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ABSTRACT Recent advancements in optical flow estimation have led to notable performance gains,
driven by the adoption of transformer architectures, enhanced data augmentation, self-supervised learning
techniques, the use of multiple video frames and iterative refinement of estimate optical flows. Nonetheless,
these cutting-edge methods encounter substantial challenges with surge in computational complexity and
memory demands. In response, we introduce a lightweight optical flow method, called MaxFlow, to address
the trade-off between computational complexity and prediction performance. By leveraging MaxViT,
we design a network with a global receptive field at reduced complexity, and proposed 1D matching to
alleviate the computational complexity from (H × W )2 to H × W (H + W ), wher H and W denotes
height and width of input image. Consequently, our method achieves the lowest computational complexity
compared to both state of the arts(SOTA) and other lightweight optical flow estimation methods, while
still achieving competitive results with the SOTA techniques. We performed extensive experiments to show
the effectiveness of our method, achieving about 5 to 6 times reductions in computation complexity while
maintaining the prediction accuracy with only degradation of 16% in term of end point error(EPE) at Sintel
test clean sequences with respect to RAFT method.

INDEX TERMS 1D matching, MaxViT, optical flow estimation, lightweight optical flow estimation,
positional embedding, transformer.

I. INTRODUCTION
Optical flow prediction or estimation, one of the most
classical problems in the field of computer vision, involves
predicting the movement of pixels between two successive
frames. This prediction is essential for various sub-tasks such
as action recognition, video super-resolution, video frame
interpolation, and autonomous driving etc.

With the advent of deep learning, traditional energy
minimization-based optical flow estimation has been sup-
planted by learnable networks. Deep learning-based methods
for optical flow estimation rely on the similarity information
between two image frames, commonly referred to as the
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cost volume [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
This approach involves identifying the corresponding pixels
between two images to facilitate precise optical flow
estimation. The early deep learning-based techniques for
optical flow estimation, such as Flownet [1], PWCNet [3],
and SpyNet [4], utilized local cost volumes, focusing on the
relationship between each pixel in a preceding frame and its
nearby pixels in a following frame, to conduct optical flow
estimation.

In the evolving landscape of deep learning, the emergence
of vision transformers has catalyzed notable advancements in
diverse areas, including optical flow estimation. The state-of-
the-art (SOTA) methods such as RAFT [5] and GMFlow [6]
have achieved unprecedented accuracy, yet they grapple with
increased computational demands and memory consumption.
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FIGURE 1. Comparison of model complexity and performance on Sintel
datasets (consists of 448 × 1024 resolution images).between SOTA and
lightweight optical flow estimation methods. The model complexity and
prediction accuracy are measured in terms of MACs (multiplications and
acculmulations calculations) and EPE (end point error). The circle size is
proportional to the number of each model’s parameters.

This is predominantly due to the computation of all-pair cost
volumes, scaling quadratically with the H ×W resolution of
input images, denoted by (HW )2.
The burgeoning demand for high-resolution video process-

ing further exacerbates these resource constraints, making
efficient optical flow estimation more challenging. One of
the current efforts to mitigate the increase of computation
complexity involves 1-dimensional and sparse cost volume
approaches [7], [9]. However, these strategies still incur
considerable computational overhead, largely attributed to
their dependence on repetitive GRU [11], [12] architectures.
A promising innovation, the global matching approach [6],
circumvents the dependency on GRUs for accurate optical
flow prediction. Nevertheless, this method incorporates
a Swin Transformer [13] layer with a window size of
[H/2,W/2], where computations and memory usage con-
tinue to scale with (HW )2. This limitation constrains its
practical utility, especially in high-resolution contexts.

Our paper focuses on addressing the challenge of computa-
tion efficiency in optical flow estimation, while maintaining
competitive performance. Fig. 1 shows the comparison of
our lightweight optical flow estimation method (MaxFlow)
with other state-of-the-art (SOTA) methods in terms of model
complexity and prediction performance. The contributions of
our work are summarized as follows:
• We introduce a novel lightweight optical flow estimation
method that leverages a global matching scheme of low
complexity in conjunction with the multi-axis vision
transformer architecture [14];

• For this, the architecture of our method is designed
to exhibit a global receptive field, with computa-
tional complexity proportional to HW . This significant
reduction from the quadratic scaling of HW in the
existing methods positions our approach as a viable
solution for high-resolution video processing, marrying
efficiency with high performance in optical flow
estimation;

• Additionally, we propose an 1D matching method for
correspondence finding, which allows to effectively
perform optical flow estimation with a reduced compu-
tational complexity and memory footprint compared to
conventional global matching methods.

• Finally, our proposed lightweight optical flow esti-
mation method yields the best trade-off between the
computation and prediction accuracy compared to the
recent lightweight SOTA methods.

II. RELATED WORKS
A. OPTICAL FLOW ESTIMATION
Traditional approaches to optical flow estimation often
minimized energy functions under brightness consistency and
smoothness assumptions [15]. These assumptions are not
always valid, as lighting conditions may differ between the
input images, and the smoothness assumption may break
down along motion boundaries.

The integration of deep learning into optical flow estima-
tion marked a revolutionary shift in the field. The pioneering
work, named FlowNet [1] introduced a deep learning
architecture that was borrowed from semantic segmentation,
notably an encoder-decoder structure, and applied it for
optical flow estimation. Their framework utilized a cost
volume, constructed through the dot product of features
from consecutive frames, to quantify feature similarities.
Subsequently, Flownet2 was introduced by stacking multiple
FlowNets, as described in [2]. This architecture demon-
strated performance comparable to traditional optical flow
estimation methods in terms of prediction accuracy while
being much faster than the traditional non-deep-learning-
based methods. In spite of its fast run time on GPU, Flownet2
faced limitations due to its high computational demands.

Seeking the computation efficiency, Spynet [16] was
proposed, leveraging a multi-scale pyramid structure and
warping techniques to reduce the computational burden.
Their method achieved competitive results with Flownet2,
but with a fraction of the parameters and computational
requirements, thus expanding the practical applicability of
optical flow estimation in various scenarios.

PWC-Net [3] further pushed the boundaries of compu-
tation efficiency in optical flow estimation. This method,
similar to Spynet, employed a pyramid-based structure but
introduced a significant innovation by processing pyramid
structures and warping in the feature domain rather than
the image domain. PWC-Net starts at the coarsest scale,
incrementally refining the flow estimation as it progresses to
finer scales. This approach not only reduced computational
overhead but also improved the prediction performance of
optical flow estimations.

RAFT [5] identified critical limitations in the existing
methods, particularly in PWC-Net’s ability to accurately
capture motion for small or fast-moving objects. These
objects often went unnoticed at the lowest scales of the
pyramid structure, and the limited receptive field at finer
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scales hindered accurate motion capture. RAFT addressed
these issues by calculating all-pair cost volumes at a reduced
scale and utilizing Conv-GRU for iterative refinement,
leading to significant improvements in prediction accuracy
at the cost of increasing the computation complexity.

GMFlow [6] then addressed the high computational
demands of RAFT [5], focusing on the iterative nature of
its optical flow estimation. Traditional models addressed
this problem through regression techniques, utilizing either
local cost volume with warping [3], or all-pair cost volume
with look-up operations [5]. GMFlow innovatively reframed
optical flow estimation as a matching problem, a concept
derived from stereo matching or feature matching tasks.

B. LIGHTWEIGHT OPTICAL FLOW ESTIMATION
Although very recent work on deep learning based
optical flow estimation, such as RAFT [5], GMA [8],
FlowFormer [17], has greatly improved the prediction
performance, the computation complexity has also been
dramatically increased, thus making it difficult the possible
real time applicability. For example, RAFT [5], while
groundbreaking, necessitated substantial GPU memory to
store its 4D all-pair cost volume, which is especially
problematic for high-resolution image input. Additionally,
the extensive usage of ConvGRU iterations contributed to
its significant computational load. Therefore, the need for
more lightweight and computationally efficient optical flow
estimation methods became necessitated.

As an effort to reduce such a computation complexity,
Flow1D [7] tried to solve these challenging issues by
introducing a 1D separable cost volume, thus reducing the
computation andmemory requirements of the 4D all-pair cost
volume used in RAFT. By calculating the cost volumes in
both vertical and horizontal directions separately, Flow1D
managed to stably compute optical flow in high-resolution
images with a reduced computational footprint.

Similarly, SCV [9] proposed the use of a sparse cost
volume, arguing that storing all-pair cost volumes is inef-
ficient as most pairs contribute little to the final optical
flow estimation. By focusing on the most correlated features,
SCV aimed to minimize memory usage while maintaining
estimation accuracy.

Despite these advances in reducing the computation
complexity of cost volumes, both Flow1D and SCV still
required significant computational resources for their itera-
tive ConvGRU operations to achieve high accuracy in optical
flow estimation. The challenge thus remained to develop
methods that could balance computational efficiency with
high accuracy in flow estimation.

C. VISION TRANSFORMER (VIT)
The inception of transformer architectures in natural lan-
guage processing (NLP) [18] introduced a paradigm shift
away from the localized bias of convolutional neural
networks (CNNs) and the sequential bias of recurrent

neural networks (RNNs), towards a non-biased architecture.
Transformers, devoid of these biases, have shown a tendency
to overfit with smaller datasets but excel with larger volumes
of data, demonstrating substantial performance gains in
the NLP domain. The unveiling of the Vision Transformer
(ViT) [19] marked the beginning of the widespread adoption
of transformer structures into computer vision fields, leading
to significant enhancements in performance when used
as backbone architectures for various low- and high-level
computer vision tasks.

However, vanilla vision transformers [19] are not without
their limitations, particularly in their operation at a fixed input
scale, their intensive computation and data requirements.
To address these challenges, several studies have proposed
modifications to the basic ViT structure [4], [20], [21].
Among these, the Swin Transformer [13] has emerged as
a notable innovation, introducing window self-attention as
a novel solution to reducing the computation complexity
for global self-attention operations. This approach substan-
tially reduces computational load by localizing attention
calculations within non-overlapping windows instead of the
entire images, while concurrently improving performance by
imparting an appropriate locality bias. The Swin Transformer
further mitigates the limitations of a fixed receptive field
by employing shifted window attention, which allows for
self-attention across moved windows, thus ensuring effective
information transfer.

Despite its efficiencies in computation and performance,
the Swin Transformer somewhat offsets the inherent advan-
tage of global information transmission found in the original
ViT, necessitating either numerous Swin layers or larger
window sizes to achieve large receptive fields. Addressing
this, Tu et al. [14] proposed an enhanced model that
leverages attention within a multi-axis global grid. Following
window self-attention, their model, referred to as MaxViT,
constructs a novel grid along an additional axis to aggregate
global features within a single window for self-attention.
This design not only maintains the computational efficiency
proportional to H×W but also retains a global receptive
field, thus facilitating efficient global information exchange.
By balancing the benefits of a global receptive field with
reduced computational demands, MaxViT presents itself as
a viable new baseline for transformer-based architectures in
the field of computer vision.

III. METHODS
We propose a lightweight optical flow estimation (OFE)
method, called MaxFlow, aiming to reduce computational
load and memory usage while maintaining competitive
accuracy in optical flow estimation, compared to the recent
SOTA OFE models [5], [8], [17]. Fig. 2 illustrates our
MaxFlow architecture. The MaxFlow system comprises four
key component modules:

1) Feature Extraction (FeExt): In this initial stage, the
network employs several residual stages to extract
pertinent features from input image pairs.
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FIGURE 2. Overall framework of our proposed network, MaxFlow. Our network consists of feature extraction, feature enhancement, 1D matching, flow
enhancement, and optical flow estimation boosting.

2) Feature Enhancement (FeEhm): Subsequently, the
extracted features undergo an enhancement process to
bolster their distinctiveness, thereby facilitating more
effective OFE. Detailed elaboration on this process is
presented in Section III-B.

3) 1D Matching (1DMat): OFE is performed through a
process, termed as 1D matching, a novel approach that
addresses feature matching in 1-dimensional (horizon-
tal and vertical) manners. This is very effective for low-
complexity operations, which explicitly estimates the
optical flows from 1D cost volumes at one single shot,
rather than using iterative ConvGRU as in Flow1D [7].

4) Flow Enhancement (FlEhm): The final stage encom-
passes the application of flow propagation [6], [8]
techniques, supplemented by a series of CNN layers,
to refine the estimated optical flow.

The FeExt module consists of three cascaded residual blocks,
which generates two 1/8-sized feature maps: one for the
source image, Fextsrc and the other for the reference image,
Fextref . Further insights into the specific mechanisms and
methodologies employed in the FeEhm, 1DMat, and FlEhm
modules will be discussed in subsequent sections of this
paper. Also, we will briefly explain our refinement stage for
further performance improvement by repeating the FeEhm-
1DMat-FlEhm operation, and the objective function used in
our training.

A. 1D MATCHING
Before introducing our proposed 1D matching for correspon-
dence finding with 1-D cost volumes, we briefly describe
a global correspondence matching from which our 1D
matching is motivated.

1) GLOBAL MATCHING
The principle behind global matching, proposed in
GMFlow [6], involves comparing correlations between two
input images, Isrc and Iref . The correlation, or cost volume,
is then computed as follows:

Cij =
Fsrc(i, j)FTref
√
D

∈ RH×W , (1)

where Fsrc and Fref represent the extracted features from
Isrc and Iref , respectively, obtained via a convolutional neural
network (CNN) encoder and additional feature enhancement
layers. Also, (i, j) denotes the coordinates within Fsrc,
D represents the channel size of Fsrc and Fref which is used
to normalize the cost volume, and H and W are the height
and width of Fsrc and Fref . Cij symbolizes the cost volume
corresponding to the (i, j) coordinate in Fsrc.

The cost volume Cij in Eq 1 can take on negative and
positive values. So, Cij is probabilistically normalized as Mij
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FIGURE 3. Our proposed 1D matching. (a)1D horizontal cost volume construction, following Flow1D [7]. Green line:
horizontal self-attention, Fsrc horizontally exchange their features using horizontal self-attention. Orange line: vertical
cross attention, Fref and F hor

src are vertically cross-attended to correctly exchange the vertical features in Fr ef to highly
correlated row. (b) Our proposed 1D matching strategy for correspondence matching. The horizontal and vertical cost
volumes for a selected pixel in Isrc are depicted at the bottom and left of Iref , respectively. These cost volumes are derived
from aggregated features, and the centroid of each cost volume is calculated to determine the corresponding x and y
coordinates in Iref .

between 0 and 1 as:

Mij = Softmax(Cij) ∈ RH×W . (2)

where Softmax(·) is the softmax operator. The correspon-
dence for each feature in Fsrc is identified by applying the
2D grid to the normalized cost volumeMij as:

cij = MijG ∈ R2, (3)

where cij designates the corresponding pixel coordinates
of Iref at location (i, j) in Isrc, and G is the matrix form
of 2D coordinates. Optical flows are then determined by
subtracting the coordinates of the original pixels in Isrc from
the corresponding coordinates in Iref .
The formulation of OFE as a matching problem exhibits

notable efficacy under the conditions where corresponding
pixels are present in both the source and reference images.
We introduce a novel formulation for OFE, termed as 1D
Matching, which is an essential low-complexity component
of our proposed MaxFlow architecture. While global match-
ing can predict optical flow without the need for GRU
iterations, it is not feasible for lightweight optical flow
estimation due to its high memory demand proportional to
(HW )2.

Consequently, we propose a 1D matching strategy that
significantly reduces both memory and computation, scaling
proportionally toHW (H+W ). For this purpose, we utilize the
concept of 1D cost volume construction as introduced in [7].
The rest of this section provides a succinct overview of the

1D cost volume construction process, followed by a detailed
explanation of our 1D matching strategy.

2) 1D COST VOLUME CONSTRUCTION [7]
Our proposed 1D matching, performed in feature domain,
is based on the previous 1D cost volume construction.
To construct the horizontal cost volume for our 1D matching
approach, the objective is to ensure that themaximumvalue in
the horizontal cost volume for each pixel in Fsrc corresponds
to the x coordinate of the matched pixel in Fref . This
necessitates an aggregation of features along the same column
in Fref , so influencing the cost volume across different rows,
even within a single horizontal cost volume construction.
Fig. 3-(a) illustrates an example of a 1-D (horizontal) cost
volume construction. We formulate this aggregation as a
column-wise linear combination in Fref :

Fverref (h,w) =
H−1∑
i=0

f veri,h,wFref (i,w), (4)

where h and w range over [0,H -1] and [0,W -1] respectively,
Fverref (h,w) represents the aggregated feature of Fref along
the column, and f veri,h,w are the weights of this linear
combination.

The weight f veri,h,w plays a crucial role, indicating the
significance of each pixel in Iref for constructing the
aggregated feature Fverref at the coordinates (h,w). These
weights are highly dependent on the features in Isrc that share
the same vertical coordinate h. To address this, they first
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aggregate Fsrc in a row-wise manner:

Fhorsrc (h,w) =
W−1∑
i=0

Attnhor (i, j)Fref (h, i),

Attnhor (i, h,w)

= softmax

(
Fsrc(h, i)Fsrc(h,w)T∑W−1
j=0 Fsrc(h, j)Fsrc(h,w)T

)
, (5)

where Fhorsrc (h,w) denotes the aggregated Fsrc across the row.
This step ensures that every feature in Fsrc contributes to the
vertical cross-attention mechanism. The weight fi,h,w is then
derived using the aggregated features Fhorsrc and Fref as:

f veri,h,w = Fref (i,w)Fhorsrc (h,w)
T . (6)

The horizontal correlation, or cost volume, is subsequently
computed as follows:

Chor (i, h,w) =
1
√
D
Fsrc(h,w)F̂ref (h, i)T , (7)

where Chor (i, h,w) represents the horizontal cost volume
corresponding to source features at (h,w) and reference
features at the i-th column. Similarly, the vertical cost
volume can be constructed using vertical 1D self-attention
and horizontal 1D cross-attention.

3) 1D MATCHING
Fig. 3-(b) illustrates our 1D matching strategy for OFE.
As shown in Fig. 3-(b), our 1D matching is performed
on the constructed 1D cost volume in Fig. 3-(a), and is
actually a dimensional modification of the global matching
technique [6]. As observed, through the construction of a 1D
horizontal cost volume, each pixel of the source image effec-
tively exchanges information with its corresponding pixel in
the reference image, localized within an appropriate row and
column. This ensures that even if the corresponding pixel
does not exist in the same row or column, its presence can still
be considered within the 1D cost volume. Subsequently, the
pixel-wise centers of gravity in the computed horizontal cost
volumeChor and vertical cost volumeCver are assigned as the
x and y coordinates of the corresponding pixels, respectively.
Also, the cost volume Chor

ij can take on negative and positive
values. So, Chor

ij is normalized as Mhor
ij using the softmax

operator:

Mhor
i,j = softmax(Chor (i, j, ·)) ∈ RW . (8)

The horizontal correspondence for each feature in Fsrc
is identified by applying the 1D horizontal grid to the
normalized cost volumeMhor

ij as:

chorij = Mhor
ij Ghor ∈ R, (9)

where Ghor is an matrix form of 1-dimensional (horizontal)
coordinates. The vertical correspondence pixel cverij can be

found in a similar way. As a result, we can find 2D
correspondence pixels cij as

cij = [chorij , cverij ], and oij = [chorij − i, c
ver
ij − j], (10)

where oij indicates optical flow estimation at (i, j)-th feature
location in the source image.

B. FEATURE ENHANCEMENT
While calculating the centroid of the cost volume is a viable
approach for determining corresponding pixels, relying
solely on features derived from a CNN network does not
yield optimal results. This limitation arises due to the
absence of discriminative differences in continuous patterns
or homogeneous regions within the features. To overcome
this, it is imperative to enhance the features using a vision
transformer. In the work of Xu et al. [6], a Swin layer [13] was
employed for feature enhancement, applying both self and
cross attention mechanisms not only to enhance the features
but also to facilitate inter-feature awareness.

However, large motion detection necessitates a corre-
sponding increase in window size, leading to significantly
higher computational and memory requirements, which scale
with the square of the image resolution. To address these
challenges, the MaxViT layer [14] is employed as an
alternative to the Swin layer. As shown in Fig. 4, the MaxVit
layer divides the image into both a local window and a
global grid, thereby achieving a global receptive field while
maintaining computational efficiency that scales linearly with
image resolutions. This global receptive field is instrumental
in detecting large motions between images and in enhancing
the self-information of the features. We indicates enhanced
features of source and reference image as Fehmsrc and Fehmref ,
respectively. However, for simplicity, the superscript has been
omitted in 1D matching section as Fsrc and Fref .

Additionally, for the performance enhancement and model
robustness to the changes in image resolutions, we adopted
a method of applying continuous augmentation to positional
encoding [22]. As the transformer structure is utilized in the
feature enhancement module, we add positional encoding
to the features obtained during the feature extraction phase.
However, if training is only conducted at a fixed target
resolution for each dataset and the actual inference is
performed on images of different resolutions, the network
will not have learned the positional encoding for those
resolutions, resulting in lower performance. Following
Cape [22], we apply global shift, local shift, and global
scaling augmentations to the fixed grid used to create the
sinusoidal positional encoding. The details are as follows.

Global shift hides the absolute positional information,
but only considers relative relations. This transformation
randomly shift grids horizontaly and verticaly with same
magnitude 1x, 1y ∼ U (−1max , 1max)

x ′i ← xi +1x, y′j← yj +1y, (11)

where U (x, y) denotes uniform distribution between x and y.
To prevent the network from memorizing the intervals of
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FIGURE 4. Feature enhancement layer. Our feature enhancement layer utilizes MaxViT layer, which consists
of local window attention and global grid attention. Local window attention subdivide image with equal
sized windows(window size is Wlocal in this figure) and apply self-attention to feautures in same image.
In global grid attention, images are divided into fixed number of gird (Wglobal in the figure) and aggregate
features in same position in each grid. Aggregated features are passed through self-attention layer to
achieve large receptive field. The features that are included in the same self-attention are represented by
the same color in the figure.

the positional encoding, we further apply local shifts and
global scaling. By shifting the positional encoding through
a global shift, the network is trained on a variety of positional
encodings, yet the interval between each encoding remains
consistent. This consistency means that when the inference
resolution increases or decreases, the rate of change within
the positional encoding window will differ from that during
training, which can also reduce inference performance.
To resolve this, we apply a local shift that shifts each
grid differently, and a global scaling that further augments
the intervals between grids. The local shifts in horizontal
and vertical directions at location (i, j) are obtained using
sampled noise εx,i ∼ U (−εx,max , εx,max) and εy,j ∼

U (−εy,max , εy,max) as:

x ′i ← xi + εx,i, y′j← yj + εy,j (12)

To prevent the memorization of distances between positional
embedding grids, we also introduce a random global scale λ

from log λ ∼ U (− log λmax , log λmax) as:

x ′i ← λxi, y′j← λyj (13)

In our model, 1max , εx,max , εy,max , and λmax are set to 0.5,
1/W , 1/H , and 1.4, respectively.

C. FLOW ENHANCEMENT
The flow enhancement module in our approach is divided into
two key components: flow propagation and flow head.

1) FLOW PROPAGATION
The accuracy performance of the 1D matching module is
contingent on the existence of the corresponding pixels within
the reference image for each pixel in the source image.
In real-world scenarios, occlusions and out-of-boundary
movements often disrupt the existence of correspondences.
To ensure accurate flow estimation for occluded pixels,
our MaxFlow adopts a flow propagation layer from the
previous works [6], [8]. This layer extends the optical

flow to the areas lacking pixel correspondences, aiming
to replicate the actual flow obscured by occlusions or
boundary constraints. The flow propagation layer measures
the self-similarity of Fsrc, and propagates the highly accurate
flows for which the correspondences exist, to a regionwithout
correspondences. The self-similarity-based flow propagation
is performed under the assumption that two highly similar
regions are in the same context or object, and their flows
would be similar. Our MaxFlow, differentiated from that
in [6], constrains the flow propagation within a local window,
significantly reducing computational load while maintaining
the prediction accuracy.

2) FLOW HEAD
The flow head component serves to refine the optical flows
derived from the flow propagation. It consists of several CNN
layers that further enhance the flows. Unlike the 1Dmatching
and flow propagation that operate in the coordinate domain,
the flow head addresses the continuity of optical flows within
a same object. It processes the optical flows from the flow
propagation stage in conjunction with enhanced source image
features, culminating in an optical flow representation that
more accurately reflects its inherent characteristics.

D. OFE-BOOSTING
The MaxFlow incorporates an OFE-boosting stage to
enhance the prediction accuracy of OFE by repeating the fea-
ture enhancement, 1D matching and flow enhancement steps
one more time, similar to the work [6]. This OFE-boosting
first involves the warping of the reference image features,
Fextref onto the source image features by the preliminary optical
flow (O2 in Fig. 2) by

Fwarpref = OFW (Fextref ,O2), (14)

where OFW (·) indicates a backward warping operation [23]
that brings the corresponding reference feature elements
into closer proximity of the source feature elements.
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Such proximity facilitates more effective information transfer
between these elements, thereby contributing to the predic-
tion ofmore refined optical flows. Thesewarped features then
undergo the feature enhancement, 1D matching, and flow
enhancement in order.

E. LOSS
The MaxFlow framework initially derives optical flows
through 1D matching in its primary phase. These flows are
subsequently refined through the 1D matching and the flow
enhancement two times (See Fig. 2) and another two times
for the OFE-boosting stage. While it is feasible to supervise
solely the final output (optical flow estimates) for simplicity,
supervising each stage of optical flow generation ensures
alignment with our network’s objectives and promotes stable
training. The supervision is implemented as follows: the
optical flows that are the outputs of the 1D matching and the
flow enhancement in both initial and OFE-boosting stages are
compared against the ground truth optical flows to calculate
the loss for training. This is quantified using the total loss
function L:

L =
4∑
i=1

γ 4−i
∥Ogt −Oi∥1 (15)

where γ denotes a scaling factor applicable to each stage of
OFE,Ogt is the ground truth optical flow, andOi indicates the
optical flowmap obtained at each respective stage such as the
outputs of the first 1-D matching, first flow enhancement and
second 1-D matching and second flow enhancement modules
for i = 1, 2, 3 and 4, respectively, as shown in Fig. 2.

IV. EXPERIMENTS
A. DATASETS
In alignment with established protocols in [5] and [6],
our approach involves training the proposed MaxFlow
model using the FlyingChairs [2], FlyingThings3D [24],
and HD1K [25] datasets. Evaluation is conducted on the
Sintel [26] and KITTI [27] datasets. The FlyingChairs
dataset, a synthetic collection, is composed of 3D-rendered
images of flying chairs, supplemented by the images from
various open-source databases. These chairs undergo random
affine transformations to simulate real-world motion. In con-
trast, FlyingThings3D, another synthetic dataset, includes 3D
objects following 3D trajectories, unlike the 2D motion in
FlyingChairs. Sintel, which is also synthetic, features more
lifelike motion derived from an actual animated film. HD1K
and KITTI, sourced from real-world environments, comprise
images captured from vehicles, and feature the sparse optical
flows calculated using external sensors. Given the limited
number of training images in the test datasets, we initially
train our model on the FlyingChairs and FlyingThings3D
datasets, followed by fine-tuning it on Sintel, HD1K, and
KITTI datasets. The other models under comparison are also
trained and tested in the same way as our MaxFlow model.

B. IMPLEMENTATION DETAILS
The implementation of our MaxFlow model is based on the
foundational code of [6], utilizing Pytorch, with CUDA for
efficient memory handling during flow propagation. Training
commences on the FlyingChairs dataset for 100k iterations,
followed by 800k iterations on the FlyingThings3D dataset.
Subsequent fine-tuning involves a mix of data from Sintel,
FlyingThings, KITTI, and HD1K datasets over 200k iter-
ations, preparing the model for evaluation on Sintel. For
KITTI-based testing, the Sintel-optimized model undergoes
an additional 100k iterations of training on the KITTI dataset.
The training learning rates are initially set to 4 × 10−4,
2 × 10−4, 2 × 10−4 and 1 × 10−4 for FlyingChairs,
FlyingThings3D, Sintel and KITTI datasets, respectively,
with a decay implemented via a CosineAnnealing scheduler.
The AdamWoptimizer is employed, with parameters (β1, β2)
set to (0.9, 0.9) and a weight decay of 1 × 10−8. To ensure
stable learning, gradient clipping is applied with a clipping
parameter of 1. Data augmentation techniques include
random resizing and cropping to dimensions (384, 512),
(384, 768), (320, 896), and (320, 1152), as well as random
horizontal flips, color jitters, and grayscale conversions to
diversify the training dataset. Full training is achieved in two
and a half days using two NVIDIA RTX 3090 GPUs. The
pretrainedmodel based on FlyingChairs and FlyingThings3D
datasets is referred to as the things model, whereas the
fine-tuned models for the Sintel and KITTI datasets are
denoted as the sintel and kitti models, respectively.

C. EXPERIMENT RESULTS
1) EVALUATION METRICS AND SCENARIOS
To objectively assess the prediction accuracy performance,
we use (i) end-point error (EPE) between estimated flow
and ground truth flow, (ii) F1-all, which indicates f1 score
where a pixel being deemed accurately estimated if the
error in flow is less than 3 pixels or less than 5% of its
ground truth value. The prediction accuracy performance is
evaluated in several scenarios in terms of motion amounts:
‘s0-10’, ‘s10-40’ and ‘s40+’ indicates the evaluations of
the trained methods for the separated datasets of average
per-pixel motion magnitudes in the range between 0 and 10,
the range between 10 and 40, and the range of 40 and above.
‘all’ implies the total range of the three.

2) QUALITATIVE RESULTS
Figure 5 shows subjective OFE comparison of our MaxFlow
and other SOTAmethods. As shown, our MaxFlow alongside
the matching-based method GMFlow [6] demonstrates pre-
cise OFE in ambiguous regions (the bott om left part of the
first-column OFE maps in Figure 5), and in the fine-detail
regions (the fingers and box objects of the second-column
OFE maps in Figure 5). These results demonstrate the
superior accuracy of the matching-based methods compared
to the regression methods such as RAFT [5] and Flow1D [7].
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FIGURE 5. Qualitative comparison on Sintel test datasets.

TABLE 1. Performance comparison of things methods in terms of the prediction accuracy (F1-epe and F1-all), the number of parameters and the
multiplication and accumulation calculations (MACs). Note that things methods indicates that all the models under comparison are trained with
FlyingChairs and FlyingThings3D datasets, and then tested with Sintel train and KITTI train datasets. Bold: best, underline: second-best.

3) QUANTITATIVE RESULTS
Table 1 compares the the results of the things methods in
terms of the prediction accuracy, the number of parame-
ters and the multiplication and accumulation calsulations
(MACs). Note that the things methods were trained on
the FlyingChairs and FlyingThings3D datasets, and then
tested on the Sintel train and the KITTI-15 train datasets.
As shown in Table 1, FlowFormer [17], which is targeted
for high performance, achieves the highest performance
in terms of prediction accuracy. However, it consumes
the second-highest MACs at the 448 × 1.024 resolution
(662.6 GMACs for 12 iterations and 1,155 GMACs for
31 iterations). On the other hand, our MaxFlow consumes the

lowest MACs, showing the accuracy performance superior to
Flow 1D [7] but inferior to SCV [9] that is even designed
for low complexity but consumes about 10× to 20× MACs.
It is noted in Table 1 that the increase in computation due
to the refinement (boosting) by our MAXFlow was very
small compared to the GRU-based iterative methods such as
RAFT [5], FlowFormer [17] and Flow1D [7]. Especially, our
FlowMax with refinement only takes a 40% computational
complexity of Flow1D [7] at both 448 × 1.024 and
1,080× 1.920 resolutions after 12 iterations.
As extensive experiments, the pretrained things methods

were further fine-tuned on Sintel dataset, which are referred
to as sintel methods, and on KITTI train dataset, which are
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TABLE 2. Performance comparison of sintel and kitti methods in terms of the prediction accuracy. Note that sintel and kitti methods indicates that all the
models under comparison are finetuned on Sintel and KITTI datasets from the things methods, respectively, and then they are all tested with Sintel test
and KITTI test datasets. Bold: best, underline: second-best. Note that SCV outperforms our MaxFlow in EPE but it is 10 to 20 times complex than MaxFlow
in MACs.

FIGURE 6. Subjective OFE Comparison on 2K images in Davis dataset.

denoted as kitti methods. sintel and kitti methods are tested
on Sintel and KITTI test datasets, respectively. Table 2
shows the performance comparisons for sintel and kitti
methods. As shown in Table 2, our MaxFlow exhibited a
comparable accuracy performance against SCV [9], yielding
lower and higher metrics for Clean, and Final Sintel test
datasets, respectively. On the KITTI dataset, it should
be noted in Table 2 that our MaxFlow shows lower
performance, especially compared to the regression-based
methods such as RAFT [5], Flow1D [7], SCV [9], and
FlowFormer [17]. The matching-based methods such as our
MaxFlow and GMFlow [6] are relatively weak in handling
occlusions that extend outside the images, which is a common
occurrence in KITTI dataset. It is noted that GMFlow [6]
has recently extended to overcome this issue by applying
a computationally expensive iterative GRU-based regression

refinement module after global matching in Unimatch [10],
thus dramatically increases the computation complexity.
Next, we evaluate our MaxFlow and the SOTA methods

on high-resolution images of 1080p to 2K (1,280 × 720
to 1,920 × 1.080) size. The sintel methods were further
fine-tuned with an additional 100k iterations to enhance
performance using the Spring dataset [28], which is com-
posed of 2K images tailored for high-resolution OFE. For
validation, we employ the DAVIS dataset [29], a benchmark
for video segmentation that includes video sequences of 2K
resolutions. Figure 6 depicts the subjective OFE results for
our MaxFlow and the SOTA methods. Note in Figure 6 that
the two input frames in the first row are overlaid to see the
motion amounts between them. As clearly shown in the red
boxes of Figure 6 that our MaxFlow accurately captures large
motion (such as the arm of the B-boy in the left example)
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TABLE 3. Ablation study on the impact of individual components (our design choices) within the MaxFlow architecture. Bold: best, underline: second-best.

and detailed optical flow structures (the camel’s leg in the
middle example). Furthermore, when GMFlow [6] is applied
to 1600 × 900 resolution image (right column of Fig. 6),
it produces artifacts due to its poor robustness in inference
resolution change. On the other hand, ourMaxFlow generates
optical flow estimation without artifact and more accurate
details (right leg of person highlighted in red box) than
Flow1D.

4) ABLATION STUDY
We perform ablation study on the impact of individual
components (our design choices) within the MaxFlow
architecture. For this, we denote the variants of our MaxFlow
as following: (i) ‘Ours w/o maxvit’ as the scenario where
the MaxViT [14] layer, used in the feature enhancement
layer, is replaced by a Swin [13] block; (ii) ‘Ours w/o
1dm’ that signifies the use of a global matching strategy
in place of 1D matching; (iii) ‘Ours w/o cape’ that denotes
the condition where the continuously augmented positional
encoding (Cape) [22] is omitted from theMaxFlow. The three
variants are trained using the FlyingChairs dataset for 100k
iterations and the FlyingThings3D dataset for 200k iterations.
Table 3 shows the accuracy performance comparison of
OFE for the three variants of our MaxFlow. As shown in
Table 3, ‘Ours w/o maxvit’ leads to a performance decline
of approximately 0.27 for the Sintel train Final datasets.
This effect is more prominent in the s40+ scenario, where
we observe a decrease of about 2.32 in terms of EPE.
It can be noted for ‘Ours w/o maxvit’ in Table 3 that
the restricted receptive field of the Swin layer is a critical
factor, particularly affecting the EPE performance for the
long-range motion scenario (s40+). Moreover, ‘Ours w/o
1dm’ results in a slight enhancement in performance, with
an increase of 0.06 and 0.1 in the FlyingThings validation
and sintel (train) Final datasets, respectively. However, this
benefit comes at a significant cost increasement in terms
of memory consumption from 4,013MB to 11,631MB,
which escalates by approximately 289% for input resolution
of 1,920 × 1.080. This finding underscores the practical
balance between performance and efficiency offered by 1D
matching. Additionally, ‘Ours w/o cape’ demonstrates high
performance on the FlyingThings3D dataset, which was used
during training. However, on the Sintel dataset that features
higher resolutions not utilized during training, ‘Ours w/o
cape’ exhibits inferior performance. This outcome aligns
with our expectation on Cape [22] that helps enhancing the
model’s generalization capabilities.

V. CONCLUSION
In this paper, we propose a novel lightweight optical flow
estimation network, MaxFlow, which utilizes MaxViT and
1D matching. MaxViT enables our network to have both
a large receptive field at an efficient computational cost.
We also propose a novel 1D matching strategy which explic-
itly inferences the correspondence between two input images
with their 1D cost volume. Through these contributions,
our MaxFlow can achieve superior optical flow estimation
accuracy than a SOTA lightweight optical flow estimation
network, Flow1D in various test dataset, such as Sintel, only
with 40% of computational cost compared to Flow1D, and
show comparable prediction performance at a significantly
lower computation complexity (about 10× to 20 × lower)
than another SOTA light weight method such as SCV.
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