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ABSTRACT The correct classification of white blood cell subtypes is critical in the diagnosis of blood
disease. However, the performance of classical computer vision-based classification methods is heavily
dependent on the features that should be carefully designed by trial and error. The machine learning-based
classifier outperforms the traditional classifiers but suffers from sample labeling, which is labor intensive
and time consuming. This paper presents a semi-supervised convolutional neural network that can maintain
a similarly high accuracy of classification as deep learning approaches with only 10% labeled data or less.
A Visual Geometry Group (VGG) network model was pre-trained with a small amount of labeled data and
then used to predict unlabeled data. After implementing entropy filtering and confidence filtering processes,
high-quality pseudo label data were obtained and served as input for the final mean teacher model training.
The proposed methodology was validated on a dataset of 9069 synthetic images that correspond to five
different subtypes of white blood cells. The model yielded an overall average accuracy of 94.4% with only
500 labeled samples, which is slightly lower than that of the fully supervised model with 9069 labeled
samples (97.9%) but much higher than that of the fully supervised model with 500 labeled samples (86.5%).
With such results, the proposed model demonstrates promising prospects for developing clinically useful
solutions that are able to detect white blood cells based on blood cell images.

INDEX TERMS White blood cell classification, medical imaging, deep learning, semi-supervision.

I. INTRODUCTION

The white blood cells in human blood can be classified
into five subtypes: neutrophils, monocytes, lymphocytes,
eosinophils, and basophils (figure 1). Blood smear =
microscopy is considered the most efficient and cost-effective (c)
method for observing blood cells. Accurately and precisely
classifying different types of white blood cells in microscopy
images is a critical step in the process of blood smear
microscopy. However, the conventional practice of manual
microscopy involves a significant amount of time and is prone
to considerable human statistical bias.

FIGURE 1. Five subtypes of white blood cells. (a) Monocyte;
(b) lymphocyte; (c) basophil; (d) eosinophil; (e) neutrophil.

improvement of medical imaging techniques, computer aided
automatic recognition and classification techniques based

Therefore, there is a pressing need in clinical medicine
to enhance the level of automation in microscopy. With the

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra De Benedictis.

on microscopy images offer substantial advantages in terms
of cost-effectiveness and efficiency. Consequently, it has
emerged as a growing trend in technological development.
Peripheral blood contains a relatively low density of white
blood cells, and traditional image segmentation algorithms
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can accurately locate individual white blood cells from
microscopy images. Therefore, early research on computer
aided cell image classification and recognition primarily
focused on detailed cell segmentation using various algo-
rithms, followed by feature extraction and classification on
segmented images. The accuracy varied between 70.6%
and 96%. For example, in 2018, Li et al. [1] proposed a
five-classification method for white blood cells based on
texture features. This method obtained texture feature param-
eters through region growing using pattern points obtained by
clustering and combined morphological and texture features
to achieve efficient feature representation. Finally, an artifi-
cial neural network classifier was used for classification. On a
test set of 1310 images, the correct recognition rate for each
cell type exceeded 92%.

With the significant breakthroughs achieved by deep learn-
ing in image classification, an increasing number of studies
focused on deep learning based image classification methods.
These methods simplify the image preprocessing steps and
the manual design of features, avoiding the problem of
low accuracy caused by inappropriate features and classi-
fier selection. However, they still require a large amount
of data annotation work. Medical datasets are particularly
challenging to annotate, often requiring discussions among
multiple human experts for confirmation. Therefore, utilizing
unlabeled images to achieve better classification performance
under the condition of limited annotations is an urgent
problem that needs to be addressed.

Semi-supervised methods can leverage unlabeled image
information and a small amount of labeled images to train
networks, achieving classification performance close to the
upper limit of fully supervised learning [2]. Thus, apply-
ing semi-supervised learning can significantly reduce the
workload of manual data annotation and lower the cost of
machine learning in the field of white blood cell classifica-
tion. In this paper, we propose a semi-supervised learning
method combined with deep learning for automatic classi-
fication of five subtypes of white blood cells, which can
reduce the need for manually labeled data and improve the
classification accuracy of white blood cells under weak super-
vision conditions. The main contributions of this paper are as
follows:

« A semi-supervised convolutional neural network model
is proposed for white blood cell classification, which
is able to achieve similar accuracy to fully supervised
models with less than 10% labeled data.

o The proportion of labeled data in batch samples is rec-
ommended to be approximately 50%, which leads to the
highest classification accuracy on the test.

o The classifier achieves the highest accuracy when the
confidence threshold is set to 0.8 combined with the
entropy threshold to be 0.01.

o Visual Geometry Group (VGG) network and Residual
Networks (ResNet) are compared as the backbone net-
work of the classifier. The accuracy of ResNet is lower
than that of the VGG network when the pixel size of the
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input images is small. ResNet is more suitable for larger
input image sizes.

The rest of the paper is organized as follows: Section II pro-
vides the background and literature regarding the proposed
model. Section III introduces the semi-supervised learning
based white blood cell classification methods. Section IV
describes the data used for model training and testing.
Section V presents the results of white blood cell classi-
fication using proposed methods. Section VI discusses the
feature maps, critical parameters, and the backbone network
of the proposed method. Finally, the conclusion is presented
in Section VII.

Il. LITERATURE REVIEW

In this section, we first review the existing studies on com-
puter vision-based white blood cell classification, including
two categories, i.e., classical methods and deep learning
methods. Then, the studies on semi-supervised learning are
introduced as the foundation of our proposed method.

A. CLASSICAL METHODS
The classical methods consist of approaches that extract
strong features from white blood cell images and classify
them using traditional classifiers. In 2003, Sanei and Lee [3]
proposed a method that selects eigenvectors from color
images of blood cells based on the minimization of simi-
larities. Then, they used the Bayesian classifier to classify
the eigen cells on the basis of density and color informa-
tion. In 2011, Ko et al. [4] proposed an image segmentation
method based on mean-shift clustering and boundary removal
rules with a gradient vector flow. They extracted the ensem-
ble of features from the segmented nucleus and cytoplasm,
which was then classified using a random forest algorithm.
Rezatofighi et al. recommended using local binary patterns
as textural features and support vector machines as classifiers
for white blood cell recognition and classification in their
study [5]. In 2014, Sarrafzadeh et al. [6] used fuzzy C-means
clustering to separate the nucleus and cytoplasm of leuko-
cytes. Various geometric, color, and statistical properties are
extracted and then classified by support vector machines.
Recently, Gupta et al. [7] proposed an improved binary
bat algorithm for feature selection. They compared the per-
formance of various classifiers, including random forest,
logistic regression, decision tree, and K-nearest neighbors,
in the classification stage and achieved an accuracy of over
95% on the test set. Abdullah and Turan [8] tested the per-
formance of six different machine learning algorithms on
35 different geometric and statistical features. They found
that the multinomial logistic regression algorithm outper-
forms other methods. Alruwaili [9] proposed a stepwise
linear discriminant analysis method, which extracts specific
features from blood structure images and classifies them
using reversion values such as partial F values. In 2021,
Nithyaa et al. [10] presented a white blood cell cancer detec-
tion method that combines various morphological, clustering,
and image preprocessing steps with a random forest classifier.
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They suggested using a decision tree learning method to make
better decisions for categorizing various types of cancer.

Research on automatic white blood cell classification
driven by traditional machine learning has achieved certain
results. However, the performance of classifiers is limited
by the feature extraction method, which relies on manual
design, and the model training is restricted to small-scale
data, making it unable to mine more abstract intrinsic features
from the data.

B. DEEP LEARNING METHODS

Since 2012, Convolutional Neural Networks (CNNs) have
gradually demonstrated their powerful feature representa-
tion capabilities in the field of image recognition. Various
neural network structures, such as Visual Geometry Group
(VGG) network [11] and Residual Networks (ResNet) [12],
have shown the strong ability of deep learning techniques in
feature representation without the need for manual feature
design. For example, in 2018, Jiang et al. designed a CNN
model [13] specifically for white blood cells. The training
set consisted of 81,600 images, and the test set consisted
of 20,400 images. This model effectively extracted features
from white blood cell images by combining improved batch
normalization layers, residual convolutional structures, and
enhanced activation functions, ultimately achieving an accu-
racy of 83% on the test set. In 2020, Almezhghwi and
Serte [14] used generative adversarial networks (GANs) to
generate cell data for data augmentation. They compared the
accuracies of various CNN structures, such as VGG, ResNet,
and DenseNet, on a five-class cell classification task, select-
ing a suitable network structure and using pre-trained weights
for weight initialization. The classification performance of
their model on the test set outperformed other methods that
employed complex image processing and manual feature
engineering. Shahin et al. [15] proposed a recognition system
that combines segmentation and classification, constructing
a CNN-based five-class white blood cell network. They
used various cell datasets for pre-training through transfer
learning, achieving an accuracy greater than 92% on the
test set. In 2019, Liu et al. [16] proposed a white blood
cell classification model called WBCaps based on capsule
architecture. The training set consisted of 393 cell images,
and the classification performance was evaluated on a test
set of 196 cell images. The F1 score of WBCaps was
2% higher than that of ResNet50 and 1% higher than that
of VGG. Similar studies were implemented and reported
in recent literature [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26] based on CNN models. Moreover, deep
learning methods have also been used in the diagnosis of
leukemia and other blood diseases [27], [28]. Bairaboina and
Battula [29] proposed Ghost-ResNeXt method to classify
mature and immature white blood cells. Resendiz et al. [30]
proposed an Explainable Al (XAI) Leukemia classification
method for classification of acute lymphoblastic leukemia by
incorporating a robust white blood cell nuclei segmentation
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as a hard attention mechanism. Li and Liu [31] employed
the color invariance technique to fashion a trainable convolu-
tional layer, which improved the performance of white blood
cells classification. Elhassan et al. [32] developed a two-stage
hybrid model based on deep convolutional neural network to
classify atypical white blood cells in acute myeloid leukemia,
which achieved an average accuracy of 97% as reported.

Other works in this category primarily employ transfer
learning of a pre-trained deep neural network for fea-
ture extraction or classification. In 2019, Yildirim and
Cinar [33] applied Gaussian and median filtering before
training the images using multiple deep neural networks.
Alam and Islam [34] applied a you-only look-once (YOLO)
algorithm for the detection of blood cells from smear
images. Wang et al. [35] proposed two techniques for
blood cell identification, namely, a single-shot multi-box
detector and an incrementally improved version of YOLO.
In 2020, Almezhghwi and Serte [14] investigated GANSs
for data augmentation and employed the DenseNet169 [36]
network for white blood cell classification. In 2022,
Sharma et al. [37] proposed a deep learning method that
uses the DenseNet121 [36] model to classify white blood
cell subtypes. The model is optimized with the prepro-
cessing techniques of normalization and data augmentation.
The work presented by Baby and Devaraj [38] first applied
thresholding-based segmentation to white blood cell images.
They performed feature extraction from segmented images
using VGG16 CNN model learning. The extracted feature
vectors are classified using the K-nearest neighbor (KNN)
algorithm. Fathy et al. [39] merged transfer deep learning
model and support vector machine to form a hybrid model
for classifying white blood cells, which was reported better
than pre-trained models.

C. SEMI-SUPERVISED LEARNING METHODS

Deep learning techniques rely on a large amount of anno-
tated data, but manual annotation is time-consuming, labor-
intensive, and subject to subjective errors, making it difficult
to provide a large number of high-quality manually labeled
data. Therefore, many researchers have attempted to com-
bine semi-supervised learning with deep learning to train
neural networks, enabling coordinated classification between
labeled and unlabeled samples to improve classification per-
formance. For example, in 2018, Miyato et al. [40] proposed a
semi-supervised classification model based on virtual adver-
sarial training (VAT), which incorporated unlabeled data into
the model training to make the classification performance
smoother and less susceptible to noise disturbances, thus
improving the accuracy. In 2020, Fu et al. [41] proposed the
SSE-GAN, a semi-supervised classification model based on
GANSs, which added an encoder structure to the generative
adversarial network model and designed a semi-supervised
training method that involved unlabeled images in the training
process of the discriminator. More recently, the active learn-
ing method [42], [43] has been used in image classification,
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which only labels the most valuable data so as to enhance the
efficiency of data labeling. The aforementioned researches
discusses the feasibility of applying semi-supervised CNNs
to image classification, which provide the guidance for the
application of deep learning and semi-supervised learning in
white blood cell classification.

lll. METHODOLOGY

A. FRAMEWORK OF SEMI-SUPERVISED LEARNING

This paper employs a self-training algorithm for semi-
supervised learning in white blood cell classification
(figure 2). First, a CNN model-based classifier for white
blood cell classification is established using a small amount
of labeled data. Then, based on the classifier, model predic-
tions and label propagation are applied to generate pseudo
labels for the unlabeled data. Finally, the labeled data and
pseudo labeled data are combined to train the model, resulting
in the final classifier model. The training process follows a
batch sample iteration approach, where in each round, a batch
sample is randomly selected from the entire dataset and added
to the training set to update the model. This iterative training
process continues until the model reaches a plateau where the
accuracy on the test set no longer improves.

Labekd data

1. Pre—training m odelw ith labeled data

Unhbeld data

Q0000 2. Classify unlhbeled data
00000 w ith pre—trained m odel
00000
Q0000
Pseudo hbelk Labekd data
00000 0000
00000 o000
(X XTI} (I XX}
00000 0000
3.Re—training m odel
w ith both labeled
data and pseudo
M odel

hbeldata

FIGURE 2. Framework of semi-supervised learning.

B. FEATURE EXTRACTION NETWORK

This paper designs the feature extraction network based on
the VGG network architecture. The network consists of four
main parts, as shown in Figure 3: the feature extraction layer,
attention layer, classification layer, and output layer. In the
diagram, C-B-R represents a convolutional block composed
of a convolutional layer, a batch normalization layer, and an
activation function (ReLU). In this block, the parameters of
the convolutional kernel are ks=3*3, s=1, and p=1. During
forward propagation, the size of the input and output feature
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FIGURE 3. Structure of the feature extraction network.

maps remains unchanged. C-B-R-M refers to a convolu-
tional block consisting of C-B-R and a max-pooling layer.
Similarly, the parameters of the convolutional kernel in this
block are ks=3*3, s=1, and p=1. During forward propaga-
tion, the output feature map is half the size of the input feature
map in terms of both length and width. “Channel” refers to
the number of channels in the convolutional block.

1) FEAURE EXTRACTION LAYER

The feature extraction network is composed of 10 convolu-
tional layers, where the parameters for each convolutional
layer are set as ks=3*3, s=1, and p=1. The feature extraction
layers progressively transform the initial input image with
a pixel size of 6464 into a 4*4 pixel feature map while
increasing the number of channels from 3 to 512.

2) ATTENTION LAYER

In this paper, we adopt a channel-based attention mechanism
to address the feature map X with a pixel size of 4*4*512 out-
put from the feature extraction layer. First, we utilize global
pooling on each channel of the feature map X along the spatial
dimension, resulting in a 1*1*512 vector. This vector is then
subjected to a fully connected layer and an activation function
for nonlinear mapping, generating a new 1*1*512 vector.
Subsequently, we obtain the weight coefficients of feature
map X by normalizing the new vector through sigmoid activa-
tion. Finally, we calculate the elementwise product between
the weight coefficients and the original feature map X to
obtain a new feature map X’. From figure 4 (b), we can
see that the attention mechanism makes the network focus
on detailed features inside the cell more when compared to
figure 4(a), which benefits the ability of the classifier.

3) CLASSIFICATION LAYER AND OUTPUT LAYER

The classification layer consists of a dropout layer and a fully
connected layer (FC). The dropout layer randomly drops out
neurons with a probability parameter p. Typically, 20% of
the neurons are randomly dropped out, which helps mitigate
overfitting in the network. The in_out parameter represents
the change in the number of input and output neurons in the
fully connected layer. The output layer maps the feature vec-
tors to their respective classes using the fully connected layer.
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FIGURE 4. Comparison of the maps before and after applying the
attention mechanism: (a) Image generated prior to the attention layer;
(b) Image generated after the attention layer; (c) Difference between the
two images.

TABLE 1. Parameters of classification and output layers.

Layer Class Parameter
Classifier Dropout p=02
Classifier FC-ReLU In_out=8192-1024
Classifier Dropout p=02
Classifier FC-ReLU In_out=1024-1024

Head FC In_out=1024-5

The specific architecture and parameter settings are provided
in Table 1.

C. MEAN TEACHER MODEL

To enhance the smoothness of parameter updates during
model iterations, this study adopts the mean teacher
model [44] as the overall network structure for semi-
supervised learning. The mean teacher model consists of
both a student model and a teacher model. Importantly, the
Student and Teacher models share the same network archi-
tecture. The parameters of the Student model are updated
through network training, while the parameters of the Teacher
model are calculated as the exponential moving average of
the Student model’s parameters. In other words, the cur-
rent Teacher model’s parameters are obtained by taking a
weighted average of the previous Teacher model’s parame-
ters and the current Student model’s parameters obtained in
this training iteration. The specific calculation method is as
follows:

9;279;_14‘(1—)/)9,4: 1,2, (1)
% =1 @)

where 6, represents the parameters of the Teacher model in
the ¢-th iteration, 6; represents the parameters of the Student
model in the #-th iteration, and y is a smoothing coefficient
hyper parameter, generally set as 0.97.

The loss function expression for the mean teacher model
is presented in Equation (3). The loss function comprises
two terms: the cross-entropy loss function Lcg based on
labeled samples and the consistency loss function Leonsistency
based on all samples. Here, « and B represent the weight
coefficients of the two loss functions, generally setas 1 and 10
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respectively.

Loss = aLcg + BLconsistency
Niabel

= —a > vilogf (xi,6)

i=1

N
+B D MSE(f (xi,0).f (xi,0')) (3
i=1

gxi
> e

where y; represents the true class label of the i-th sample,
Niabel denotes the number of the labeled samples. f (x;, 0)
denotes the softmax-normalized output value of the stu-
dent model for the i-th sample, while f (x,-, o’ ) refers to the
softmax-normalized output value of the teacher model for the
i-th sample. N denotes the number of all samples.

In order to restrain the overfitting of the model, the reg-
ularization term is introduced into the objective function as
follows.

f i, 0) = “

. A
Obj = Loss + 3 IIHII% Q)

where A represents the weight coefficient, and |-||, denotes
L2 normalization.

D. PSEUDO LABEL GENERATION

Pseudo labeling is crucial in semi-supervised learning, as the
accuracy of pseudo labels directly impacts the performance of
the final model. To improve the accuracy of sample pseudo
labeling, this paper adopts a two-step labeling approach com-
bining model prediction and label propagation.

First, the mean teacher model is applied to make predic-
tions on unlabeled images. Subsequently, an entropy filtering
process is conducted based on confidence scores to obtain an
initial set of pseudo labels, referred to as Pseudo-LabelSet]1.

Next, label propagation is performed on the data samples
in LabelSetl. A fully connected graph is constructed using
the K-nearest neighbors method to obtain a sparse similarity
matrix. Iterative calculations are then performed until the
label matrix y' converges. The confidence distribution of
pseudo labeled samples in pseudo label Setl is computed
from the y’ matrix. If the confidence of a labeled sample falls
below a threshold, it suggests that the sample might be located
at the boundary between multiple classes and is difficult to
classify based on its features. Consequently, such samples are
excluded from the Pseudo-LabelSet1 dataset, resulting in the
creation of the dataset Pseudo-LabelSet2, which serves as the
final input for network training.

E. SAMPLING

Existing computer memory is insufficient to store the gradi-
ents of all images in a dataset for parameter computation.
Therefore, when solving CNN parameters, it is common
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practice to perform iterative calculations and update
parameters using a batch size of training samples.

The total sample size of the batch is S, where Siypel rep-
resents the number of labeled samples. The composition
of each batch is determined through two sampling steps.
First, a non-replacement sampling process is conducted on
the pool of unlabeled data, resulting in a random selection
of S — Siabel label samples. Second, a repeatable sampling
process is performed on the labeled data pool, resulting in
a random selection of Sjape; Samples.

Upon initiating the batched pseudo labeling process,
an issue of pseudo label class imbalance arises within
the pseudo labeled dataset. Imbalanced data often biases
the network toward classifying data into the majority cat-
egories, thereby diminishing the classifier’s accuracy for
other classes. To address this, we implement an equilibrium
sampler for imbalanced datasets.

By assigning inverse proportional sampling weights to
each class of images based on its quantity, we reduce the
likelihood of oversampling from the major classes while
increasing the probability of sampling from the minor classes.
Consequently, the number of labeled samples for each class is
balanced during training. However, this approach alone does
not enhance the diversity of minor class samples. Therefore,
we adopt a strategy of applying random transformations to
the data during training to augment sample diversity.

Considering that color, shape, and size are crucial factors
for cell classification, we employ translation and horizon-
tal flipping transformations to enrich the dataset, thereby
reducing network overfitting and improving generalization
capabilities. Figure 5 presents the typical transformation
patterns of images.

(a) translation (b) horizontal flipping

FIGURE 5. Transformations of images: (a) translation; (b) horizontal
flipping.

IV. EXPERIMENTS

A. DATA

The white blood cell image samples in this study were derived
from peripheral blood smears of 140 patients at Jiangsu
Province Hospital of Chinese Medicine in China between
2019 and 2020. First, thin layer cell smears were prepared
using the thin blood film method. The blood cell smears
were then stained with Wright-Giemsa staining solution, and
blood cell images were obtained through imaging scanning.
Subsequently, morphological operations such as dilation and
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erosion, as well as operations including connected component
analysis and area-based methods, were employed to locate
the positions of white blood cells. Using the center of each
white blood cell as the image center, 29721 image patches
with a pixel size of 6464 were cropped. These image patches
were then classified by cytologists, resulting in five types
of cells: neutrophils, monocytes, lymphocytes, eosinophils,
and basophils, with quantities of 13283, 3209, 6203, 6647,
and 379, respectively. Figure 6 presents the main steps for
preparing white blood cell image samples.
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FIGURE 6. Preparation of white blood cell image samples.

Due to the insufficient number of basophil cells in the
original samples, it is challenging for the classifier to learn
the characteristics of each subtype in a balanced manner.
Therefore, this study employed data augmentation techniques
such as mirroring and translation to expand the dataset of
basophil cell image samples, resulting in 1,269 additional
images of basophil cells. Then, we selected 2,000 images
each from neutrophil, monocyte, eosinophil, and lymphocyte
cells randomly, along with the 1,069 basophil cell images
to form the training sets, and selected 200 images randomly
from each subclass to compose the testing sets for this
study. Table 2 gives the numbers of data in each subclass in
detail.
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FIGURE 7. Steps of the semi-supervised white blood cell classification in the experiment.

TABLE 2. Distribution of the samples in data sets. The batch size for training is 40, with 20 labeled data points

e Now on Bos s Tym within each batch. The entropy threshold for model predic-
Training | 2000 3000 1069 2000 2000 tions is set as 0.01. For label propagation, the value of K for
Testing 200 200 200 200 200 K-nearest neighbors is set at 8, and the confidence threshold

Neu = Neutrophils, Mon = Monocytes, Bas = Basophils, Eos=

Neu - for label propagation is set at 0.8. Figure 7 illustrates the
Eosinophils, Lym = Lymphocytes.

detailed steps of the experiment.
B. TRAINING

The input image pixel size for model training is set at 64*64.
The training runs 180 epochs. The optimizer utilized in
this study is the stochastic gradient descent method [45].
Additionally, the Nesterov momentum approach [46] is
employed to update gradients efficiently. By trial and error,
the appropriate values of hyper parameters are determined.
The initial learning rate is 0.05. The weight coefficient of the
regularization term is 0.00005.

2) FULLY SUPERVISED APPROACH

In the training set, all data points are labeled. The loss func-
tion utilized is cross-entropy loss. It is worth noting that the
feature extraction network remains the same for both the fully
supervised and semi-supervised approaches.

C. PERFORMANCE MEASUREMENTS
This paper evaluates the performance of cell classification
using accuracy (acc), precision (prec), recall, and F1 score,

1) SEMI-SUPERVISED APPROACH

In the training set, each class of images contains 100 labeled
data points, while the rest are considered unlabeled data.
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as depicted in equations (6) to (9).
_ TP + TN
"~ TP+ TN +FP +FN

acc

Q)
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TABLE 3. Performances of models with different pseudo label generation approaches.

Model Neutrophils Monocytes Basophils Eosinophils Lymphocytes all
Metric prec rec F1 prec rec F1 prec rec F1 prec rec F1 prec rec F1 acc
A 0.93 091 0.92 0.81 0.83 0.82 0.94 | 0.88 0.91 0.94 1.0 0.97 0.84 0.87 0.85 89.3
B 0.94 0.94 | 0.94 0.83 091 0.87 097 | 0.94 0.95 0.95 099 | 097 0.94 0.84 0.89 923
C 0.96 098 | 0.97 0.84 0.94 0.88 0.98 | 0.94 0.96 0.99 0.99 | 0.99 0.94 0.85 0.90 94.0
D 0.94 0.99 | 095 0.86 0.93 0.89 0.97 | 0.94 0.96 0.99 0.99 | 0.99 0.97 0.87 0.92 94.4
Bold numbers with underlines stand for the best results.
prec = precision, rec = recall, acc = accuracy.
prec = Tp (7 TABLE 4. Accuracy of models with different numbers of labeled samples.
TP + FP
recall = TP 8) Class | Label-10 | Label-20 | Label-50 | Label-100 | Label-150
TP 4+ FN MT 63.7 85.9 93.2 94.0 94.6
prec - recall IMP 65.4 88.6 94.3 944 95.2
Fl=2. ——— ©)] DIFF 1.7 2.7 1.1 0.4 0.6
prec + recall ENT 0.001 0.005 0.01 0.01 0.01

In these equations:

« TP (true positives) represents the samples where the true
and predicted class labels are consistent, and they belong
to the positive class.

o TN (true negatives) represents the samples where the
true and predicted class labels are consistent, and they
belong to the negative class.

o FP (False Positives) represents the samples where the
true and predicted class labels are inconsistent, but they
are predicted as belonging to the positive class.

« FN (false negatives) represents the samples where the
true and predicted class labels are inconsistent, but they
are predicted as belonging to the negative class.

V. RESULTS

This paper compares the impact of four different pseudo label
generation approaches on the performance of the classifier.
These approaches are as follows:

A - Solely utilizing the single-model prediction labeling
method.

B - Solely utilizing the label propagation method

C - Solely relying on the mean teacher model for
predictions.

D - Combining the mean teacher model with the label
propagation method.

Four models were trained on aforementioned datasets,
and the results are presented in Table 3. The accuracy of
single-model predictions is the lowest. However, significant
improvements are achieved in almost all kinds of perfor-
mances for each subtype of white blood cell when using
pseudo labels generated through label propagation. The aver-
age F1 value of all subtypes improves by 3.5%, and the
accuracy for total subtypes increase by 3.4%, which indicate
the effectiveness of label propagation method. The mean
teacher model outperforms models A and B in terms of classi-
fication effectiveness. Furthermore, the accuracy of the mean
teacher model is further enhanced by 0.4% when combined
with the label propagation algorithm. This suggests that the
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Bold numbers with underlines stand for the best results.
MT =Mean Teacher Model, IMP = Improved Model, DIFF = Difference,
ENT = Entropy threshold.
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FIGURE 8. Training loss with filter 2.

pseudo labels generated through multiple filtering mecha-
nisms provide valuable information gain to the classifier.

In Table 3, the dataset contains 100 labeled images per
class, and the gains brought to the classifier by different
pseudo label generation approaches are not quite evident.
However, when the labeled data are limited, such as having
fewer than 50 instances per class, as shown in Table 4, the
improved model achieves notably higher accuracy than the
mean teacher model. Nonetheless, due to the reduced amount
of labeled data, the error rate of pseudo labels generated by
the model’s predictions increases. Consequently, the initial
screening threshold for entropy needs to be lowered to mit-
igate the amplification of errors. Table 4 demonstrates that
the proportion of labeled data in the dataset, known as the
labeling ratio, serves as a crucial reference for adjusting the
entropy threshold parameter. When the labeling ratio is low,
a stronger filtering should be adopted, and the propagation
range of labels should not extend too far. Conversely, when
the labeling ratio is high, a milder filtering is appropriate.
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basophil eosinophil

FIGURE 9. Feature maps of five subtypes of white blood cells.

To investigate the impact of pseudo label filtering through
confidence-based filtering in label propagation on classifi-
cation, The training losses of models with and without the
label propagation and confidence-based filtering are com-
pared in figure 8. We can see that the training loss without
filter fluctuates dramatically even after 150 epochs, while
the label propagation and confidence-based filtering results
in a smoother decrease in the training loss function, thereby
reducing the overall training loss and achieving a faster con-
vergence.

VI. DISCUSSION

A. EXPLANATION OF FEAUTURE EXTRACTION

The main advantage of convolutional neural network is the
self-designed feature extractor, which is formed automati-
cally during the training of neural network. In order to explore
the features that machine uses to classify white blood cells,
we present the feature maps and class activation maps as
follows.

1) FEATURE MAPS

Figure 9 shows the first 25 feature maps for each of the
five subtypes of white blood cells respectively. Though it is
difficult to truly understand the mechanism of how neural
network differentiates cells, we can still find some features
meaningful. For example, the features in red boxes are apt
to extract the profiles of cellular nucleus, while the ones in
blue boxes focus more on the inner textures of cells. As we
know, the shape of nucleus and the granularity distribution
of cytoplasm are the main features to distinguish subtypes of
white blood cells. Therefore, the neural network does find the
features through training.

2) CLASS ACTIVATION MAPS

The five pictures in the lower side of figurelO are the
initial images of five subtypes of white blood cells.
The corresponding class activation maps are generated after
the attention block, which are presented in the upper side of
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FIGURE 10. Class activation maps of white blood cells.

figure 10. The highlighted areas in class activation maps are
the parts that contribute the most to cell classification. These
areas include the feature points of nucleus, the disconnection
of lobular nuclei, and the cytoplasm, which indicates that the
trained model can catch the key features of white blood cells.

B. PARAMETERS

This paper primarily conducts parameter experiments on the
labeled data size of batch samples, the confidence threshold
parameter, and the entropy threshold parameter.

1) SIZE OF LABELED DATA IN BATCH SAMPLES

By setting the batch sample size to 40, we continuously
adjust the labeled data size, as depicted in Figure 11(a). The
experimental results reveal that when the labeled data size
reaches 20, approximately 50% of the total batch samples,
the model achieves the highest classification accuracy on the
test set.

2) CONFIDENCE THRESHOLD

The confidence threshold for pseudo label filtering in label
propagation is an important parameter that needs to be
determined through experimentation. This paper examines
the effects of three different thresholds: 0.8, 0.9, and 0.95.
As shown in Figure 11(b), a higher threshold leads to
smoother fluctuations in model classification accuracy during
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FIGURE 11. Parameter analysis: (a) Classification accuracy under
different numbers of labeled data in batch samples; (b) Classification
accuracy under different confidence thresholds.

training. However, it may reduce the number of pseudo labels
and limit the amount of additional information gained by the
model. On the other hand, setting the threshold too low can
mislead the model. Through multiple experiments, it is found
that the model achieves the highest classification accuracy
when the confidence threshold is set to 0.8.

3) ENTROPY THRESHOLD

The entropy threshold is a hyper parameter that measures
the certainty of model predictions. Under the conditions
of 100 labeled samples per class and 80 training epochs,
this paper conducts parameter experiments with entropy
thresholds of 0.0005, 0.01, 0.05, 0.1, and 0.2. As shown
in Figure 12, the classifier achieves the highest accuracy
on the test set when the entropy threshold is set to 0.01.
When the threshold is too large, erroneous labels significantly
mislead the classifier, resulting in a significant decrease in
classification accuracy.

C. COMPARISON WITH RESIDUAL NETWORK

Residual Network is another popular deep neural network
model widely used these days. From the perspective of feature
extraction, we studied the performances of semi-supervised
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FIGURE 13. Accuracy of ResNet50 with different sizes of input images.

model with ResNet50 as the backbone network. The semi-
supervised model still adopts the mean teacher [44] model
with 10 labeled samples per class and 180 training epochs.
When the pixel size of the input images for ResNet is set
to 64*64, as shown in Figure 13, the accuracy on the test
reaches its peak value of 64.3% around the 70" epoch, and
then decreases as the training epochs continue. The model
does not converge and the accuracy is lower than that of the
VGG network. When the pixel size of the input images is set
to 128*128 and 150*150, as shown in Figure 13, the model is
found going to converge after 100 epochs, and the accuracy of
classification improves to 68.3% and 70.8% respectively. The
above results indicate that the size of the input image has a
significant impact on the model’s classification performance,
and ResNet is more suitable for larger input image sizes.

D. COMPARSION WITH FULLY SUPERVISED MODEL

To validate the effectiveness of the semi-supervised model,
we compared the training results of a fully supervised model
A trained with the same feature extraction network and the
same amount of data (i.e., 9069 labeled samples in the train-
ing set), a fully supervised model B trained with a dataset
of the same number of labels (i.e., 500 labeled samples in
the training set), and the improved model C proposed in
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TABLE 5. Comparison between the semi-supervised model and the fully supervised model.

Model Neutrophils Monocytes Basophils Eosinophils Lymphocytes all

Metric prec rec F1 prec rec F1 prec rec F1 prec rec F1 prec rec F1 acc%
MA 0.99 | 098 | 0.98 | 0.96 097 | 096 | 099 | 097 | 098 | 099 | 099 | 0.99 | 097 0.97 | 097 | 97.9
MB 0.93 0.88 0.90 0.78 0.79 0.79 0.86 0.86 0.86 0.93 0.97 | 0.95 0.83 0.81 0.82 86.5
MC 0.94 0.99 0.95 0.86 0.93 0.89 0.97 0.94 0.96 0.99 0.99 0.99 0.97 0.87 0.92 94.4
Bold numbers with underlines stand for the best results.
MA = model A, MB = model B, MC = model C.

this paper trained with 100 labeled samples per class. From ACKNOWLEDGMENT

Table 5, it can be observed that the fully supervised model A
with total 9069 labeled samples performs the best almost in
all kinds of indicators for each subtype of white blood cell. All
the performance measurements are higher than 0.96, and the
average accuracy of classification is 97.9%. When the small
data set (i.e. 500 labeled samples) is used, the performance
of the fully supervised model B declines sharply in all mea-
surements with the average accuracy decreasing to 86.5%.
However, the semi-supervised model C with only 500 labeled
samples achieves a classification accuracy of 94.4%, which
enhance the accuracy by 9.1% from the model B. The clas-
sification accuracy of the proposed semi-supervised model
is 3.5% lower than the fully supervised model, but it saves
94.5% labor of labeling. This result demonstrates that the
semi-supervised approach is capable of reducing the need
for annotations and has a significant advantage in improving
classification performance.

VII. CONCLUSION

This paper presents a white blood cell classification approach
based on blood smear images, which combines semi-
supervised learning with convolutional neural networks. The
approach includes a feature extraction network, a mean
teacher model, a pseudo label generation method, and a
sampling strategy.

From the application point of view, it is found that a
10-layer VGG CNN is suitable to be used as the feature
extraction network. The label propagation and confidence-
based filtering are helpful in improving the quality of pseudo
labels of white blood cells. To mitigate the network over-
fitting resulted from small and imbalanced labeled dataset,
especially the basophils, several approaches can be under-
taken in practice, such as sample augmentation, weighted
sampling strategies, randomly dropping out neurons and
adding regularization term into the objective function. The
batch size of 40 samples and the cellular image with the pixel
size of 64*64 are competent for white blood cell classifica-
tion. The best ratio of labeled data to pseudo labeled data is
found to be half to half in the batch.

Experimental results demonstrate that the semi-supervised
CNN model is effective for white blood cell image classifica-
tion. It can achieve an average accuracy close to that of fully
supervised models using less than 10% labeled data, greatly
reducing the workload of manual annotation and showing
promising application prospects.

44982

The authors acknowledge Nanjing Zhiheng Intelligent Tech-
nology Company Ltd., for the technical support of the blood
smear scanner. They also thank Yijun Chen for her help in
analyzing the large number of samples.

REFERENCES

[1] X. Li, Y. Cao, and Y. Wang, “A robust classification method for five
types of leukocytes in peripheral blood based on mean-shift clustering,”
J. Biomed. Eng., vol. 35, no. 5, pp. 761-766, 2018.

[2] I. Radosavovic, P. Dollar, R. Girshick, G. Gkioxari, and K. He, “Data
distillation: Towards omni-supervised learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4119-4128.

[3] S. Sanei and T. K. Lee, “Cell recognition based on PCA and Bayesian
classification,” in Proc. 4th Int. Symp., Nara, Japan, 2003, pp. 239-243.

[4] B. C. Ko, J. W. Gim, and J. Y. Nam, “Cell image classification based
on ensemble features and random forest,” Electron. Lett., vol. 47, no. 11,
p. 638, 2011.

[5] S. H. Rezatofighi and H. Soltanian-Zadeh, “Automatic recognition of five
types of white blood cells in peripheral blood,” Computerized Med. Imag.
Graph., vol. 35, no. 4, pp. 333-343, Jun. 2011.

[6] O. Sarrafzadeh, H. Rabbani, A. Talebi, and H. U. Banaem, ““Selection of
the best features for leukocytes classification in blood smear microscopic
images,” in Proc. SPIE, San Diego, CA, USA, Mar. 2014, pp. 159-166.

[7] D. Gupta, J. Arora, U. Agrawal, A. Khanna, and V. H. C. de Albuquerque,
“Optimized binary bat algorithm for classification of white blood cells,”
Measurement, vol. 143, pp. 180-190, Sep. 2019.

[8] E. Abdullah and M. K. Turan, “Classifying white blood cells using
machine learning algorithms,” Int. J. Eng. Res. Dev., vol. 11, pp. 141-152,
Jun. 2019.

[9]1 M. Alruwaili, “An intelligent medical imaging approach for various blood
structure classifications,” Complexity, vol. 2021, pp. 1-10, May 2021.

[10] A. N. Nithyaa, R. P. Kumar, G. M. Gokul, and G. Aananthi, “MATLAB
based potent algorithm for WBc cancer detection and classification,”
Biomed. Pharmacol. J., vol. 14, no. 4, pp. 2277-2284, Dec. 2021.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

[13] M. Jiang, L. Cheng, F. Qin, L. Du, and M. Zhang, “White blood cells
classification with deep convolutional neural networks,” Int. J. Pattern
Recognit. Artif. Intell., vol. 32, no. 9, Sep. 2018, Art. no. 1857006.

[14] K. Almezhghwi and S. Serte, “Improved classification of white blood
cells with the generative adversarial network and deep convolutional neural
network,” Comput. Intell. Neurosci., vol. 2020, pp. 1-12, Jul. 2020.

[15] A. 1. Shahin, Y. Guo, K. M. Amin, and A. A. Sharawi, “White blood
cells identification system based on convolutional deep neural learning
networks,” Comput. Methods Programs Biomed., vol. 168, pp. 69-80,
Jan. 2019.

[16] Y. Liu, Y. Fu, and P. Chen, “WBCaps: A capsule architecture-based
classification model designed for white blood cells identification,” in Proc.
41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019,
pp. 7027-7030.

[17] X. Yao, K. Sun, X. Bu, C. Zhao, and Y. Jin, “Classification of white
blood cells using weighted optimized deformable convolutional neu-
ral networks,” Artif. Cells, Nanomedicine, Biotechnol., vol. 49, no. 1,
pp. 147-155, Jan. 2021.

VOLUME 12, 2024



H. Song, Z. Wang: Automatic Classification of White Blood Cells Using a Semi-Supervised CNN

IEEE Access

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

B. Sheng, M. Zhou, M. Hu, Q. Li, L. Sun, and Y. Wen, “A blood cell
dataset for lymphoma classification using faster R-CNN,” Biotechnol.
Biotechnological Equip., vol. 34, no. 1, pp. 413-420, Jan. 2020.

A. M. Patil, M. D. Patil, and G. K. Birajdar, “White blood cells image
classification using deep learning with canonical correlation analysis,”
IRBM, vol. 42, no. 5, pp. 378-389, Oct. 2021.

F. Ozyurt, “A fused CNN model for WBC detection with MRMR feature
selection and extreme learning machine,” Soft Comput., vol. 24, no. 11,
pp. 8163-8172, Jun. 2020.

M. Togacar, B. Ergen, and Z. Comert, “Classification of white blood
cells using deep features obtained from convolutional neural network
models based on the combination of feature selection methods,” Appl. Soft
Comput., vol. 97, Dec. 2020, Art. no. 106810.

A. Acevedo, S. Alférez, A. Merino, L. Puigvi, and J. Rodellar, “Recogni-
tion of peripheral blood cell images using convolutional neural networks,”
Comput. Methods Programs Biomed., vol. 180, Oct. 2019, Art. no. 105020.
M. Sharma, A. Bhave, and R. R. Janghel, “White blood cell classification
using convolutional neural network,” in Soft Computing and Signal Pro-
cessing. Berlin, Germany: Springer, 2019, pp. 135-143.

Q. Huang, W. Li, B. Zhang, Q. Li, R. Tao, and N. H. Lovell, “Blood cell
classification based on hyperspectral imaging with modulated Gabor and
CNN,” IEEE J. Biomed. Health Informat., vol. 24, no. 1, pp. 160-170,
Jan. 2020.

R. B. Hegde, K. Prasad, H. Hebbar, and B. M. K. Singh, “Feature extrac-
tion using traditional image processing and convolutional neural network
methods to classify white blood cells: A study,” Australas. Phys. Eng. Sci.
Med., vol. 42, no. 2, pp. 627-638, Jun. 2019.

R. Ahmad, M. Awais, N. Kausar, and T. Akram, “White blood cells
classification using entropy-controlled deep features optimization,” Diag-
nostics, vol. 13, no. 3, p. 352, Jan. 2023.

L. Boldd, A. Merino, A. Acevedo, A. Molina, and J. Rodellar, “A deep
learning model (ALNet) for the diagnosis of acute leukaemia lineage
using peripheral blood cell images,” Comput. Methods Programs Biomed.,
vol. 202, Apr. 2021, Art. no. 105999.

B. Sen, A. Ganesh, A. Bhan, and S. Dixit, “Deep learning based diagnosis
of sickle cell anemia in human RBC,” in Proc. 2nd Int. Conf. Intell. Eng.
Manage. (ICIEM), Apr. 2021, pp. 526-529.

S. S. R. Bairaboina and S. R. Battula, “Ghost-ResNeXt: An effective deep
learning based on mature and immature WBC classification,” Appl. Sci.,
vol. 13, no. 6, p. 4054, Mar. 2023.

J. L. D. Resendiz, V. Ponomaryov, R. R. Reyes, and S. Sadovny-
chiy, “Explainable CAD system for classification of acute lymphoblastic
leukemia based on a robust white blood cell segmentation,” Cancers,
vol. 15, no. 13, p. 3376, Jun. 2023.

C. Li and Y. Liu, “Improved generalization of white blood cell classifi-
cation by learnable illumination intensity invariant layer,” IEEE Signal
Process. Lett., vol. 31, pp. 176-180, 2024.

T. A. Elhassan, M. S. Mohd Rahim, M. H. Siti Zaiton, T. T. Swee,
T. A. Alhaj, A. Ali, and M. Aljurf, “Classification of atypical white blood
cells in acute myeloid leukemia using a two-stage hybrid model based on
deep convolutional autoencoder and deep convolutional neural network,”
Diagnostics, vol. 13, no. 2, p. 196, Jan. 2023.

M. Yildirim and A. Cinar, “Classification of white blood cells by deep
learning methods for diagnosing disease,” Revue d’Intelligence Artifi-
cielle, vol. 33, no. 5, pp. 335-340, Nov. 2019.

M. M. Alam and M. T. Islam, “Machine learning approach of automatic
identification and counting of blood cells,” Healthcare Technol. Lett.,
vol. 6, no. 4, pp. 103-108, Aug. 2019.

Q. Wang, S. Bi, M. Sun, Y. Wang, D. Wang, and S. Yang, ‘“Deep learning
approach to peripheral leukocyte recognition,” PLoS ONE, vol. 14, no. 6,
Jun. 2019, Art. no. e0218808.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 2261-2269.

VOLUME 12, 2024

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

[45]

[46]

S. Sharma, S. Gupta, and D. Gupta, “Deep learning models for the
automatic classification of white blood cells,” Comput. Intell. Neurosci.,
vol. 2022, Jan. 2022, Art. no. 7384131.

D. Baby, S. J. Devaraj, and A. Raj, “Leukocyte classification based on
transfer learning of VGG16 features by K-nearest neighbor classifier,” in
Proc. 3rd Int. Conf. Signal Process. Commun. (ICPSC), Coimbatore, India,
May 2021, pp. 252-256.

K. A. Fathy, H. K. Yaseen, M. T. Abou-Kreisha, and K. A. ElDahshan,
“A novel meta-heuristic optimization algorithm in white blood cells clas-
sification,” Comput., Mater. Continua, vol. 75, no. 1, pp. 1527-1545,
2023.

T. Miyato, S.-I. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial
training: A regularization method for supervised and semi-supervised
learning,” [EEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8,
pp. 1979-1993, Aug. 2019.

X. Fu, Y. Sheng, and H. Li, “A semi-supervised encoder generative adver-
sarial networks,” Acta Automatica Sinica, vol. 46, no. 3, pp. 531-539,
2020.

A. Abdelwahab, A. Afifi, and M. Salama, “An integrated active deep learn-
ing approach for image classification from unlabeled data with minimal
supervision,” Electronics, vol. 13, no. 1, p. 169, Dec. 2023.

X. Li, X. Wang, X. Chen, Y. Lu, H. Fu, and Y. C. Wu, “Unlabeled data
selection for active learning in image classification,” Sci. Rep., vol. 14,
no. 1, p. 424, Jan. 2024.

A. Tarvainen and H. Valpola, “Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learn-
ing results,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1-10.

I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” 2016, arXiv:1608.03983.

1. Sutskever, J. Martens, and G. Dahl, ““On the importance of initialization
and momentum in deep learning,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1139-1147.

HUIHUI SONG received the B.S., M.S.,
and Ph.D. degrees in internal medicine from
Southeast University, Nanjing, China, in 2003,

" 2011, and 2019, respectively. She is currently
g & an Associate Chief Physician with the Zhongda
S— Hospital, Southeast University. Her research

interests include the diagnosis and treatment of
leukemia, the molecular mechanism of signal path-
ways in hematological disease, and medical image
processing.

ZHENG WANG received the B.S. and M.S.
degrees in precision instruments and machinery
and the Ph.D. degree in biomedical engineering
from Southeast University, Nanjing, China,
in 1999, 2003, and 2006, respectively. He is
currently an Assistant Professor with Southeast
University. He also led the research and develop-
ment of related medical equipment. His research
interests include medical image processing and
automated analysis of cytology and pathology.

44983



