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ABSTRACT Electromagnetic field exposure (EMF) has grown to be a critical concern as a consequence
of the ongoing installation of fifth-generation cellular networks (5G). The lack of measurements makes it
difficult to accurately assess the EMF in a specific urban area, as Spectrum cartography (SC) relies on a set
of measurements recorded by spatially distributed sensors for the generation of exposure maps. However,
when the spatial sampling rate is limited, significant estimation errors occur. To overcome this issue, the
exposure map estimation is addressed as a missing data imputation task. We compute a convolutional neural
tangent kernel (CNTK) for an infinitely wide convolutional neural network whose training dynamics can be
completely described by a closed-form formula. This CNTK is employed to impute the target matrix and
estimate EMF exposure from few sensors sparsely located in an urban environment. Experimental results
show that the kernel, even when only sparse sensor data are available, can produce accurate estimates. It is
a promising solution for exposure map reconstruction that does not require large training sets. The proposed
method is compared with other deep learning approaches and Gaussian Process regression.

INDEX TERMS 5G EMF exposure, kernel regression, neural tangent kernel, infinite width convolutional
neural network, semi-supervised learning.

I. INTRODUCTION
Technologies for wireless communication have become a
part of our everyday life. Radio-frequency electromagnetic
fields (RF-EMFs) are used to enable many modern devices
to communicate via cellular networks, Wi-Fi, Bluetooth, and
many other technologies. Therefore, the effects of exposure
to wireless systems need to be monitored. Even though 5G
claims to be more energy efficient than previous generations,
there are growing concerns over the deployment of the 5G
network for several reasons [1], [2], [3] and in particular
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higher frequencies, the implementation of ultra-dense base
stations and beam-forming.

In Europe, ‘‘one-time’’ measurement programs are fre-
quently conducted for EMF monitoring [3], [4]. Lexnet [5]
and other initiatives investigated population radio frequency
exposure. Mobile devices and base stations that emit EMFs
for radio communication must comply with regulatory levels
of human exposure. For instance, several organizations,
including the International Commission on Non-Ionizing
Radiation Protection (ICNIRP) and the Institute of Electrical
and Electronics Engineers (IEEE), have conducted research
on human exposure standards [6], [7]. But transmitted signals
from base stations and mobile devices generating EMF
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exposure are impacted by many factors such as building
topology, roads, mobility in road traffic, etc. In addition, it is
not possible to track the activity on multiple networks in real
time. Thus, reconstructing the EMF exposuremap in an urban
region is challenging. It could then be of interest to use fixed
sensors for monitoring the EMF exposure [8].

This work aims to reconstruct the RF-EMF exposure map
of a 1 km2 rectangular area, discretized into a M × N grid
in Lille city center, France, using only sparsely distributed
fixed sensors located in that area and machine learning
models. A sensor located at position (m, n) in the grid, where
m ∈ {1, · · · ,M} and n ∈ {1, · · · ,N } can measure the
exposure locally in that area, i. e. the sensor located at (m, n)
can acquire the exposure e(m,n) ∈ R. If every location
(m, n) has a sensor, an exposure map matrix γ ∈ RM×N

would be constructed. However, placing sensors at every
location in the selected area is not a viable option. Hence,
the task of exposure map reconstruction is to estimate the
complete exposure map γ using the sparsely distributed
sensor measurements. One of the major problems is that there
are no reference maps covering the entire area. In previous
work, a ray-tracing simulator was used to generate the
complete reference maps and train the neural networks [9].
These simulations are complex tasks because they involve
taking into account a large number of base stations, different
technologies and operators, and network configurations that
are unknown to us, such as the powers and beams used by the
base stations.

Based on a few sparsely distributed sensors, the proposed
contribution is to train an infinitely wide Convolutional Neu-
ral Network [10], [11] (CNN) for matrix completion/matrix
imputation to reconstruct the exposure map. The advantages
of wider neural network models for generalization and
efficiency in classification and feature learning tasks have
been highlighted in numerous recent experiments [12], [13]
but have never been applied to EMF reconstruction. Proposed
method is based on an innovative approach exploiting the
width limits of neural networks. In the infinite width limit
[14], [15], [16], [17], artificial neural networks (ANNs)
are comparable to Gaussian processes, which relates them
to kernel methods. The proposed approach (noted EME-
CNTK - Exposure Map Estimation Convolutional Neural
Tangent Kernel) takes this concept further by filling in
the sparse exposure map using a Convolutional Neural
Tangent Kernel (CNTK) [18]. This method is inspired
by the imputation of unobserved data into a matrix, also
known as image inpainting. The efficiency of the suggested
technique is demonstrated by evaluations conducted across
a narrow frequency band, 5.89 GHz. It should be noted that
the methodology can easily be extended to examine EMF
exposure from various technologies, or even combinations,
the limitation coming here from the full reference map
generation needed for the method evaluation rather than from
the reconstruction technique itself. To evaluate and compare
the performance of the proposed model, other reconstruction

techniques, such as EMGAN [9] and EME-NET [19], are
considered. Despite relying on a few fixed sensors only, the
developed method performs well in terms of reconstruction.

The main contributions of this paper can be summarized as
follows:

• We propose an innovative approach called EME-CNTK,
exploiting the width limits of neural networks to
faithfully and quickly reconstruct an exposure field.
Knowledge of the terrain is injected into the network to
guarantee the consistency of the reconstructed data.

• We assess the performance of the proposed approach for
reconstructing an exposure field in an urban area using
a limited number of sensors. A complementary study of
the inference time of the learning model is carried out,
highlighting the capacity of the model to perform this
task very quickly.

The paper is structured as follows: Section II reviews the
main research and progress carried out on the estimation
of exposure fields. The scope and background of the study
are explained in section III-A. Section III-A describes the
proposed EME-CNTK approach for estimating an exposure
field in an urban environment from a limited set of sensors.
Qualitative and quantitative evaluations highlighting the
performance of the proposed approach are conducted in
Section IV. The discussion and conclusion are given in
Section V and VI.

II. RELATED WORKS
This section presents different strategies that have been used
to address the exposure evaluation. We can differentiate four
different approaches based on propagation models, stochastic
geometry, kriging, or deep learning.

A. DETERMINISTIC AND EMPIRICAL PROPAGATION
MODELS
In a given urban region, it is highly complex to evaluate
exposure maps with accuracy. Deterministic propagation
tools like Veneris-Opal [20] and Atoll [21] are based on
Ray Tracing (RT) methods, where the propagating field is
simulated with an array of rays that go through the envi-
ronment and reflect, diffract, and scatter. These techniques
use the Maxwell equations’ high-frequency approximation
(optical ray). They need to simplify the true propagation
mechanisms and environmental parameters and are not well
adapted to dynamic situations. Despite their significant
processing requirements and the fact that their performance
depends on the correctness of the tridimensional model of the
environment [22], RT and other empirical or semi-empirical
propagation models like close-in (CI), floating intercept (FI),
alpha, beta or gamma (ABG) [23], [24], [25], are often used
to predict power coverage in metropolitan areas (see for
instance [26], [27], [28], [29]). But to assess the EMF level,
one needs to consider all active networks and devices, which
is practically not feasible.
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B. STOCHASTIC GEOMETRY APPROACH
The concept of using stochastic geometric in wireless
communications is not new [30]. Numerous works have
used it, including localization, automobile radar [31], and
cumulated interference power [32]. Stochastic geometry is
a useful tool to provide the mean exposure or Cumulative
Distribution Function (CDF) of exposure [33]. However,
this estimated information is not directly related to the
spatial location of the user or the specific spot to be
studied. Measurements obtained from a drive test are used
to parameterize the models [33], [34], [35] and the outcome
is a single map representing the mean exposure rather than a
dynamic map.

C. KRIGING
The Gaussian process regression, commonly known as
kriging [36], is the traditional approach for interpolating
geographical data. Kriging has been used in several studies to
reconstruct exposure maps [37], [38], [39], [40]. For instance,
Solin et al. [41] interpolated magnetic field maps using data
on the trajectory of a moving robot in an indoor scenario
using a Gaussian process or a kriging approach, assuming so
a constant field. However, time evaluation was not considered
in any of these studies resulting in one single map of the target
area. Furthermore, the current body of scientific literature
lacks substantial evidence or comprehensive research regard-
ing the ability to accurately model EMF exposure through
the implementation of Gaussian processes. This knowledge
gap necessitates further investigation in order to establish
a more robust understanding of the relationship between
EMF exposure and its potential modeling methodologies.
Future studies should aim to fill this gap by conducting
rigorous experiments and analyses to verify the effectiveness
and limitations of using Gaussian processes to model EMF
exposure.

D. NEURAL NETWORK AND MATRIX COMPLETION
APPROACH
The standard approaches work effectively for coverage
maps, rarely consider the presence of wide and unknown
variations in the system such as the change of locations
or number of active users. To address this issue, learning-
based methods using neural networks are emerging in the
field of EMF exposure study. Few studies have used artificial
intelligence to forecast the uplink (UL) and downlink (DL)
exposure of mobile phones. Specifically, some works have
employed machine learning models, specifically artificial
neural network (ANN), to predict the power emitted by a
mobile phone, which is equivalent to UL exposure [42], [43],
as well as to estimate the DL exposure [44], [45]. The models
for UL exposure prediction use readily available parameters,
such as DL connection indicators (e.g., reference signal
received power) and environmental information, as input
features. Some approaches are based on measurement data
from indoor and outdoor environments to account for realistic

scenarios [19], [45]. They employ supervised learning to
estimate the levels of EMF exposure in the DL and UL
in multi-source indoor WiFi settings. Convolutional neural
networks were proposed to reconstruct DL exposure maps
in indoor spaces. However, the accuracy of these models
was evaluated solely on simulation data, indicating that prior
knowledge of measurements or simulations was necessary for
effective implementation.

Indeed, learning based methods require labeled data for
training. However, it is impossible to measure such reference
full maps, so simulated training sets must be used. To avoid
this requirement, standard kriging interpolationmethods have
been used to infer exposure to EMFs and train the models.
However, the quality of model reconstruction is strongly
linked to the ability of the Kriging method to infer reference
maps. Xu et al. [46] have taken into account urban cognitive
radio networks and estimated the power spectrum (PS) map
using a CNN-based Generative Adversarial Network (GAN).
25 MHz and 75 MHz were used as the bandwidths, and a
uniform distribution of users was assumed. A GAN model
built based on autoencoder analogy was used to reconstruct
images using the under-sampled power spectrum maps as
input. To generate full PS maps for training, the authors
used the inverse polynomial law model. Zhuo et al. [47]
used a self-supervised technique using GAN to generate a
full RF map of the selected area from an undersampled RF
Map. In that work, to train the model K-nearest neighbor
algorithm is used to generate the reference maps. Wang and
Wiart [45] estimated exposure in an urban environment from
few sensor data using an ANN but full map reconstruction
was not considered. Two articles published recently [48], [49]
presented deep learning methods for estimating radio maps.
A CNN model is used by the authors to estimate the radio
map for each Tx-Rx position. However, the network must
be trained using a new city map and each trained network
specifies a unique map.

Another way to generate the training set is to employ a
deterministic radio propagation simulator. Mallik et al. [19]
proposed to use the UNet architecture to infer EMF from
Wi-Fi access points in an indoor environment. Extensions
have been proposed based on conditional GANs [9], where
inference is conditioned by physical laws or structural
constraints. In both cases, full exposure maps were generated
with Ray-Tracing simulators, which raises a major problem:
simulated maps are not perfect and require time and expertise
to evaluate.

Finally, several works have been done using matrix
completion for radio map estimation [50], [51], avoiding the
training phase with referencemaps and where kernel methods
are not used. For example, Wang et al. [52] used matrix
completion for low-ranked matrices to construct radio maps
in an indoor system.

Our objective is to consider an infinitely wide neural
network based approach that does not require a large dataset
(full reference maps) to be trained on. This objective can be
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FIGURE 1. Overview of the proposed EME-CNTK approach, which exploits the width limits of neural networks to faithfully and rapidly reconstruct an
exposure field. Based on a set of measurements from a sparse sensor network and the terrain map, the neural network, based on ConvNet, infers a
coherent exposure field. The main contribution lies in the computation of kernels and the priors.

achieved using the recently proposed Neural Tangent Kernel
(NTK) [53] approach.

III. RECONSTRUCTION METHOD
A. SCOPE AND BACKGROUND
Several techniques for imputing missing values using
learning-based approaches rely on statistics gathered
throughout the entire dataset. They use supervised algorithms
that depend on datasets containing complete observations
to identify correlations between available data and missing
data [54], [55], [56], [57], [58], [59]. Another alternative for
imputing missing data is to rely on unsupervised methods.
These methods are based on variational autoencoders
(VAEs) [60], [61] or generative adversarial networks (GANs)
[62], [63]. In [64], a generic framework for missing data
imputation on time series is developed by combining
concepts from VAEs [65], Cauchy kernels [66], Gaussian
Processes [67], structured variational distributions with
efficient inference [68] and a particular Evidence Lower
Bound (ELBO) for missing data [61]. A new structured
variational approximation, the non-linear dimensionality
reduction in the presence of missing data, is accomplished
using the VAE method. In [69], authors designed variational
graph autoencoders for matrix completion to infer air quality
from a limited number of measurements. Deep matrix
factorization [70] and nuclear norm minimization [71], [72]
are examples of common methods for matrix completion
to produce low-rank matrices. A low-rank completion
is however often inefficient for image inpainting and
reconstruction since it ignores local image structure [73],
[74]. Several works for image inpainting/reconstruction [74],
[75], [76], [77] and supervised and unsupervised infinitely
wide neural network [78], [79], [80] for prediction. Authors
of [75] introduced an innovative approach for unsupervised
3D shape completion and reconstruction using incomplete
scanned data. Their method involves crafting a deep prior
based on the NTK concept. Remarkably, the CNN-trained

completion of shape patches exhibits a striking resemblance
to pre-existing patches. This resemblance arises from their
close proximity within the kernel feature space shaped by
the NTK. In [81], [82], and [83], it is shown that for
any design composed of convolutions, skip-connections,
and ReLUs, the network converges nearly certainly to its
NTK in the infinite width limit. Works published involving
recurrent NTK, residual CNTK, and residual convolutional
Gaussian process kernel and others can be found in [84],
[85], [86], and [87]. In the research of Arora et al. [18], the
derivation and application of CNTK demonstrated enhanced
performance for optimization and generalization. Notably,
this study provided a non-asymptotic proof, establishing
the equivalence between a fully-trained, sufficiently wide
neural network and the kernel regression predictor with
NTK which can outperform standard CNNs on small data
tasks.

In this work, we propose to address the exposure map
reconstruction problem as missing data imputation in matri-
ces using infinitely wide CNN for CNTK [18]. The exposure
map is reconstructed using only data recorded from a few
sparse sensor values in a 1 km2 area. A high-level overview
of the proposed approach is depicted in Figure 1.

B. GENERAL APPROACH
Recently, several works highlighted that training neural
networks when the width size approaches infinity is similar to
solving kernel regression with the NTK [18] and [88]. Thus,
training an unbounded size network is analogous to solving
a linear system because the NTK can be quickly calculated
in closed form for fully connected networks [53], [89]. The
goal is to impute the unseen entries in a matrix γ ∈ RM×N

given that only a subset of its coordinates has been observed.
Examples of the matrix γ are depicted in Figure 2. Both
figures show the same exposure field in matrix form but with
different measurements depending on the number of sensors
60 (2-B) and 100 (2-A), and also on their location.
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FIGURE 2. Sparse exposure matrix γ with (a) 100 sensors and (b)
60 sensors in 1km2 area.

C. METHODOLOGY
In traditional supervised learning, the target is to learn
a mapping function between data X and labels Y . The
feed-forward deep neural network is a function γψ that can
be represented as:

γψ (x) = γψkφ(γψk−1φ(γψk−2φ(. . . (γψ1 (x)) . . .)), (1)

where x is the input and γψ ∈ {1, · · · , k}, are the layer
functions. Layer functions can be designed as required,
but commonly they are formed by connecting simple
scalar-valued functions called neurons, which represent a
linear function followed by a non-linear function as activation
φ [90]. Traditionally, convolutional, pooling, and fully
connected layers are implemented as layer functions. The
vector ψk contains the parameters of the neural network,
which are updated during the training phase. In [45], exposure
in an urban area in Paris city was estimated using an artificial
neural network from a few sparsely distributed sensors. In that
work, the ANN model was trained by minimizing mean
squared error (MSE) loss while having five input features
such as location, transmitter distance to sensors, etc. In our
method, exposure values from sensors in γ are modeled using
a neural network function γψ in (1).

The work by Jacot et al. [53] demonstrates that in
the case of over-parameterized or infinitely wide neural
networks, their behavior closely mimics that of a kernel
function. Consequently, solving kernel regression with NTK,
as outlined by [18], [53], is equivalent. The definition of NTK
is given by:

Definition (Neural Tangent Kernel) Let f (w) : RP
→ R

denote a neural network with initial parameters w(0). The
neural tangent kernel, K : R × R → R is a positive
semi-definite function given by:

K (x, x ′) = ⟨∇fx(w(0)),∇fx ′ (w(0))⟩, (2)

where w(0)
∈ RP denotes the parameters at initialization.

Using Convolutional NTK (CNTK) for exposure map
reconstruction is a mapping of element coordinates in the
matrix γ to the observed entries present in γ . The CNTK [18]
is constructed from a convolutional network with a different
number of layers, kernel size, and convolution incorporated
with down and upsampling. The link between the CNNmodel

and the CNTK is given by:

K (x, x ′) = ⟨
δf (θ, x)
δWi,j,k,l

×
δf (θ, x ′)
δWi,j,k,l

⟩, (3)

where x and x ′ are input samples, θ represents parameters of
the network,

∑
i,j,k,l denotes the summation over the indices

of the convolutional filters and their corresponding weights
W ,and the L-th layer CNTK kernel is given by:

K (x, x ′) = [2L(A,A′)]i,j,i′,j′ (4)

A is a matrix, it is defined as A ∈ RC×M×N , where C is
the number of information channels. In unsupervised neural
networks, previous studies have demonstrated that using
priors [91], [92], [93] which are drawn from a stationary
distribution can perform well [91], [94] for inpainting tasks,
even better than only using the corrupted images. In this
work, we used a prior to initialize A. The accuracy of the
reconstruction is influenced by this prior that captures the
relationship among the coordinates within the target matrix,
resembling semi-supervised learning and such priors are
extensively used in tasks related to image inpainting [91].
We kept two priors giving good results: a sensor-based prior
(SBP), where A contains the sensor data at one time stamp
or, a random i.i.d. tensor, where the channels are taken from
a normal distribution (random normal prior - RNP).

D. MODEL ARCHITECTURE
During training, at initialization, a convolutional neural
network is used and the kernel is derived when the Network’s
width tends to be infinity. We choose a CNN with eight
convolutional layers following the architecture used in [91],
where each layer is accompanied by ReLU or LeakyReLU
activation. To change The spatial dimensions of the feature
maps transposed convolution or nearest neighbor and bilinear
interpolation is used and the slope of the activation is set
to 0.05 and a stabilization technique is applied to mitigate
exploding or vanishing gradient issues during training.Model
parameters, layers, and activation functions, training methods
are taken from [95] and [96]. The weights and filters are
initialized from a Gaussian distribution with mean 0 and std.
deviation 1.

The dimension of the matrix can be 32×32, 64×64, 128×

128. In this work, the dimension of the grid was limited to
32×32 and 64×64 and only 60 observations from the sparsely
distributed sensors are available.

E. RECONSTRUCTING THE MAP
The goal of kernel Regression with CNTK is to fill in missing
entries (missing exposure values) as a linear combination of
training examples (observed exposure values) in the sparse
exposure map image.

The sparse exposure image γ (see Fig. 2) has dimensions
M × N (in the following sections, we will choose M =

N = 32 or 64). Let X be the set of measured point locations
and y the corresponding measured values; x is the location
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of an unobserved point where we try to predict the field.
As described in [18] the predicted value γ̂ (x) is given by:

γ̂ (x) = K (x,X)T .K (X,X)−1 .y (5)

where K (x,X) is the CNTK evaluated between the location
where the prediction is to be made and the training data X and
K (X,X) is the CNTK evaluated on the training data X .

IV. RESULTS
A. EVALUATION PROTOCOL
1) EVALUATION METRICS
To evaluate the performance of our system, we use two
different metrics.

The error
∣∣y− ŷ

∣∣ between the predicted value ŷ and the
reference value y is initially utilized. A comprehensive rep-
resentation of this error metric is achieved by employing the
probability density function (PDF) or cumulative distribution
function (CDF). We use a non-parametric kernel density
estimation of these functions:

fh(x) =
1
nh

n∑
i=1

K (
x − xi
h

), (6)

where K is the kernel a non-negative function, h > 0 is a
smoothing parameter called the bandwidth, n the number of
available samples and xi the sample values. In the following,
we use a Gaussian kernel. To have a summarized metric we
will consider the root mean squared error (RMSE) [97] given
by:

RMSE =

√√√√1
n

n∑
i=1

(
Yi − Ŷi

)2
. (7)

The error ratio R and the RMSE tend to emphasize the
errors on large values and a relatively small error on a large
value can have a larger impact than a relatively large error on
a small value. To have a balanced view on this point, we also
analyze the error ratio R. We define it as the ratio between the
reconstructed map and the reference map, which is given by:

R = 10 log10

(
ŷ
y

)
. (8)

The ratio can then be seen as better emphasizing the error
itself. It can also be difficult to interpret because a small
error on a very small value can lead to a large error ratio,
while the error is in fact not significant. Consequently, when
using the error ratio we use a threshold (0.007 V/m), below
which we suppress the values. The choice of the threshold
suppresses low impacting field values and keeps a sufficiently
large number of values to estimate the distribution functions.

2) EVALUATION DATASET
The region of interest (RoI), Lille city center, is an area
of 1 km2. To evaluate the performance of the method, a
1.5-meter height grid is defined as sensor locations, as shown
in Figure 3. One or two transmitters are placed in the RoI.

FIGURE 3. The region of interest. a) shows the experimental 1km2 area,
red and blue represent sensor and transmitter respectively, and b) shows
the city topology extracted as raster from OpenStreetMap.

The exposure data for the sensors were generated for 20, 40,
60, and 100 sparsely located sensors using Veneris simulator.
Different transmitter positions were used to generate different
maps. The transmission frequency is 5.89 GHz with 120 W
transmitting power. If a full exposure would require a
full bandwidth analysis, this choice is necessary for the
reference maps simulations. It however does not impact the
EME-CNTK methodology which can be extended to a full
exposure analysis. Even, the addition of many frequencies
and technologies will make the field smoother, making the
reconstruction probably slightly easier, and improving its
accuracy. Moreover, to implement the city topology effect in
the proposed method, the environment (buildings, roads, etc.)
has been extracted fromOpenStreetMap. The dataset consists
of matrices, where each matrix is γ ∈ RM×N , where M and
N are the number of rows and columns of the map grid.
To make the neural networks robust to different changes

in factors, e.g., sensor location or measures, the authors
generated a different scenario by changing the transmitter
location for each map.

3) EME-NET, EMGAN, AND GAUSSIAN PROCESS
REGRESSION.
We compare the EME-CNTKwith the EME-Net [19] and the
EMGAN [9], that have been shown to be effective for this
task. These supervised deep learning models are pre-trained
on a dataset utilized in [9]. The test data corresponds to a
set of 100 matrices, each matrix containing 60 measurements
as exposure fields as sensor data defined on the Lille
topology illustrated in Figure 3. Both models are trained on
2900 images and tested on 100 images. All dataset were
generated using Veneris [20] the 3D ray tracing network
simulator.

We have also compared our proposed method with
Gaussian Process (GP) regression using the Random Fourier
Features (RFF) to obtain the kernel. The GP model was
trained on each matrix for 300 epochs with a learning rate
of 0.01 and ADAM optimizer.

B. VISUAL ANALYSIS
Figure 4 shows the effectiveness of the proposed approach
compared with the generative approaches EME-Net and
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FIGURE 4. Comparison of inferred exposure maps of the proposed method, EME-Net, and EMGAN with reference map simulated by Veneris (reference
values).

EMGAN, which looks satisfying even with only 40 measure-
ments as an input.

In Figure 5 (error maps), the estimation errors for all
solutions remain reasonably small but in some places,
especially at the edge of the image. In these areas, the
generative approaches tend to overestimate the EMF, which
can be explained by the absence of measurement sensors all
around the prediction points but only on one side.

In the presence of a sparse number of sensors, the
EMGAN, which takes the street maps (Figure 3-B) as a
conditionnal input, reaches better performance, at the price
of a very high training cost. EME-Net is less constrained
by topology since, the topology image was not used to train
the model, and tends to infer exposure fields without real
coherence, resulting in a high degree of decorrelation with
reference. The EME-CNTK approach performs well without
using reference full maps for training compared to generative
approaches. This shows the capacity of the approach to well
infer the exposure field, without requiring a training phase on
the full exposure maps.

Figure 6 shows the comparison between the CNTK map
and GP prior with RFF kernel while 60 sensors data was
used. The GP has difficulties to correctly account for the city
topology and the different propagation properties, depending
on the street configurations, while the CNTK better captures
the specific topologies.

C. QUANTITATIVE ANALYSIS
The PDF of the error ratio (8) and the CDF of the absolute
error of the proposed EME-CNTK approach and other
models (EME-Net and EMGAN) are shown in Figure 7.
In Figure 7-A, we also indicate the mean and variance

FIGURE 5. Error maps of the proposed method for different numbers of
sensors a) EME-CNTK 100 sensors, b) EME-CNTK 60 sensors, c) EME-CNTK
40 sensors, d) EME-Net 60 sensors and e) EMGAN 60 sensors model.

of the random variable R. We acknowledge that, using
60 sensors, our proposed approach provides superior results
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FIGURE 6. Comparison between Reconstructed maps by CNTK - GP
prior-RFF kernel.

FIGURE 7. EME-CNTK performances and comparison with different
models - A) PDF of the ratio R, B) CDF of error. (max. exposure 0.101 V/m.).

than the EME-Net and very close results to the EMGAN.
Figure 7-A illustrates significant errors which can be
mitigated through the training phase of both EMGAN and
EME-Net. However, the proposed approach demonstrate
robust performance, while no full referencemaps are required
in the reconstruction phase, contrarily to EMGAN and EME-
Net methods. As evident from our observations, 80% errors
are less than 2,5.10−3 V/m when the maximum exposure
value was 0.101 V/m in reference values from Veneris. This
can be considered as a very low error as an error of 2,5.10−3

V/m is approximately 2.475% relative error of the maximum
value of 0.101 V/m.

D. IMPACT OF SENSOR DENSITY.
Figure 4 and 5 illustrates the impact of changing the
number of sensors (from 40 to 100). Additionally, Figure 8
shows the EME-CNTK-based reconstructed maps using 40
(Figure 8-B) and 60 sensors (Figure 8-D)measurement points

FIGURE 8. Comparison of Reconstructed and error maps of the proposed
method when 2 transmitters are used. a) reference map, b) EME-CNTK
40 sensors 2TX, c) EME-CNTK 40 sensors 2TX error map, d) EME-CNTK
60 sensors 2TX, e) EME-CNTK 60 sensors 2TX error map.

when 2 transmitters are in the RoI. Figure 8 illustrates that the
performance of the proposed method remains consistent even
when 2 transmitters (upper right and bottom left corners) are
used. However, in both cases (one or two transmitters), even
if the visual inspection is satisfying, some degradation can be
observed for 40 sensor-measured maps.

To confirm this comment, Figure 9-A shows the CDF of the
error absolute value and Figure 9-B, the probability density
function (PDF) of the error ratio R along with the mean and
standard deviation of the distribution when different numbers
of sensors are used.

When the number of sensors is as low as 20, the mean
value is high at 1.39, and the standard deviation is 7.04.When
increasing the number of sensors from 40 to 100, the mean
value and standard deviation decrease gradually. The standard
deviation remains however high due to the large errors that
sometimes occur, as seen in the CDF.

Finally, we present in Table 1 the RMSE of the predicted
and actual values of exposure. As shown, an increasing
number of sensors reduces the RMSE, leading to better
reconstruction performance.

The main conclusion is that the density of sensors and
how they are distributed play a significant role in the
reconstruction process. Further research is needed to optimize
the sensors’ location and evaluate more carefully the cost of
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FIGURE 9. EME-CNTK performances - varying number of sensors - A) CDF
of error B) PDF of the ratio R (max. exposure 0.101 V/m).

TABLE 1. RMSE of the estimated exposure values using our approach.

deployment and the accuracy of the maps. To do so, ones
needs to take into account the fact that, in a city, the possible
locations for sensors are extremely constrained.

E. GRID RESOLUTION
Maintaining uniform sensor density, our objective was to
ascertain whether changing in grid resolution influenced
prediction accuracy. Figure 10 shows on the left the case of
32× 32 maps and on the right the 64× 64 case. As expected,
the quality of the reconstruction is very similar in both
cases, the main difference being the resolution. The proposed
EME-CNTK approach adapts perfectly from one resolution
to another without applying new training, or specific data
augmentation, as required by existing generative approaches
such as EME-Net and EMGAN.

To further confirm this result, the CDF of the error absolute
value of the reconstructed map compared to the reference
exposure map for 64 × 64 resolution, when EME-CNTK is
used, is shown in Figure 11.
When 100 images are analyzed for 11-A is very similar

as 10-A, showing no noticeable change in the error between

FIGURE 10. Comparison of reconstructed exposure map with reference
when different grid size is used. a) Reference map 32 × 32, b) reference
map when resolution is 64 × 64, c) EME-CNTK - 60 sensors resolution
32 × 32, d) EME-CNTK - 60 sensors resolution 64 × 64, e) EME-CNTK -
60 sensors error map resolution 32 × 32, f) EME-CNTK - 60 sensors error
map resolution 64 × 64.

FIGURE 11. a) The CDF of the error (RMSE) between the reconstructed
map and reference for 64 × 64; b) CDF when 2 transmitters are present.
100 images are used to plot the CDF.

32 × 32 and 64 × 64 grid sizes. This is rather expected
because, while the number of input pixels in comparison to
the total number of pixels of the output image is divided by 4,
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the density of sensors (per km2), i.e., the distance between
sensors, remains the same.

In 11-B, a similar CDF is plot but the images contain two
transmitters. Reconstruction using the proposed EME-CNTK
approach is proving effective, yielding approximately 80%
error fall under 0.0025 V/m or 2.5mV . This signifies a
precision of approximately 2.5% relative to the maximum
exposure value 0.101 V/m in the reference values, indicating
a high level of accuracy and fidelity in the reconstruction
being performed when employing an augmented spatial
resolution grid. No difference can be observe in the error
when considering one or two transmitters.

F. COMPARATIVE ANALYSIS OF TIME EFFICIENCY
We assessed the efficiency of the proposed method in
terms of the time required for inference and training. Our
analysis shows that the cGAN-based approach EMGAN
and Unet-based approach EME-Net required 1.5 hours and
approximately 20 minutes, respectively, to train on a machine
with 4GB GPU memory (Intel core i7, NVIDIA Quadro
T1000). EMGAN iterated over 139K epochs, while EME-Net
trained for 30 epochs. Both models required higher memory,
approximately 6-13 GB, and utilized 3.25GB GPU memory
for training. In contrast, our proposed EME-CNTK method
took only 4,4.10−4 seconds to train and impute the matrix as
shown in Table 2.

TABLE 2. Comparison of the proposed method with others with machine
configuration and time.

V. DISCUSSION
In this study, we introduced an infinite-width neural network-
based approach, EME-CNTK, for estimating EMF exposure
in missing points of an area. The proposed method was
evaluated and compared with existing techniques, including
a cGAN-based approach (EMGAN) and a Unet-based one
(EME-Net), across various parameters such as sensor density,
grid resolution, and computational efficiency.

Our results showcase the superiority of the EME-CNTK
approach over EME-Net and its competitive performance rel-
ative to EMGAN. Even utilizing fewer sensors, EME-CNTK
consistently outperformed EME-Net and closely approached
the accuracy achieved by EMGAN. This observation under-
scores the effectiveness of our proposed methodology in
accurately estimating EMF exposure without the need for

full reference maps and time consuming learning, a feature
distinct from both other schemes.

One notable advantage of the EME-CNTK approach is its
adaptability across varying sensor densities (20 to 100 per
km2) and grid resolutions (32× 32 to 64× 64). Our analyses
revealed that the method maintains consistent performance
even with limited sensor deployment and varying grid sizes,
showcasing its robustness in real-world scenarios. Further-
more, the EME-CNTK method demonstrated efficiency,
requiring significantly less training time (4,1.10−4s) and
computational resources compared to cGAN-based EMGAN
and Unet-based EME-Net, owing to the simple closed form
formula of the tangent kernel [18], [53]. The main advantage
of our method is in solving kernel regression with CNTK
as it involves solving linear systems of equations, which
efficiently handles complex data patterns while optimizing
computational resources.

However, it is essential to acknowledge some limitations of
our approach. While EME-CNTK yields satisfactory results
across different conditions, degradation in performance can
be observed with a low density of sensors. Moreover,
several neural network designing techniques such as kernel
initializers, skip connections, batch normalization, etc. can be
utilized in our model to improve the estimation accuracy of
the proposed method. Comparing our method with EMGAN,
in scenarios involving a sparse number of sensors, EMGAN,
which takes street maps (Figure 3-B) as a conditional input,
achieves slightly superior performance than our proposed
method. Additionally, while the method’s adaptability to
different grid resolutions was demonstrated, some minor
differences in error metrics were observed between reso-
lutions. They remain however negligible for our practical
application.

VI. CONCLUSION
We have presented an EMF exposure reconstruction method
using CNTK. Compared to other exposure reconstruction
techniques, this approach significantly reduces the burden
in terms of computational resources (machine configuration,
memory, etc.) and time. Moreover, it does not require
a large dataset of any reference maps generated from a
simulator, which cannot replicate true exposure maps in
a realistic network configuration in an urban area, taking
into account all the influencing parameters such as base
stations from different technologies, the transmitting powers,
the beam pattern for 5G, vehicles, houses, trees, etc. When
training a generative model, it can take a significant amount
of time to reach convergence to optimize the weights,
because generative models typically have a large number of
parameters and complex architectures. However, from only
60 sparsely located sensor measurements in a 1 km2 area,
the proposed CNTK based method can reconstruct exposure
maps rapidly and accurately. In conclusion, the EME-CNTK
approach presents a promising solution for EMF exposure
estimation, offering a balance between accuracy, efficiency,
and adaptability. By leveraging neural network techniques,
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our method achieves commendable results even in scenarios
with limited sensor deployment and varying grid resolutions.
Moving forward, further refinements and validations will
be conducted to enhance the method’s robustness and
applicability in diverse real-world settings.

Future work will concentrate on expanding the estimation
of exposure maps using EME-CNTK with the propagation
model implemented and in the temporal dimension, with
a particular focus on interpreting the CNTK behavior and
analyzing the kernel, as suggested in [98].
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