ × NCV × FE×10−6

(7)

Description:
ECH4,N2O :Total CH4 and N2O emissions (tonnes)

FE :Emission Factor (ton CH4/TJ or ton N2O/TJ)
FBM :Consumption of liquid biomass (kilo liters)
NCV :The Net Calorific Value (NCV) of liquid

biomass (weighted average, TJ/GG)
ρ :The specific gravity of liquid biomass (kg/m3)

B. EMISSION LIMIT REGULATION IN INDONESIA
In 2020, Indonesia initiated a carbon emissions trading trial
targeting coal-fired power plants. According to information
from the Directorate General of Electricity, 32 coal-fired
power plants participated in the carbon emission trading
program. Among these, 14 coal-fired power plants operated
as buyers, constituting 44% of the total, while 18 coal-fired
power plants functioned as sellers, making up the remaining
56%. The cumulative volume of carbon transactions during
this period reached 42,455.42 tons of CO2e, with an average
unit price of $2 per ton of CO2 [20].
A prerequisite for carbon trading frameworks involves

implementing a cap or an upper threshold for greenhouse gas
(GHG) emissions. The upper limit for emissions constitutes
a technical accord established by the Minister of Energy
and Mineral Resources, delineating the permissible emission
levels within a specified timeframe [9]. Each unit’s upper
emission limit is determined at this power plant per the
Minister of Energy and Mineral Resources Decree [21].
The 2023 Upper Emission Limit values for the power plant
are detailed in Table 1, elucidating distinct cap values for
three operational coal-fired power plant units based on their
respective installed capacity levels.

C. CARBON EMISSION PREDICTION MODELS USING
MACHINE LEARNING
This section contains a literature review comprising a
series of studies relevant to the research, serving as a
reference source. A thorough literature review can enhance
the comprehension of the upcoming research. The pertinent
studies are outlined in Table 2. Based on Table 2, there
are fundamental differences in this study. This research will
develop a combination of time series models to predict each
variable used as a feature to predict emissions. Then, the
prediction results are used as input to regression models
in predicting carbon emissions. Furthermore, the variables
in this study are quite varied, including variables of coal
fuel consumption, gross electricity, CO2 emissions, CO2e
emissions, and external data, namely weather data. Then, the
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data used using specific data from the power plant uses data
with granularity per day to generate more data to improve
model performance.

TABLE 1. Power plant’s PTBAE value in 2023.

III. PROPOSED METHOD
This section explains in detail the development of the model
to be built. Model development in this study is one of the
developments from previous research [13]. The methodology
used can be seen in Figure 1.

FIGURE 1. Methodology.

Based on Figure 1, the initial part of the model develop-
ment stages employs The Cross Industry Standard Process
for Data Mining (CRISP-DM) methodology due to its
comprehensive framework that systematically guides the
planning and execution of predictive modeling. CRISP-DM
stands out for its structured approach to understanding both
business objectives and the intricacies of the data involved.
This methodology is pivotal in ensuring the development
process is aligned with the stakeholders’ goals and robust
enough to address the underlying issues effectively. This
structured approach is crucial for successfully predicting
carbon emissions using machine learning, as it ensures that

the models are developed with a clear understanding of the
objectives, data, and potential challenges.

The model development phase in CRISP-DM begins
with data understanding, followed by data preparation,
modeling, evaluation, and deployment. The input data for
predictive modeling includes both internal and external
datasets. Predictive modeling involves using time series
models to predict each feature within the regression model.
Subsequently, the regression model generates predictions
of carbon emissions. This sequential approach ensures a
comprehensive analysis and data utilization, allowing for
accurate predictions and effective decision-making strategies
for reducing carbon emissions.

A. DATA UNDERSTANDING
Data collection in this study uses two primary data, namely
internal data, which is activity data generated from the fuel
combustion process at the power plant, and external data,
namely weather data, to see the correlation with internal data.

1) INTERNAL DATA
The dataset utilized in this study originates from a private
PLTU in Indonesia, covering the period from January 1,
2021, to July 31, 2023. It provides a comprehensive overview
of emissions for Units 3, 7, and 8, utilizing Method 1.
Specifically, the data is sourced from the coal feeder
equipment operational at the PLTU, capturing information
daily over a 24-hour cycle. This equipment is responsible
for precisely metering and delivering coal to the power
generation process. By capturing data from the coal feeder
equipment daily, we gain a granular understanding of coal
consumption patterns, which directly influence emissions
within the PLTU. This data source offers valuable insights
into the operational dynamics of the power plant, furnishing
essential variables necessary for analyzing emission trends
and guiding the development of predictive models aimed
at emission reduction strategies. The dataset encompasses
a mix of independent and dependent variables critical for
understanding and analyzing the emission dynamics within
these units.

a: INDEPENDENT VARIABLES
1. Coal Fuel Consumption Data: Represents the quantity

of coal used within a specific time frame. This metric is
pivotal as it directly influences the electricity generated
and the volume of emissions produced. High coal
consumption typically correlates with increased power
output and higher emission levels.

2. Gross Electricity or Electrical Energy Results from
the Combustion Process: Quantifies the total electricity
generated from burning coal. This variable is essential
for assessing the efficiency and environmental impact
of the power generation process. It bridges fuel
consumption and emission production, highlighting
energy conversion effectiveness from coal to electricity.
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TABLE 2. Literature review.

3. CO2 Emission Data: Tracks the volume of carbon diox-
ide released during the coal combustion process. CO2
emissions are a primary concern for environmental
and climate change studies, as they contribute signif-
icantly to the greenhouse gas effect. Monitoring these
emissions is crucial for evaluating the environmental
footprint of power generation activities.

b: DEPENDENT VARIABLE
CO2e Emission Data (CO2, N2O, and CH4 emissions): Pro-
vides a comprehensive measure of greenhouse gas emissions,
encapsulating not just CO2 but also nitrous oxide (N2O)
and methane (CH4). The CO2e (carbon dioxide equivalent)
metric aggregates the impact of all these gases into a
single measure, reflecting the total greenhouse gas emissions
in terms of CO2’s equivalent implications. This variable
is dependent on the independent variables, as changes in
coal consumption, electricity generation, and direct CO2
emissions influence the overall CO2e emissions. Including
N2O and CH4, alongside CO2, in the CO2e calculation
is vital for capturing the full spectrum of greenhouse gas
emissions, given their potent global warming potential.

2) EXTERNAL DATA
Integrating external weather data from Meteum AI offers a
distinctive insight into the environmental factors impacting
power plant operations and emissions [22]. This dataset,
which was collected daily from January 1, 2021, to July 31,
2023, encompasses several critical variables. These variables
are employed as independent variables in predicting the
dependent variable, namely CO2e emissions. Additionally,
this weather data is utilized to analyze the relationship
between each weather variable and emission patterns, provid-
ing valuable insights into the influence of weather conditions
on emissions.

1. 2m Air Temperature in Celsius (v_2t): This variable
measures the ambient temperature 2 meters above
ground level. Temperature plays a crucial role in
determining the operational efficiency of power plants.
It affects the plant’s cooling requirements and can
influence the thermal efficiency of electricity gener-
ation, with higher temperatures potentially reducing
efficiency due to increased cooling needs.

2. 2m Dew Point in Celsius (v_2d): The dew point at
2meters indicates themoisture content in the air. Lower
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dew points signify drier air, affecting coal storage
and quality. Dryer conditions may reduce the moisture
content of coal, potentially enhancing its combustion
efficiency and affecting CO2e emissions.

3. V-wind Component on 10m in Meters per Second
(v_10v): This variable measures the vertical compo-
nent of wind speed at a height of 10 meters. Cyclical
wind patterns can directly impact coal consumption by
affecting operational cooling needs. Wind speed and
direction can alter the ambient temperature around the
power plant and affect the coal burned rate.

4. 10m Wind Gust in Meters per Second (v_i10fg): Wind
gusts at 10 meters capture the short-term variations
in wind speed. Significant variability in wind gusts,
with cyclical patterns, can influence both the cooling
requirements of the plant and the dispersion of emitted
pollutants, including CO2 and CO2e.

5. Volumetric Soil Water at 0-7 cm in Cubic Meters
(v_swvl1): This metric reflects the water content in
the soil up to a depth of 7 cm, indicative of the
soil’s moisture level. Cyclical drops in soil moisture
could be related to seasonal variations in rainfall,
affecting the ambient humidity and, consequently, coal
storage conditions. Higher soil moisture can increase
the surrounding air’s humidity, potentially impacting
coal quality and emissions.

3) CORRELATION BETWEEN VARIABLES
This section explores the correlation between variables within
PLTU Unit 3, Unit 7, and Unit 8. The correlation heatmap
matrix for PLTU Unit 3, depicted in Figure 2, visually
represents the strength and direction of the relationships
among the various parameters measured. Each cell in the
matrix displays the correlation coefficient between two
variables, ranging from −1 to 1.

A correlation coefficient close to 1 indicates a strong
positive correlation, implying that as one variable increases,
the other also tends to increase. Conversely, a coefficient
near −1 signifies a robust negative correlation, suggesting
that as one variable increases, the other tends to decrease.
A coefficient near 0 indicates a weak or no correlation
between the variables.

Based on Figure 2, the correlation analysis reveals that the
independent variables with the strongest correlation to the
dependent variable (CO2e emissions) in PLTU Unit 3 are as
follows:
1. CO2 Emissions (Correlation Value: 1): The perfect

positive correlation indicates that as CO2 emissions
increase or decrease, CO2e emissions also increase
or decrease proportionally. This suggests a direct and
substantial relationship between CO2 emissions and
CO2e emissions, which is expected given that CO2
emissions contribute directly to the overall carbon
footprint.

2. Gross Electricity (Correlation Value: 0.83): The strong
positive correlation implies that higher levels of

FIGURE 2. Correlation between variables in PLTU unit 3.

gross electricity generation are closely associated with
increased CO2e emissions. This correlation is logical
since electricity generation often involves the combus-
tion of fossil fuels, resulting in CO2e emissions.

3. Coal Consumption (Correlation Value: 0.82): Similar
to gross electricity, coal consumption demonstrates
a strong positive correlation with CO2e emissions.
This finding aligns with expectations, as coal is
a primary energy source in power plants, and its
combustion releases significant amounts of CO2e
emissions.

4. Weather Variables (Highest Correlation: 2mDewPoint):
Although the weather variables exhibit lower correlation
values than internal variables, they still contribute to
understanding emission dynamics. The highest corre-
lation observed with the 2m Dew Point suggests that
certain weather conditions, such as humidity levels, may
significantly influence CO2e emissions.

Overall, the correlation analysis underscores the impor-
tance of internal factors such as CO2 emissions, gross
electricity, and coal consumption in driving CO2e emis-
sions in PLTU Unit 3. While weather variables show less
significant correlations, they still provide supplementary
insights into emission patterns, highlighting the multifaceted
nature of emission dynamics in power plants. Next, the
correlation relationships among variables in PLTUUnit 7 can
be observed in Figure 3 and PLTU Unit 8 in Figure 4.

Based on Figure 3 and Figure 4, the correlation analysis
conducted across all units within the PLTU reveals that the
influence of variables on CO2e emissions remains relatively
consistent across different units. While slight variations in the
strength of correlations between specific variables may exist,
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FIGURE 3. Correlation between variables in PLTU unit 7.

FIGURE 4. Correlation between variables in PLTU unit 8.

the overall impact and direction of influence remain broadly
similar across units.

Across all units, variables such as CO2 emissions, gross
electricity generation, and coal consumption consistently
exhibit strong positive correlations with CO2e emissions.
This suggests that these internal factors are crucial in driving
carbon emissions in coal-fired power plants, regardless of the
specific unit. Similarly, the influence of weather variables,

although weaker than internal factors, shows a consistent
pattern across units. While individual weather variables may
vary in correlation strengths, they generally contribute to
understanding emission dynamics within the PLTU. This
uniformity in correlation patterns underscores the robustness
of the analysis and indicates that the identified relationships
are likely to hold across different units within the power
plant. Such insights are instrumental in informing emission
reduction strategies and optimizing operational efficiency
across the facility.

B. DATA PREPARATION
This section will explain each stage of the Data Preparation
phase. The stages in this phase start from the data preprocess-
ing and feature engineering stages.

1) DATA PREPROCESSING
Data preprocessing is a critical stage in data preparation
before it is used to train models in machine learning
modeling. The details of the data preprocessing stages are as
follows.

1. In time format conversion, the ‘‘time’’ field is converted
to DateTime format using the Pandas library for better
analysis and modeling.

2. Some conditions are used to delete data with invalid or
irrelevant values to delete specific data. For example,
data with values ‘‘Bad’’ and ‘‘[-11059] No Good Data
For Calculation’’ are in the column ‘‘gross_electricity.’’

3. Data type change: Some data columns are changed
according to the data type. For example, the col-
umn ‘‘unit_id’’ is converted to integer type (int),
while other columns such as ‘‘coal_consumption,’’
‘‘total_co2_emission’’, and others are converted to
float type, making mathematical processing easier.

4. Data grouping and aggregation: data is grouped based
on the ‘‘time’’ column with the frequency of grouping
per day (freq =‘‘D’’). Next, the aggregation function
(agg_funcs) is applied to the grouped data. The grouped
data is data that will be used as features such as
‘‘time,’’ ‘‘coal_consumption,’’ ‘‘total_co2_emission’’,
and other data. After that, the data is reset to its index
to produce aggregated data.

2) FEATURE ENGINEERING
Feature engineering is creating or changing variables in a
dataset to obtain additional information or improve model
performance. Feature engineering uses the Moving Aver-
age method. Moving Averages provide further information
regarding trends and patterns from the data to be analyzed.
The types of Moving Average used are Simple Moving
Average (SMA) and Exponential Moving Average (EMA).
Simple Moving Average (SMA) is a method for calculating
the average of the last amount of data in a specific time range.
At the same time, EMA is a method that gives greater weight
to the latest data in its calculation. This makes it possible to
put more emphasis on the latest trends in the data [23].

VOLUME 12, 2024 47125



N. A. Herawati et al.: Hybrid Predictive Model as an Emission Reduction Strategy

In the regression model, feature engineering is done
by adding features to the ‘‘total_co2_emission’’, ‘‘coal_
consumption,’’ and ‘‘gross_electricity’’ features. SMA is
calculated with windows of 5 days, 10 days, 20 days, and
30 days. Next, it is stored with a new column according to
the number of windows used. Then, the EMA is calculated
with filtering factors (spans) of 5 days, 10 days, 20 days, and
30 days. Next, it is stored with a new column according to the
number of spans used. In the SMA method, the first index
starts according to the specified window; in this case, most
windows have a 30-day window, so the data on index 0-29
in window 30 will be empty, and then the data used is only
data starting at index 30. The data in the regression model
for PLTU Unit 3, Unit 7, and Unit 8 have been combined
with previous weather data. Each unit consists of 942 rows
and 10 columns or variables, but after feature engineering,
it increased to 912 rows and 34 columns or variables. One
sample of the correlation matrix in the regression model,
namely the correlation matrix at PLTU Unit 3, can be seen
in Figure 5.

FIGURE 5. Correlation matrix of each unit 3 regression model feature in
the emission prediction model.

In time series models or feature prediction models, the
main focus of this model is to utilize historical data from each
feature to predict future values, so it is essential to consider
additional features that can improve prediction accuracy.
Some of the techniques used are lagging, SMA, and EMA
techniques. The data used is historical data from each feature
or variable in the previous period. Lagging techniques carried
out by the shifting process are lag 1, lag 2, lag 3, lag 4,
lag 5, lag 10, lag 20, lag 30, lag 31, lag 38, lag 45, and lag
61. Furthermore, the SMA technique was carried out with

windows of 2 days, 3 days, 4 days, 5 days, 10 days, 20 days,
30 days, 31 days, 38 days, 45 days, and 61 days. Then, the
EMA technique is carried out with span windows of 2 days,
3 days, 4 days, 5 days, 10 days, 12 days, 14 days, 20 days,
30 days, 31 days, 38 days, 45 days, and 61 days. In this
way, the model can consider the effect of emissions from the
previous few days on emissions the next day, allowing for
more accurate predictions and responsiveness to changes in
emissions levels. One sample of the correlationmatrix feature
prediction, namely the feature of coal fuel consumption at
PLTU Unit 3, can be seen in Figure 6.

FIGURE 6. Correlation matrix for each model feature time series unit
3 feature coal consumption.

C. MODELING
Various machine learning algorithm models will be devel-
oped to assess their performance in solving specific
tasks [24], [25]. Modeling techniques in time series models
to predict each feature or independent variable. Furthermore,
modeling techniques on carbon emission prediction models
will use regression models in each generating unit. Some
machine learning algorithms used in the modeling phase are
as follows:

1. Linear Regression
2. Support Vector Regression (SVR)
3. Decision Tree Regression
4. Random Forest Regression
5. LightGBM
Machine learning model development involves setting

up or configuring hyperparameters on each model to be
developed. Hyperparameters are settings that cannot be
learned by the model during the training process and
must be determined before the training process begins.
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Hyperparameters will affect the learning process in each
model and the final performance of the model. Figure 7
represents the hyperparameters used in the time series model,
while Figure 8 is the hyperparameter used in the regression
model.

FIGURE 7. Hyperparameters in time series models.

FIGURE 8. Hyperparameters in regression models.

D. EVALUATION
The dataset is segmented using the holdout method in
the testing phase, dedicating 85% to training and 15% to
testing. This distribution ensures a comprehensive learning
environment for themodel to identify patterns and intricacies,
boosting its accuracy and generalization ability. Moreover,
the allocation provides enough test data to accurately assess
the model’s performance on novel data, striking a balance
between mitigating overfitting and evaluating effectiveness
in real-world scenarios. A specific cut-off date of April 1,
2023, is set to distinctly separate the training and testing
datasets, facilitating a precise evaluation of the model’s
predictive capabilities. This strategic split maximizes the
model’s exposure to diverse training examples while ensuring
an impartial test set for performance validation. Choosing
an 85/15 split is a calculated decision to craft a thoroughly
trained model to generalize well beyond its training data,
proving its value and dependability for practical applications.
Testing on each model will be conducted using several
metrics as follows.

1. Mean Absolute Error (MAE)
2. Root Mean Square Error (RMSE)
3. Mean Absolute Percentage Error (MAPE)
RMSE accentuates the impact of significant errors by

elevating each error before averaging, while MAE offers
uniform treatment of all deviations, providing a clear
understanding in absolute terms. However, MAE cannot

discern error magnitudes. MAE and RMSE range from 0 to
infinity, contingent on the data scale [26]. In contrast, MAPE
evaluates relative error without squaring mistakes, showing
reduced susceptibility to outliers [27]. MAPE offers valuable
insights into error percentages. Yet, it faces challenges in
datasets with zero values or substantial variations, potentially
yielding undefined or infinite values. Additionally, MAPE
encompasses diverse assessment categories, detailed in
Table 3 [28].

TABLE 3. MAPE evaluation assessment categories.

E. DEPLOYMENT
The completion of model development typically marks
an intermediary stage in a project. Whether the model’s
objective is to enhance understanding of the data or serve
another purpose, end-users must structure and communicate
the acquired knowledge effectively for practical utility.
Frequently, this entails actively integrating the model into an
organization’s decision-making processes [24], [29], [30].

IV. RESULTS AND DISCUSSION
Time series and regression models have been evaluated using
three metrics, namely Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Average Percentage
Error (MAPE). The test analysis results are obtained based
on the evaluation results, which will be explained in each
subchapter.

A. PERFORMANCE ANALYSIS OF TIME SERIES FEATURE
PREDICTION MODELING
In the time series feature prediction model, three model
variations are developed based on features or independent
variables that will be used as inputs to the regression model:
the prediction model of coal consumption features, CO2
emissions, and gross electricity. A comparison of test results
for each model on each feature can be seen in Table 4. Based
on Table 4, the best model for each unit is obtained as follows.

1. Unit 3: The best model is Linear Regression with
an average MAPE value of 0.14 or 14%; the value
indicates the competence of the model to produce
predictions in the ‘‘good’’ category, followed by the
lowest average RMSE value of 2083.69 and the lowest
average MAE value of 1604.74.

2. Unit 7: The best model is Linear Regression with an
average MAPE value of 2.16 or 216%; the value shows
a MAPE value that is an error because it is more than
100%; this is because the characteristic data in Unit
7 has an actual value of 0 causing theMAPE error value
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becauseMAPE is very sensitive to the actual value of 0.
However, other metrics, such as RMSE and MAE, get
the lowest average value, namely the average RMSE
value of 1969.54 and the average value of MAE of
1153.49.

3. Unit 8: The best model is Random Forest Regression
with an average MAPE value of 0.12 or 12%; the
value shows the competence of the model to produce
predictions in the ‘‘good’’ category, followed by the
lowest average RMSE value of 1271.52 and the lowest
average MAE value of 1050.65.

The following are the results of the analysis based on the
results of obtaining test values on the best model:

1. Linear Regression is the best model in Unit 3 and
Unit 7 because the data in these units have a
linear relationship between independent and dependent
features. The effectiveness of Linear Regression being
the best model in Unit 3 and Unit 7 shows that the
data for these units have a robust linear relationship,
making it easier for the model to make more accurate
predictions.

2. Random Forest Regression is the best model in Unit
8 because the characteristics of the data in Unit 8 have
a more complex relationship. The success of Random
Forest Regression as the best model in Unit 8 shows
that the data for this unit is more complicated or non-
linear, so Random Forest Regression can capture this
relationship better than other models.

FIGURE 9. Comparison of predicted value and actual value of each
feature unit 3.

A comparison of the testing dataset between the predicted
value and the actual value for each feature using the Linear
Regression model for PLTU Unit 3 can be seen in Figure 9.
Furthermore, PLTU Unit 7, using the Linear Regression
model, can be seen in Figure 10, and PLTU Unit 8, using the
Random Forest Regression model, can be seen in Figure 11.

TABLE 4. Results of time series model evaluation (feature prediction).
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TABLE 4. (Continued.) Results of time series model evaluation (feature
prediction).

B. PERFORMANCE ANALYSIS OF CARBON EMISSION
PREDICTION MODELING
The CO2e emission prediction model uses a regression
model to predict CO2e emissions based on each feature or
independent variable generated from the time series feature
prediction model. A comparison of test results for each model
on each feature can be seen in Table 5.

Based on the test results in Table 5, the best model for all
units is Linear Regression.

1. Unit 3: The best model is Linear Regression with
a MAPE value of 1.7E-07 or 0.000017%; the value
indicates the competence of the model to produce
predictions with the ‘‘excellent’’ category, followed by
the lowest RMSE value of 0.003 and the lowest MAE
value of 0.002.

FIGURE 10. Comparison of predicted value and actual value of each
feature unit 7.

FIGURE 11. Comparison of predicted value and actual value of each
feature unit 8.

2. Unit 7: The best model is Linear Regression with a
MAPE value of 9.2E+09; the MAPE value shows
a MAPE error value because it is more than 100%;
this is because the characteristic data in Unit 7 has
an actual value of 0, causing the MAPE error value
becauseMAPE is very sensitive to the actual value of 0.
However, other metrics, such as RMSE and MAE, get
the lowest values, namely the RMSE value of 0.002 and
the MAE value of 0.001.

3. Unit 8: The best model is Linear Regression with a
MAPE value of 3.2E+11; the value shows a MAPE
value that is an error because it is more than 100%;
this is because the characteristic data in Unit 8 has
an actual value of 0 causing the MAPE error value
becauseMAPE is very sensitive to the actual value of 0.
However, other metrics, such as RMSE and MAE, get

VOLUME 12, 2024 47129



N. A. Herawati et al.: Hybrid Predictive Model as an Emission Reduction Strategy

TABLE 5. Results of regression model evaluation (CO2e emission
prediction).

the lowest values, namely the RMSE value of 0.002 and
the MAE value of 0.001.

Linear Regression is the best model for all units; it is
supported by a solid relationship between the features used
in the model and the predicted targets, resulting in low
RMSE and MAE evaluation metric values; it shows that
this model is very good at making accurate predictions for
all units. A comparison of the testing dataset between the
predicted value of CO2e and the actual value of CO2e using
the Linear Regression model in PLTU Unit 3 can be seen
in Figure 12. A comparison of the testing dataset between
the predicted CO2e value and actual CO2e value using the
Linear Regression model in PLTU Unit 7 can be seen in
Figure 13. A comparison of the testing dataset between the
predicted CO2e value and actual CO2e value using the Linear
Regression model in PLTU Unit 8 can be seen in Figure 14.

FIGURE 12. Comparison of CO2e predicted value and actual CO2e value
unit 3.

C. PERFORMANCE ANALYSIS FROM THE RESULTS OF THE
INTEGRATION OF THE FEATURE PREDICTION MODEL
WITH THE CARBON EMISSION PREDICTION MODEL
This section analyzes the results of integrating time series
models with regression to obtain the results of coal fuel
consumption predictions, gross electricity predictions, and
CO2e emission predictions until 2024. The results of
integration will be explained in each subchapter as follows.

FIGURE 13. Comparison of CO2e predicted value and actual CO2e value
unit 7.

FIGURE 14. Comparison of CO2e predicted value and actual CO2e value
unit 8.

FIGURE 15. Coal fuel consumption prediction using best model.

1) ANALYSIS OF COAL CONSUMPTION PREDICTION
RESULTS (TIME SERIES MODEL)
In this section, we will analyze the predicted results of
coal fuel consumption based on the test results in Table 4.
Figure 15 is the result of predicting coal consumption using
the best model.
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Based on Figure 15, the results of implementing the best
model to predict coal fuel consumption in all units for
518 days or until December 30, 2024. Table 6 provides
information on the prediction of coal fuel consumption using
the best model from January 1, 2024, to December 30, 2024.

TABLE 6. Results of coal fuel consumption prediction in 2024.

Based on Table 6, the predicted results of coal fuel
consumption can be used as a reference for the power plant
stakeholders to estimate the use of coal fuel consumption in
the future by considering the emissions produced based on
the predicted results of coal fuel consumption.

2) ANALYSIS OF GROSS ELECTRICITY PREDICTION RESULTS
(TIME SERIES MODEL)
This section will analyze the gross electricity prediction
results based on Table 4 ’s test results. Figure 16 shows the
results of the awful electricity prediction in Unit 3, Unit 7,
and Unit 8 using the best model. Based on the results of the
prediction experiment for the next 518 days or December 30,
2024. Figure 16 shows gross electricity prediction results.

FIGURE 16. Gross electricity prediction using best model.

Figure 16 shows that it can be analyzed when the best
model is implemented into predictions for as many as
518 days or until December 30, 2024. Table 7 contains gross
electricity results from January 1, 2024, to December 30,
2024.

Based on Table 7, the results of gross electricity predictions
can be used as a reference for power plant stakeholders to
be able to estimate the results of electrical energy produced

TABLE 7. Results of gross electricity prediction in 2024.

by considering the results of coal consumption predictions
and emission predictions made so that the power plant can
consider environmental and financial impacts in the future.

3) ANALYSIS OF CARBON EMISSION PREDICTION RESULTS
(REGRESSION MODEL)
Emission prediction is obtained using each best model based
on Table 5 for CO2e emission prediction in Method 1. The
emission prediction results for each unit using a regression
model using feature inputs based on the results of the feature
prediction model using the best model. The results of the
CO2e emission prediction in Method 1 can be seen in
Figure 17.

FIGURE 17. CO2e emission prediction method 1 using best model.

Based on Figure 17, Figure (a) is the result of the prediction
of CO2e emissions at PLTU Unit 3 using the Linear
Regression Model, Figure (b) is the result of prediction of
CO2e emissions at PLTU Unit 7 using the Linear Regression
Model, and Figure (c) is the result of prediction of CO2e
emissions at PLTUUnit 8 using the Linear RegressionModel.
Implementing CO2e emission predictions using the best
model results in emission predictions of 518 days or until
December 30, 2024. The results of emission predictions for
the 2024 period starting from January 1, 2024, to December
30, 2024, resulted in predictions of CO2e emissions in
Unit 3 of 4,965,151.67 tons of CO2e, predictions of CO2e
emissions in Unit 7 of 4,119,092.09 tons of CO2e, and
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predictions of CO2e emissions in Unit 8 of 6,397,632.42 tons
of CO2e.

The findings from our predictive models, as illustrated
in Figure 17, reveal valuable insights into the forecasted
CO2e emissions for PLTU Units 3, 7, and 8. The high
correlation observed between the independent variables and
the dependent variable, as identified theoretically, under-
scores the significance of feature selection in regression
tasks. This implies that the chosen features, including coal
consumption, gross electricity, CO2 emissions, and five
weather data, effectively capture the underlying dynamics
influencing emissions.

Practically, these results offer actionable insights for
stakeholders in coal-fired power plants. By leveraging the
predictive capabilities of our models, plant operators can
anticipate future emission levels with greater precision,
enabling proactive decision-making in emission reduction
strategies. For instance, operators can implement targeted
measures to optimize plant operations and minimize envi-
ronmental impact by identifying periods of high emission
intensity.

Moreover, the ability to forecast emissions over an
extended period, as demonstrated in our analysis until
December 30, 2024, provides valuable foresight for long-
term planning and regulatory compliance. This allows power
plant stakeholders to align their strategies with emission
reduction targets and carbon trading regulations, promoting
sustainability and environmental responsibility.

V. CONCLUSION
In this study, we have developed a hybrid predictive model
that integrates time series and regression techniques to
forecast CO2e emissions in coal-fired power plants. Time
series models forecast individual variables used as features
for CO2e emissions prediction, subsequently employed as
inputs for regression models. By combining internal and
external data sources, including coal consumption, gross
electricity, CO2 emissions, and five weather data, our model
provides a comprehensive understanding of CO2e emissions
dynamics.

Evaluation metrics such as MAE, RMSE, and MAPE
demonstrate the model’s effectiveness, with Linear Regres-
sion performing optimally in time series modeling for PLTU
Units 3 and 7 and Random Forest Regression proving
superior for PLTUUnit 8. Subsequently, the regressionmodel
testing results for all units produced the best model, Linear
Regression. This underscores the importance of considering
data characteristics and selecting appropriate models for
accurate predictions.

Furthermore, our study highlights the significance of incor-
porating time series data into regression models. Unlike tra-
ditional regression models, which rely solely on independent
variables, including time series data enables the prediction
of future independent variable values, which is crucial for
forecasting CO2e emissions. This methodology empowers
power plants to anticipate carbon emissions and make

informed decisions regarding carbon trading. Additionally,
coal consumption and gross electricity predictions provide
valuable insights into fuel requirements and environmental
impacts, facilitating effective emission reduction strategies
aligned with regulatory requirements and operational goals.
However, bridging the gap between research findings and
real-world implementation is crucial to ensure practical
applicability.

Future work should focus on integrating our research
results with practical applications in Indonesian power
plants. This would enable the optimization of carbon
trading decisions and emission reduction efforts, thereby
contributing to the advancement of sustainable practices in
the power generation industry. Future research should explore
additional machine learning models beyond those examined
in this study and incorporate regular data training updates
to capture evolving trends effectively. Alternative calculation
methods, such as Continuous Emission Monitoring Systems
(CEMS), could enhance the holistic emission forecasting and
management approach.

In conclusion, our hybrid predictive model frame-
work enhances emission prediction accuracy and facilitates
informed decision-making regarding carbon trading and
emission reduction strategies in coal-fired power plants. Our
study advances sustainable practices in the power generation
industry by leveraging advanced data mining techniques,
such as time series and regression modeling.
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