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ABSTRACT Clinical Decision Support Systems (CDSS) have revolutionized healthcare by leveraging
modern technologies such as internet of things (IoT), artificial intelligence (AI), predictive analysis, nano-
medicine, and virtual & augmented reality. IoT-based CDSS is of interest in particular. In a hospital scenario,
a patient’s vital signs like heart rate, blood pressure, respiration rate, ECG, EEG etc. are monitored with the
use of embedded sensor devices, also called smart medical devices. These devices collect real-time data
which is relayed to a compute device where several algorithms are employed to perform computations on
said data to arrive at a prognosis e.g. real-time onset of hypotension can be detected by running predictive
algorithms on real-time blood pressure data. The computation in IoT-based CDSS is done predominantly on
the cloud, wherein the real-time data collected is relayed to a centralized cloud server. However, latency is
a major drawback in a cloud-based monitoring system. Increased latency is of greater concern in healthcare
applications as the decision-making process is time-sensitive. Edge computing can potentially overcome
this drawback, wherein computation is done on edge-network devices rather than the cloud. While edge
computing for IoT-based CDSS has been explored in literature, there are gaps in their implementations.
A majority of literature dealing with edge computing for IoT-based healthcare only demonstrates a single
application and does not address the varying data acquisition rates for different vital signs. Each prognosis
or diagnosis requires different subsets of vital signs, and the underlying algorithm uses different sizes of
data e.g. detecting arrhythmia requires processing of ECG data which is a time series data, and detecting
cardiovascular disease requires blood pressure, cholesterol and certain habits of the patient which are mostly
single points of data. This paper explores the use of edge computing in CDSS, quantifies its performance with
respect to number of devices, sense time interval or intertransmission rate, and the size of data, and proposes
a unified IoT edge gateway architecture to combine multiple patterns of data and computation algorithms to
achieve reduced latency and network utilization. Simulation results show that edge computing reduces the
latency of decision by approximately 87 times, and the network utilization by 1.5 times. The results show the
efficacy of edge computing for implementing IoT-based CDSS and also demonstrate scalability with regard
to the number of devices and the size and intertransmission rate of data.

INDEX TERMS Edge computing, smart healthcare, vital sign monitoring, Internet of Things, clinical
decision support system.
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I. INTRODUCTION
Clinical Decision Support Systems (CDSS) are used in
healthcare to provide stakeholders of the healthcare system
including doctors, nursing staff, and patients with information
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necessary to make efficient decisions [1]. A traditional
CDSS is a software system which aids in clinical-decision-
making wherein the diagnostic results and characteristics
of patients are compared with computerized databases, and
patient-specific assessments or recommendations are then
presented to the doctor for a decision. The aforementioned
characteristics of a patient are primarily their vital signs
including temperature, heart rate, respiration rate, and blood
pressure [2] and other physical characteristics, including
height, weight, gender, ethnicity, prior health conditions
etc. [3]. These characteristics can also include the results
of diagnostic tests performed on a patient. Healthcare
professionals use this data to make informed decisions
regarding the patient’s wellness.

Although CDSS has been used by healthcare professionals
for a few decades, recent technologies such as Internet
of Things (IoT), blockchains, artificial intelligence, high-
performance computing etc. have increased the efficacy of the
system with respect to the range of decisions, accuracy, and
the time taken to make the decisions [4]. IoT, in particular,
provides a methodology to acquire the required data from
patients using sensors, store this data, and make decisions
using the acquired and historical data using machine learning
algorithms, and relay the decisions to the end user, which
includes the healthcare professional, insurance companies,
the government etc.

An IoT-based CDSS is typically implemented through
the integration of smart medical devices and cloud-based
systems, enabling informed decisions to be made based on
real-time patient data. With the increasing use of smart
medical devices, the growth of IoT-based CDSS is predicted
to accelerate rapidly [5]. However, this growth also means
that there will be an increased burden on cloud computing
resources to compute the huge amount of real-time data
generated by these devices.

The quantity of data generated by a patient in intensive
care units (ICUs) can vary depending on the number of smart
medical devices connected to the patient, which can range
from 1 gigabyte to terabytes of data per day. Analyzing this
data in real-time is necessary. Although sending the total
amount of data to the cloud can be an effective strategy for
analysis, it carries several risk factors such as high latency,
power consumption, security and bandwidth requirement.

A potential concern with transmitting all the generated
data to the cloud for analysis is the network and computation
latency which can delay the decision-making process. This
could be problematic in time-sensitive scenarios, where
delays in data communication and analysis could nega-
tively impact patient outcomes. Additionally, the use of
cloud resources to analyze the data can require significant
bandwidth, and a stable internet connection. Additionally,
server downtime caused by maintenance and cybersecurity
breaches can increase latency further. Although various
features have been introduced by cloud service providers,
there are still several risks associated with storing data on
external or third-party servers. This makes the centralized

cloud-based computing model unsuitable for time-sensitive
applications.

As shown in Figure 1, the fundamental architecture of
IoT-based healthcare comprises of three layers: the sensor
layer at the bottom, the gateway layer in the middle, and the
cloud layer on top. The function of these layers is as follows:

• The sensor layer is responsible for gathering raw data
from the patient’s body through various sensors.

• The gateway layer acts as the communication interface
between the sensor layer and the cloud layer and it
translates non-IP packets to IP packets to transmit the
data to the cloud over traditional IP protocols layer for
analysis.

• Finally, the cloud layer is responsible for analysing the
data and making decisions.

FIGURE 1. Gateway enabled IoT architecture.

However, because the cloud layer is often located in a
geographically remote area from the patients, it can lead to
increased latency. To reduce latency, cloud computing power
must be brought closer to the sensor layer.

In this paper, we propose an edge-compute-based IoT
architecture for a CDSS that incorporates edge computing at
the gateway layer. Performing the computation in the gateway
layer helps reduce latency. Although computing power can
also be integrated at the sensor level, doing so may result
in increased size, cost, power consumption, and maintenance
requirements for the sensor. The proposed architecture was
simulated using iFogSim [6] to obtain latency and network
usage by varying the number of devices, size of the data,
and the data acquisition rate also referred to sense time
interval or inter-transmission rate in subsequent sections.
We quantify sense time interval as the amount of time that
elapses between two successive data transmissions from the
same sensor node. Simulation results indicate a significant
improvement in network usage and latency as compared to
the cloud-based clinical decision support system. we have
simulated four different healthcare applications, such as

• Hypotension
• Cardiovascular disease
• Arrhythmia
• Combination of above three applications
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TABLE 1. Improvement of performance of the proposed edge compute
gateway over cloud-based architecture.

Table 1 shows the comparison between edge computing
with cloud computing for sensor to actuator (patients to alert
system) latency and network usage.

As the table shows, sensor-to-actuator (patient-to-alert)
latency has improved drastically for all applications. Network
usage also shows significant improvement over cloud-
based solutions. The proposed gateway architecture, which
supports multiple applications with varying data patterns and
compute algorithms, also shows significant improvement.
This validates both the usage of edge computing and
the proposed framework for healthcare applications where
latency is critical.

The rest of the paper is organized in the following manner:
Section II presents recent research on intelligent healthcare
monitoring systems, followed by the basic fundamentals
of edge computing and its associated literature. Section III
proposes the edge compute gateway-based architecture, and
Section IV covers the simulation setup. Simulation results
are presented in Section V, followed by the conclusion in
Section VI.

II. RELATED WORK
A. CLINICAL DECISION SUPPORT SYSTEMS (CDSS)
This section discusses the literature related to the critical
health care monitoring system. Researchers have proposed
architectures and solutions for various parts of CDSS,
including methods for acquiring the vital signs of patients,
algorithms to analyze the data, studies to correlate vital
sign variations with physical ailments, and overall system
architectures to implement CDSS.

With the advancement of Artificial Intelligence (AI) [7],
cellular communication (5G and beyond) [8], [9], Internet
of Things (IoT) [10], [11], Cyber-Physical Systems (CPS)
technology [12] and various new computing paradigms [13],
[14], integrated healthcare systems are transforming into
smart healthcare environments for better treatment with more
accuracy. There have been several efforts in recent years
to solve the challenges faced in the healthcare sector by
using the aforementioned technologies. These include work
in healthcare epidemiology [15], [16], Electronic Health
Records (EHRs) [17], [18], [19], [20], drugmanagement [21],
healthcare monitoring, real-time resource tracking [22],
community healthcare [23], and clinical decision support
system (CDSS) [24].

There has been a lot of effort in the literature to define
the parameters that are useful in CDSS. Dias et al. [25]
considered five traditional vital signs that play a major

role in monitoring patients, such as heart rate, blood
pressure, respiratory rate, blood oxygen saturation, and body
temperature.

Three more vital signs are considered by Ahrens et al. [26]
as important to immediately measure the patient condition,
i.e, capnography (to evaluate ventilation), pulse oximetry (to
evaluate arterial oxygenation) and stroke volume (to evaluate
heart function)

Elliott and Coventry et al. [27] described another three
important vital signs that should also be considered as part of
routine patient assessment-pain, level of consciousness, and
urine output.

On the data acquisition front, Mamady Kebe et al. [28]
reviewed various methods to track cardio-pulmonary signal
detection and further discussed the feasibility of using
continuous-wave radar for detecting heart rate variability and
respiration rate.

Liu et al. [29] analyzed the condition of patients by
considering the major vital signs during sleep time. The
authors categorized the methods used to collect the vital signs
into four groups:

• dedicated sensor-based
• smartphone and wearable sensor-based
• touch-free sensor-based
• RF signal-based
With regards to the decision-making algorithms used in

CDSS, Sutton et al. [1] classified CDSS into two types:
• knowledge-based CDSS, which uses if-then-else rules
based on expert knowledge

• AI-based CDSS, which is known as
non-knowledge-based

Bashir et al. [30] proposed a knowledge-based CDSS
framework to detect cardiovascular disease.Montgomery et al.
[31] investigated the effect of a computer-based clinical
decision support system and a risk chart on absolute
cardiovascular risk, blood pressure, and prescribing of
cardiovascular drugs in hypertensive patients. Indeed,
to diagnose acute and chronic diseases, vital signs play a
crucial role in analysing the patient’s condition, as reported
by Kaieski et al. [32].

Chester et al. [33] analysed age-related changes in vital
signs (blood pressure, pulse, respiratory rate, and tempera-
ture) based on changes at the molecular and systemic levels
with respect to the organ systems.

Peiffer et al. [34] concluded that the effectiveness of CDSS
depends on the accuracy of vital sign data and also the
decision-making algorithm.

Finally, on the architecture front, Prajapati et al. [35]
proposed an IoT-based healthcare system that can help
with fast communication, identify emergencies, and initiate
communication with healthcare staff to initiate proactive
and quick treatment. Abdelgawad et al. [36] proposed the
customized healthcare IoT architecture to collect the sensor
data and transmit it to the central cloud for further processing
and analysis. A decision was taken based on the analyzed
data. Salem et al. [37] defined IoT as a communication
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algorithm that enables the exchange of vital data to provide
remote data visualization and enable real-time vital data
treatment.

Another aspect to consider in smart healthcare systems
is data privacy and security. Gia et al. [38] posited that data
management in healthcare is one of the most sensitive issues,
as user data contains important and private information that
needs to be analyzed and processed in a manner that is both
efficient and secure.

It is worth noting that all of the IoT-based CDSS
implementations consider a cloud-based solution wherein
data acquired from patients is communicated to a centralized
cloud server where the analysis is done and the resultant deci-
sions are communicated downstream to healthcare providers.
A centralized cloud server-based implementation puts more
burden on the network and thus results in increased latency
in decision-making, which might have adverse effects on
the patient in question. In this paper, we focus on IoT
architectures for CDSS based on edge computing to reduce
the latency of the decision-making process. The next section
discusses the concept of edge computing and its applicability
to smart healthcare systems.

B. EDGE COMPUTING FOR IoT
There are several works in literature which argue for the
use of edge computing in general and specifically for IoT
applications. This section discusses some of the papers which
evaluate the applicability of edge computing.

Edge computing is a distributed architecture that connects
a range of smart embedded devices indirectly to each other
at the end of the network to analyze and store the data to
enhance the quality of service [39]. It offers a significant
advantage by minimizing the need for frequent access to the
cloud for data uploading. As a result, the bandwidth required
to communicate with the cloud is reduced, leading to an
improvement in response rates. various studies have demon-
strated that edge computing leads to enhanced performance,
lower network usage, and reduced latency compared to the
cloud in various domains like industries, unmanned aerial
vehicles and manufacturing industries [40], [41].
Perez et al. [42] posited that edge computing is a

well-suited computing paradigm to accomplish the enormous
demand for bulk connections and low response time applica-
tions. It achieves this by carrying out specific computation
and processing tasks on the edge gateway instead of relying
solely on the cloud server.

Edge computing also offers a more flexible platform and
a more effective method of data computation by utilising the
limited network capacity [43]. Mohammed Laroui et al. [44]
concluded that edge computing can provide significantly
more data computation power and storage at the edge of the
network when compared to the cloud computing paradigm.

Shi et al. [45] explained edge computing as a distributed
computing paradigm that brings computation and data
storage closer to the location where they are needed. The
paper also discussed the advantages of edge computing,

including improved efficiency through local data processing
and reduced network congestion, latency, and bandwidth
requirements. Additionally, the authors also provided case
studies in various domains, demonstrating how edge comput-
ing can improve efficiency, reduce costs, and provide better
services to end-users. However, healthcare was not one of the
applications discussed.

The reference architecture of edge computing for Industrial
IoT was proposed by Qiu et al. [46]. The proposed
architecture consists of a cloud layer and an edge layer,
and the edge layer can also be subdivided into Near-Edge,
Mid-Edge and Far-Edge. Frameworks enable efficient and
scalable deployment of IIoT systems by leveraging the
advantages of edge computing.

Sharma et al. [47] proposed an edge-computing architec-
ture named SoftEdgeNet, which is based on software-defined
networking (SDN) principles. The aim of this architecture
is to enhance the energy efficiency of network systems by
delegating computation and storage tasks from conventional
cloud servers to edge devices. The use of SDN techniques
in SoftEdgeNet enables dynamic resource allocation and
management, which mitigates network congestion, latency,
and bandwidth requirements.

Hamdan et al. [48] presented a survey that focuses on
edge computing architectures (ECAs) for IoT and how they
address various challenges that arise in IoT systems, such
as security, scalability, and management. Additionally, the
authors mapped ECAs to two existing IoT layered models.
By doing so, the authors were able to identify the capabilities,
features, and gaps of each architecture in a structured manner.

As discussed above, edge computing offers a low-latency
alternative to cloud computing for IoT applications. However,
this has not been evaluated for healthcare applications, which
are time-sensitive. Also, the existing evaluations of edge
computing do not discuss scalability in terms of the data
acquisition rate. This paper evaluates edge computing for
healthcare applications with varying numbers of devices, data
sizes, and sense time interval.

C. IoT-BASED CDSS WITH EDGE COMPUTING
Nguyen et al. [49] proposed a fully decentralized healthcare
architecture for distributed Electronic Medical Records
(EMRs) sharing among federated hospitals using emerging
technologies blockchain andMobile Edge Computing (MEC)
to enhance the system security and data retrieval rate using
decentralized EMRs storage built on an interplanetary file
system platform, which is a MEC server. This work focuses
on blockchains for decentralization and sharing of medical
records, not on making clinical decisions.

Singh et al. [50] introduced an innovative Secure Frame-
work known as SEoT (Secure Edge of Things) for real-time
monitoring and emergency services. The authors propose
a clustering algorithm for anomaly detection, followed by
securing the data using Attribute Based Encryption (ABE)
techniques. Singh et al. focus more on the security aspect and
not on supporting multiple applications. The same algorithm
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is applied to all data. In this paper, however, we propose a
configurable framework to support multiple applications and
also validate the framework for performance and scalability.

Prabhu et al. [51], presented an Edge-IoT ecosystem
Testbed using EdgeX Foundry. EdgeX Foundry is used
to leverage edge computing to design a telehealth frame-
work. However, their proposed architecture also implements
and demonstrates a single application, i.e, blood pressure
monitoring and forecasting.

Li et al. [52] proposed a secured framework for software-
defined network-based edge computing in IoT-enabled
healthcare systems. This work focuses on providing a
framework where edge compute devices collaborate to
perform computations on the acquired data. The framework
focuses on the SDN framework itself and the load balancing
between edge compute devices for a constant data rate, and
not on application-based computation or data requirements.

In [53], Graphics Processing Units (GPU) are used as the
edge device to train and test the Recurrent Neural Network
(RNN) for activity prediction using a wearable sensor-based
system, and it compares with conventional approaches on a
publicly available standard dataset. This work demonstrates
the efficacy of using a GPU as an edge compute device.

Abdell et al. [54] propose an MEC-based architecture
for smart healthcare systems to addresses the challenges
of delivering scalable healthcare services while reducing
costs. The work presents and demonstrates the improvement
provided by edge computing for EEG-EOG signal processing
using deep neural networks, wherein encoded features alone
are communicated to the cloud server where the final
decision-making is done. In our proposal, however, the
decision-making happens at the edge device itself to achieve
better latency.

Dong et al. [55] propose an edge computing-based
healthcare system for the Internet of Medical Things (IoMT)
to address the challenges of wireless channel deficiency and
limited computation resources. This work focuses more on
the communication aspects and bandwidth allocation and not
on the computation aspects.

Haoyu Wang et al. [56] proposed a priority-based task
queuing method at the edge that enables emergency tasks
to be processed earlier. This is a pre-edge layer that only
dispatches data and tasks to the edge or cloud based on
priority.

D. INFERENCES FROM LITERATURE
Existing literature primarily showcases the efficacy of edge
computing in healthcare, often focusing on a singular appli-
cation or emphasizing other aspects such as communication
and security. In contrast, our paper introduces a framework
for an edge compute gateway designed to support multiple
data patterns and compute algorithms.

During the development of this architecture, we encoun-
tered a challenge arising from the lack of standardized
data types in Internet of Things (IoT) applications. To sys-
tematically address this issue, we introduced distinct data

categories, encompassing single point, Temporal, Spatial, and
Spatiotemporal data. This comprehensive classification takes
into account both the intrinsic characteristics of the data and
its processing dynamics at the edge. By integrating these cat-
egories, our architecture not only accommodates the diverse
nature of IoT data patterns but also establishes a robust
foundation for efficient processing and analysis tailored to
the specific context of IoT applications. This categorization
approach enhances the adaptability and scalability of the
architecture, ensuring its relevance across a wide spectrum
of IoT scenarios.

III. PROPOSED SYSTEM ARCHITECTURE
In this section, an edge gateway-based architecture for CDSS
is discussed and compared with the traditional cloud-based
architecture.

A. CLOUD-BASED IoT ARCHITECTURE
As mentioned in the previous sections and shown in
Figure 2a, an IoT-based architecture for CDSS consists of
three layers, i.e., sensors, gateway, and cloud layer.

• The lowermost layer of the architecture comprises
numerous smart medical devices that monitor various
parameters of patients. This layer is responsible for
generating a packet for each patient containing the
patient’s id and vital signs data and sending it to
subsequent layers for analysis using personal area
network (PAN) protocols like Bluetooth, ZIGBEE,
LoRAWAN, etc. These smart medical devices are called
sensors in subsequent discussions.
This layer also consists of devices which can act on
the information resulting from the analysis of the data
collected by the sensors. These include actuators at
the patient side, e.g., regulating IV medication, display
systems at nursing stations, or other alert mechanisms.
These end devices are called actuators in subsequent
sections.

• The intermediate layer of the architecture comprises
a gateway that communicates with the sensors and
actuators and also with the cloud. The function of a
gateway is to relay a) data collected by the sensor devices
to the cloud and b) decision data from the cloud to the
actuator devices.
Gateways are necessary in IoT systems as most of the
sensor and actuator devices are non-IP devices, i.e.,
they cannot communicate directly over the internet.
These devices communicate with the gateway over
the above-mentioned PAN protocols. The gateways
communicate with the cloud using IP-based protocols
like Ethernet, cellular communication, WiFi, etc. [57].

• The topmost layer of the architecture is the cloud layer,
which is mostly located in a remote geographic location.
In traditional IoT architecture, data collected from the
sensor devices is analyzed in the cloud using appropriate
algorithms, and the resultant decision is sent back to the
actuator devices through the gateway.
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FIGURE 2. Clinical decision support system.

B. PROPOSED EDGE-GATEWAY-BASED ARCHITECTURE
The above cloud-based architecture offers the ability to store
the information for a longer period, higher computation
capability, as well as visualization. However, constant access
to the cloud for uploading and downloading information
not only increases the latency and network usage but also
consumes a lot of power, raising more security concerns.

By introducing the edge gateway as the middle layer,
the computations required for finding the abnormalities of a
patient are performed at the edge of the network. Latency is
reduced because frequent access to the cloud is not required.

Figure 2b shows the proposed edge-gateway-based CDSS
architecture for one ICU with a scalable number of patients.
Each ICU will have its own edge gateway connected
to the centralised cloud server. Network utilisation and
latency in this scenario will remain constant for each edge
gateway, but they will rise while updating and retrieving
data from a centralised cloud server. We assume that
computation at the edge will not be spatially spread out,
i.e., computation performed on the data acquired from one
patient does not depend on data acquired from another
patient.
Security Considerations: Typical IoT systems employ

lightweight encryption protocols to provide security [58].
Apart from encryption, authentication of the devices is
also key to fulfilling security requirements. By manually
provisioning nodes, the issue of authentication is solved.
The nodes and their IDs are sent to the gateway as update
commands to the configuration table.

In the case of encryption, the implementation needs
additional information on the encryption keys, which can be
stored in the configuration table along with the rest of the
metadata. Encryption, however, can increase the size of data
packets [59]. Our architecture exhibits superior performance
in terms of latency, network utilization, packet sizes, number
of nodes, and sense time interval. Thus, separate simulations
for encrypted data was not performed.

FIGURE 3. Data packet format.

The following is a discussion of the proposed architecture’s
components and their interaction:

1) SENSOR LAYER
This layer is the same as the sensor layer in the cloud-
based architecture. Sensor devices attached to the patient first
acquire the necessary bio-signals. The acquired signals are
conditioned for the removal of noise, selecting frequency
regimes, and performing amplification and analog-to-digital
conversion as required.

The difference in the edge-based architecture is that the
same data point can be used for several diagnoses using dif-
ferent algorithms. For e.g. the measured systolic and diastolic
pressures are used to predict both cardio-vascular disease and
hypotension, using different inference algorithms. For this
purpose, the packets transmitted by the sensor devices to the
edge gateway should include the patient id and application
id. Since multiple applications can be supported, the packet
data first specifies the number of applications that this data
item is to be used for, followed by the list of application ids.
The resulting packet data format is shown in Figure 3.

2) EDGE GATEWAY LAYER
The edge gateway layer is the middle layer between the
medical devices and the cloud, which is responsible for
collecting the raw data from the medical device to further
detect the abnormalities in the patient and uploading it to the
cloud. Each patient has a specific ID, which also includes
the bed assigned. The edge compute gateway updates the
patient status to the electronic display, which is placed in the
nursing station of the ICU aswell as to the cloud for long-term
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FIGURE 4. Unified edge gateway framework.

storage. The edge gateway performs necessary computations
on the received data, transmits the diagnosis to the appropriate
healthcare workers, and also transmits the filtered/processed
data to the cloud.

The architecture of the proposed IoT edge gateway is
shown in Figure 4. The data packets are received over PAN
protocols from sensor devices, from which the patient ID and
set of application IDs are extracted, and the corresponding
application engines (algorithms) are instantiated to work on
the vital sign data. The processed data, which is the diagnosis,
is sent back to the sensor layer and the cloud layer for storage
and future analysis.

It is to be noted that the sub-components of the architecture
are structured as separate processes to leverage parallelism
in the process. Each of the components in the data path
are pipelined to increase the throughput of the gateway.
Each component of the architecture, except for the PAN
protocols and IP protocols, is elaborated with Algorithm in
the following sections.

a: DEPACKETIZER
The depacketizer is a packet parser processes packets both
from the sensor layer and the cloud layer. If the packet is an
IP packet (

(
Cpc

)
or

(
Dpc

)
), the depacketizer checks if the

packet is an update command (
(
Cpc

)
) for the configuration

manager or data (
(
Dpc

)
)to be sent downstream to the sensor

layer. Downstream packets are redirected to the sensor layer
after extracting data and repacking it for the corresponding
PAN protocol. It is assumed that the packet will contain the
identity of the node in the sensory layer that should receive
this packet. checks for errors in transmission as per the PAN
protocol used.

The depacketizer will extract the sensor data, patient id
and the list of application IDs, from the data packet marked
as sensor data - (Sd )İt will also retrieve the buffer ID from
the configuration manager to facilitate data storage in the
allocated buffer space, with the assistance of the buffer
manager. The application ID will initiate the application from
an idle state to a running state.

Algorithm 1 Depacktizer
Output: Depacktized packet
Input : sensor data packets (Sd ); command packets

from cloud
(
Cpc

)
; data packets from cloud(

Dpc
)

while packet received
do

if Packet is (Sd )
then

Get BuffID from the configure manager
Send AppID to application engine
send data and Buffid to buffer manager

end
else if Packet recieved is

(
Cpc

)
then

Send AppId/Command to configuration
manager

end
else if Packet recieved is

(
Dpc

)
then

Extract data from
(
Dpc

)
send extracted data to repacktizer

end
else

Wait for packet to receive
end

end

b: BUFFER MANAGER
The Buffer manager maintains the mapping of each patient id
to the buffer space allocated to that patient id. This is used by
the packet parser to store data for the application engines to
use accordingly. The buffer manager also allocates the buffer
space when the configuration data is updated.

c: CONFIGURATION MANAGER
Configuration data maintains a table which provides details
on the function names for each application algorithm, the
buffer space required for that algorithm, and the identity
(address) of the node in the sensor layer that should
receive the processed data. The table also mentions whether
all of the received data is to be stored in the cloud or
only the processed data. The gateway is reconfigured on
receiving an update command from the cloud to include
a new computation algorithm. Buffer space is allocated
for each patient connected to the edge gateway as per
the requirements of the computation algorithm used. The
configuration manager also creates tasks for each application
engine as defined in the configuration table.

d: APPLICATION ENGINES
The application engines are the list of tasks created by the
configuration manager to operate on the received data. Since
the processing done is patient specific, we classify the type
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Algorithm 2 Buffer Manager

Input : App ID & Pdata,
AppID & pdata_req,
Buff_req.
Output: Buff_ID,
App ID & Pdata.

while input
do

if Buff_req
then

foreach patient ID do
Allocate buffer space according to new
requirements
Update mapping of patient ID to allocated
buffer space

end
end
if App ID & Pdata
then

Extract patient ID from received data
Store received data in the allocated buffer
space

else
Retrieve allocated data for the patient ID

end
end

Algorithm 3 Configuration Manager
Data: Configuration table with function addresses,

buffer space requirements, node identity, and
data storage preferences

Input : Update command from the cloud
Output: Reconfiguration and task creation
if

(
Cpc

)
includes a new computation algorithm

then
Add new algorithm details to the configuration
table
Allocate buffer space for each patient connected
to the edge gateway based on new algorithm
requirements
Create tasks for each application engine based on
the configuration table

end
else

send the Buffer ID to depacketizer
end

of data received as a) single point data, and b) time series
data. For example, determination of hypotension is donewith
a single data point, whereas cardiac arrhythmia is detected by
processing ECG which is a time series data. The time series

data is first stored in buffers via the packet parser, which in
turn uses the buffer manager. The buffer address is passed to
the application engine for further processing.

Algorithm 4 Application Engine
Data: Received data

Input : Data received from the packet parser
Output: Processing of data

if App ID is single appication
then

Perform task specific to application(e.g.,
determination of hypotension)

end
else if multiple application
then

Store data in buffers via the packet parser
Pass buffer address to the application engine
Perform task specific to time series data
processing (e.g., processing ECG for cardiac
arrhythmia detection as well as Hypotension)

end

e: REPACKETIZER
The repacketizer has two functions: to receive ‘‘depacke-
tized’’ downstream packets from the cloud layer to be sent
to the sensor layer using PAN protocols, and to send the
processed data to the cloud layer or back to the sensor layer.
The PAN protocol used depends on the patient id in the
downstream packet or the processed data. This is maintained
as a separate mapping table in the gateway in order to support
multiple PAN protocols.

3) CLOUD LAYER
The prominent role of a centralised cloud in the proposed
architecture is to maintain the database of patients and their
various medical features for the long term and retrieve data
when it is needed by the application. The edge gateway
is connected to the cloud server through a proxy server
to increase privacy. The edge gateway uploads the sensor
information to the cloud after a specific period of time, and
if the edge gateway needs some patient information, then the
data is recovered from the cloud.

IV. SIMULATION SETUP
A. SIMULATORS
In order to evaluate the proposed edge gateway framework
for implementing CDSS with respect to performance and
scalability, we propose the use of a simulator as opposed to
a practical implementation owing to increased infrastructure
cost, and difficulties in evaluating scalability. This section
describes the simulators used in the literature to evaluate an
IoT system that utilizes edge computing.
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Algorithm 5 Repacketizer
Data: Received packets, Mapping table of patient IDs

to PAN protocols
Input : Depacketized packets,
Processed data
Output: Packets sent to sensor or cloud layer
while packet
do

if Depacketized packets
then

foreach Depacketized packets
do

Extract patient ID
Determine PAN protocol based on patient
ID
Send packet to sensor layer

end
end
if processed data to cloud layer
then

Send processed data to the cloud layer;
end
else if processed data to sensor layer
then

Extract patient ID (integer)
Determine PAN protocol based on patient ID
Send processed data to sensor layer

end
end

Ashouri et al. [60] discussed various simulators used
for simulating the various computing paradigms. One of
the simulators for edge and fog computing is iFogSim,
which is based on the CloudSim simulator. The performance
evaluation of scheduling algorithms is generally performed
using simulation tools, including professional simulators for
edge computing such as iFogSim [6].

iFogSim is one of the Java-based Free and open-source
Source Software tools that supports the evaluation of various
computing paradigms environments, such as cloud edge
and fog computing paradigms [6]. Several researchers used
the iFogSim simulator to evaluate their proposed work for
fog and edge-based applications [61]. Baccarelli et al. [62]
created a simulation model using the iFogSim simulator as a
proof of concept to determine energy-delay performance.

Awaisi et al. [63] simulated an application of fog-based car
parking using the iFogsSim Simulator and compared major
parameters like network usage and latency.

In this study, we explore latency and network utilization
across a variety of scenarios by utilizing the iFogSim
simulator as our tool of choice.

To track the various vital signs of the patient, various
sensors are considered. The vital signs are eventually
transmitted to the computation node. The computation node

analyzes the vital signs to identify the abnormality and
displays them on the electronic screen placed in the nursing
station, which is connected to the gateway. A proxy server is
a virtual node between the gateways and the cloud server.

In our simulated environment, we emulated an intensive
care unit, complete with patients and their vital signs as
integral components. We focus on simulating various ICU
scenarios. In each of these scenarios, we initially deployed
12 sensor nodes in the ICU. Each sensor node is responsible
for individual patient vital sign data collection within the
ICU. To comprehensively analyze patient conditions, diverse
medical parameters were essential, leading to the integration
of multiple medical devices into each sensor node. The ICU
was equipped with a single gateway, and the proxy server
acted as the intermediary linking our gateways to the cloud
infrastructure within the environment. This entire setup was
configured in accordance with the guidelines mentioned by
Harshit Gupta et al. [6]. To assess the computational load on
the system, we increased the number of sensor nodes and
varing time gap between successive instances of data sensing,
commonly referred to as the ‘‘sense time interval’’ from
500 millisecond(ms) to 1 ms, aiming to understand its impact
on network usage and latency.

Moreover, simulations were carried out for five different
physical topology arrangements, labeled as Config-1 through
Config-5. These setups correspond to systemswith 12, 24, 36,
48, and 60 sensor nodes, respectively. In each case, a gateway
is incorporated into the physical topology for every set of
12 sensor nodes.

The physical topology designed for Config-2 using
iFogSim, as depicted in Figure 5, follows an IoT gateway
architecture. This visual representation showcases two sep-
arate ICU setups, with each ICU connected to its dedicated
gateway. Each gateway is equipped with 12 sensors, an elec-
tronic display, and a connection to a centralized cloud through
a proxy server. To enhance the complexity of the simulation,
we have introduced additional configurations up to Config-5.
In the Edge Compute Gateway-based scenario, we’ve

embedded machine learning models directly within the
gateway to identify anomalies. The gateway takes on the
role of the primary computation node in this configuration.
It subsequently relays alerts to both the electronic display
placed in the nursing station and the cloud, facilitated by
a proxy server. Conversely, in the cloud-based scenario,
the cloud assumes the role of the central computation
node, where machine learning algorithms are deployed for
data processing. The processed data is then transmitted
to the electronic display via a proxy server and the
gateway.

With an increasing number of patients, additional gateways
are deployed, and the responsibility of detecting patient
abnormalities shifts to the computing nodes, which can
be cloud or gateway. However, as the number of sensor
nodes connected to a particular gateway increases, there is
a corresponding rise in network usage and latency for that
specific edge gateway.
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FIGURE 5. iFogSim topology of 24 sensor nodes connected to 2 gateways connected to the cloud server via the proxy server.

TABLE 2. Configurations of edge gateway, proxy server and cloud.

The configuration details for the cloud, proxy server,
and edge gateway in both the edge compute gateway-based
scenario and the cloud-based scenario can be found in
Table 2. These setup parameters encompass the CPU capacity
in terms of million instructions per second (MIPS), Random
Access Memory (RAM) in megabytes, uplink and downlink
bandwidth in megabytes, and the architectural level.

In Figure 6, we illustrate the data flow for various
applications, including Hypotension, Cardiovascular, and
Arrhythmia, designed to detect abnormalities in patient vital
signs within our simulation environment. Each application
model consists of key components, such as sensors, detector
modules, actuators, and user interfaces. It’s important to
note that the inference algorithms employed in the detector
modules differ based on the specific application. In the
following sections, we provide detailed explanations for each
application module.

B. APPLICATION MODULE
In iFogSim, an application is depicted as a directed acyclic
graph (DAG), with its nodes being represented by modules
and its links symbolizing data dependencies. In Figure 6
sensor, detector, actuator, and user-interface modules are
shown as vertices, while the arrows connecting these modules
to the sensor and actuator represent the edges.

FIGURE 6. Dataflow for individual application.

In iFogSim, we utilize the AppModule class to represent
application modules. Within the system, there are inherent
data dependencies between these modules, as visualized in
Figure 6, and these relationships are effectively modeled in
iFogSim through the AppEdge class.

TheAppLoop class is instrumental in emulating the control
loops that pertain to specific applications. The Sensor module
is responsible for supplying vital sign data to the program,
while the Display module presents the application’s results
to the user. The following delineates the roles played by the
various components:

1) SENSOR
This class represents a physical component in iFogSim.
It functions as the sensor/end node within the iFogSim
simulator and is responsible for emulating the behavior of
hardware devices such as Electrocardiograms, Blood pressure
monitors, or Temperature sensors. It serves as the starting
point where tuples are generated to simulate a variety of
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tasks or jobs. These tuples are then distributed throughout the
network for processing.

Tuples, which are the basic units of communication
between different entities, inherit their characteristics from
the Cloudlet class of CloudSim. Each tuple is defined
by its type, source, and destination modules. The class’s
attributes include processing requirements, measured in
Million Instructions (MI), and the size of data encapsu-
lated within the tuple. Additionally, the class incorporates
patient-specific information as parameters, and the tuple
data size in bytes is detailed in Table 3. It also features a
reference attribute to identify the gateway device to which
the sensor is connected, as well as information about the
connection’s latency. Furthermore, this class defines the out-
put characteristics of the sensor and the distribution of tuple
inter-transmission or inter-arrival time, which determines the
rate at which tuples arrive at the gateway.

TABLE 3. Tuple size with respect to application.

2) ACTUATOR
This class functions as an end-node simulator, depicting
various hardware devices that become active upon processing
the tuples generated by the sensor class. These devices
include components like storage systems, motors, furnaces,
and others. Notably, in this configuration, the Actuator role
is fulfilled by the display.

Furthermore, the display is placed within the Nursing
Station to enable real-time monitoring of patients’ vital signs,
ensuring swift data transmission and display with minimal
latency.

3) USER INTERFACE
The User Interface is a module hosted in the cloud, allowing
for the storage and display of information from any location
and at any time.

4) DETECTION MODULE
a: HYPOTENSION
TheHypotension detector module is responsible for detecting
abnormalities in vital signals received from the sensor using
a machine learning algorithm. This module informs the
actuator about Mean Arterial Pressure (MAP) and detection
of hypotension conditions to be updated on display in the
nurse station.

Hypotension is a critical medical condition characterized
by the systemic blood pressure dropping below the estab-
lished threshold [64]. Blood pressure refers to the force
exerted by the heart as it pumps blood against the walls of
the arteries. It becomes problematic when this pumping force

is insufficient to adequately supply oxygen-rich blood to the
body’s vital organs. Consequently, the patient’s symptoms
begin to impact their quality of life.

Blood pressure is determined by two physiological factors:
systolic blood pressure (SBP) and diastolic blood pressure
(DBP). Systolic blood pressure changes of less than 90 mm
Hg or a mean arterial pressure of less than 65 mm Hg are
considered indicative of low blood pressure. Furthermore,
a drop in diastolic blood pressure to below 40 mm Hg can
also be significant.

In Hypotension conditions, hypotensive shock is a possible
and life-threatening condition. Sharma et al. [64] defined
blood pressure as the product of cardiac output and total
peripheral vascular resistance.

The mean arterial pressure(MAP) is the average blood
pressure over the course of one cardiac cycle [65]. It is
calculated as equation 1 & 2:

MAP = DP+
1
3
(SP− DP) (1)

OR

MAP = DP+
1
3
(PP) (2)

where DBP is the diastolic blood pressure, SBP is the systolic
blood pressure, and PP is the pulse pressure. This method
is often more conducive to measuring MAP in most clinical
settings as it offers a quick means of calculation if the
blood pressure is known as discussed by Kumari et al. [66].
Annotated dataset incorporating attributes as specified in
Table 6. The decision making algorithm to be used in
the final application was decided on comparing different
classifiers. Figure 7 shows the accuracy of various classifiers
for hypotension. As seen from the figure, SVM provides
the highest accuracy, and thus was chosen in the final
implementation.

TABLE 4. Clinical attributes to identify the Hypotension in patients.

b: CARDIOVASCULAR DISEASE
The critical application in the healthcare sector focuses
on the detection of cardiovascular disease, which involves
considering factors such as age, gender, height, systolic and
diastolic blood pressure, cholesterol levels, glucose levels,
smoking habits, alcohol consumption, and physical activity.
To detect cardiovascular disease, patients are required to
connect an embedded device and provide the necessary
information.

For this study, we used an annotated dataset on cardio-
vascular disease obtained from Kaggle [67]. The dataset
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FIGURE 7. Accuracy of various classifiers for hypotension.

comprises eleven properties, and Table 5 illustrates its
content. The analysis specifically focuses on individuals aged
between 29 and 64, and their weight and heightmeasurements
are also recorded, as discussed by Dwivedi et al. [68].
We observed that the decision tree algorithm delivered

exhibited more accurate predictions compared to Random
Forest andKNN algorithms as discussed by Princy et al. [69].
Figure 8 shows the accuracy of various classifiers for
cardiovascular disease. Decision trees was chosen as the
classifier for cardiovascular disease prediction in the final
implementation of the gateway.

TABLE 5. Clinical attributes to identify cardiovascular disease in patients.

c: ARRHYTHMIA
Arrhythmia is characterized by irregular heart rhythms
resulting from disturbances in the heart’s electrical signaling.
Identifying these irregular rhythms involves a comprehensive
approach that encompasses medical evaluations, diagnostic
techniques, and monitoring. The primary diagnostic tool for
detecting arrhythmia is the electrocardiogram (ECGor EKG),
a non-invasive and painless procedure typically conducted
in clinical or hospital settings. The ECG records the heart’s
electrical activity, allowing the identification of irregular
rhythms by capturing and displaying the subtle electrical
impulses generated by the heart as a graphical trace on paper.

To facilitate the identification of arrhythmias, the arrhyth-
mia detector module processes the ECG signal. It conducts
a series of operations to extract key statistical features,
including Mean, Median, standard Deviation, and Skewness.

FIGURE 8. Accuracy of various classifiers for cardiovascular disease.

These statistical features are then input into a machine
learning algorithm to identify any abnormalities in the ECG
signal, as done by Vijaya et al. [70].

I) MEAN
The mean or average is a statistical measure that represents
the central tendency of a set of values. It is calculated by
dividing the sum of these values by the total number of
elements in the set, as shown in equation 3.

xµ =
1
k

k∑
i=1

xi (3)

II) MEDIAN
The median, which is expressed in equation 4, is the middle
value of the given set of values. In other words, the median
acts as the dividing point between the upper and lower halves
of a given data sample.

x =
xn+1

2
(4)

III) STANDARD DEVIATION
The standard deviation, which is expressed in equation 5,
serves as a metric for gauging how widely a set of values are
distributed around the mean.

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2 (5)

IV) VARIANCE
Variance, represented in equation 6, serves as a measure of
how much the set of values deviate from the mean.

S2 =

∑
(xi − xµ)2

n− 1
(6)

V) SKEWNESS
Skewness, represented in equation 7, is a measure used to
assess the asymmetry in the distribution of a set of values.
It is calculated by taking the sum of the values in the data
distribution and dividing it by the total number of values in
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that distribution.

xske =

∑k
i (xi − xµ)3

(n− 1)x3std
(7)

Accuracy of various classifiers for arrhythmia is shown in
Figure 9. Similarly to hypotension, SVM was the classifer
chosen for arrhythmia.

FIGURE 9. Accuracy of various classifiers for arrhythmia.

TABLE 6. Clinical attributes to identify the hypotension in patients.

C. COMBINED APPLICATION
In the context of combined application, the computation
node is linked to various vital sensors, and these sensors are
integrated with five distinct modules, namely:

1) Depacktezier Module
2) Hypotension Module
3) Cardiovascular Module
4) Arrhythmia Module
5) Repacketizer
The Depacktezier module gathers data from all sensors,

as mentioned in the previous section, depacketizes the data,
and forwards it to the appropriate modules. For instance, data
from the ECG sensor is directed to the arrhythmia module.
Within the Arrhythmia module, the ECG sensor data is
processed and analyzed to detect abnormalities. The module
subsequently generates a response, which corresponds to the
actions to be taken based on the ECG sensor values. This
response is then conveyed to the user interface for display
through the Repacketizer Module.

Figure 10 represents the visual representation of the data
flow in this CDSS system application model.

V. RESULTS AND DISCUSSION
In this section, we delve into the results obtained from
comparing the latency and network usage of the proposed

FIGURE 10. Dataflow for combined application.

edge-based architecture with a cloud-based architecture.
We evaluate both paradigms in two distinct scenarios:

1) By increasing the number of devices.
2) By varying sense time interval.
The simulation results for both scenarios demonstrate

that the edge-based architecture effectively reduces latency,
minimizes network utilization, and enhances overall system
performance when compared to the cloud-based architecture.

A. ANALYSIS OF LATENCY
For applications requiring real-time performance, the reduc-
tion of latency is of utmost importance. Edge computing
provides a significant advantage by minimizing data trans-
mission to the cloud and conducting data processing at the
network’s edge, resulting in swift responses to client devices
and consequently a decrease in latency. In the context of an
ICU, the vital signs of patients are transmitted to the edge
gateway for processing. Each edge gateway is dedicated to a
specific ward, ensuring that it possesses sufficient processing
power to handle data from that particular facility and rapidly
display patient information on electronic display.

To calculate latency, equation 8 is employed, as referenced
from [6].

Overall Latency = α + µ+8 (8)

µ = F(ψ,N ) (9)

where,
• α symbolizes Tuple CPU Execution Delay, indicating
the time taken for the processing node (edge/cloud) to
process a tuple.

• µ represents Transmission Latency, signifying the delay
incurred during data transmission.

• 8 stands for Actuator Time, delineating the duration
required for an actuator to respond to a command.

• ψ denotes the Sense Time Interval, representing the
interval between sensing operations.

• N quantifies the Number of nodes per edge gateway.
• F pertains to an Empirical Function, implying a function
derived from observed data or practical experience.

The Figures 11 and 12 display latency graphs for the
communication between sensors and actuators, as well as
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FIGURE 11. latency comparison from the sensor to actuator for various applications (A)Hypotension (B)Cardiovascular (C)Arrhythmia (D)combined
application.

between sensors and the user interface, in the two distinct
scenarios mentioned earlier in this section. From Table 7,
it can be observed that latency for sensor to actuator in
hypotension application, there is 70 times improvement with
Config-1 which is increased to 124 times with config-5.
The same trend applies to the applications of cardiovascular
disease, arrhythmia and combination of all.

Figures 11 also depicts the comparison of latency for vari-
ous sense time intervals in both edge and cloud environments.
The findings indicate a sense time interval ranging from
500 ms to 1 ms. The sensor-to-actuator latency increases
gradually on decreasing the sense time interval. However,
for edge computing, there is a sudden increase of latency on
decreasing the sense time interval at a certain threshold point
due to limited computing capability of the edge gateway.
We observed that this inflection point changes on changing
the compute power of the edge gateway.

For instance, in cases of hypotension and cardiovascular
disease, latency remains unchanged due to the small data
packet size or the minimal computation power needed,
indicating no burden on the computing node. However, in the
case of arrhythmia and combined applications, latency starts
increasing at a sense time interval of approximately 5ms, due
to the burden on the edge computing node.

Meanwhile, if the sense time is decreased to 0.5 ms, the
latency of the combined application may be higher in the
Edge environment compared to the Cloud environment.

Figures 12 also presents the comparison of latency for
various sense time intervals, ranging from 500 ms to
1 ms, in both environments. The latency observed in the
user-interface is nearly identical between the edge and cloud
environments for hypotension and cardiovascular disease
applications, as no significant compute burden is placed on
edge computing. However, in the case of arrhythmia and
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FIGURE 12. latency comparison from the sensor to a user interface for various applications (A)Hypotension (B)Cardiovascular
(C)Arrhythmia(D)combined application.

combined applications, the sensor-to-user interface latency
is higher in the edge environment compared to the cloud
environment after particular sense time interval. This can
beattributed to edge computing requiring more time to
process data or make decisions, particularly with larger
packet sizes.

From Table 8, it can be observed that latency for
sensor to user-interface in hypotension application does not
have significant change with any of the physical topology
configurations. It is similar for other applications.

B. ANALYSIS OF NETWORK USAGE
When the workload on a cloud server increases, it often relies
solely on cloud infrastructure, resulting in elevated network

TABLE 7. Simulation results for sensor to actuator latency.

usage due to the surge in visitors to the cloud server. This
increased traffic can lead to a reduction in data transmission
rates on the network. However, in the case of geographically
dispersed servers, a dedicated Edge gateway is allocated to
manage requests from specific sensor nodes. Consequently,
network consumption decreases under these circumstances,
but the transmission rate for the remaining network traffic
sees an increase.
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FIGURE 13. Comparing network usage for different applications, including (A) Hypotension, (B) Cardiovascular, (C) Arrhythmia, and (D) Combined
application.

TABLE 8. Simluation results for sensor to user interface latency.

Equation 10, as cited from [6], is utilized to determine
network utilization.

Network usage = Latency ∗ ∂ (10)

where

∂ = tupleNWSize

We conducted simulations to demonstrate the efficiency of
our proposed edge-based Clinical Decision Support System
(CDSS).We exploredmultiple scenarios, involving both edge

and cloud setups, each with varying numbers of patients
connected to the edge gateway and cloud server. Specifically,
we established two edge gateways for evaluation. Each edge
gateway is linked to the 12 sensor nodes. This configuration
maintained a consistent number of edge gateways throughout
the performance assessment. For the cloud-based scenario,
we utilized a router to link the sensor nodes to the cloud.

Our primary focus was on calculating latency and network
utilization. Figures 11 and 12 illustrate a comparison of
latency in both the cloud and edge environments. The
results reveal that as the number of sensor nodes increases,
latency in the cloud environment increases significantly
more than in the edge environment. This discrepancy occurs
because, in the edge setup, each edge gateway exclusively
manages data for the ward it is connected to, whereas in the
cloud setup, the server processes data for all ICU patients,
resulting in increased latency.
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Figure 13 presents network utilization data for the edge
gateway scenario, showing an increase in network utilization
as the number of edge gateways and sensor nodes increases.
In contrast, the cloud environment exhibits higher network
utilization because it processes all sensor data simulta-
neously, leading to greater network demand. In the edge
setup, various sensor nodes are connected to different edge
gateways, with each edge gateway dedicated to a specific ICU
ward, resulting in more efficient data processing.

Figure 13 also shows that the network utilization as
compared between the cloud and edge architectures is similar
for hypotension and cardiovascular disease across all sense
time intervals. However, notable difference was observed for
arrhythmia and combined applications, primarily because the
amount of data transmitted to the cloud is consistently lower
in the edge environment compared to the cloud environment
for all sense time intervals.

From Table 9, there is no significant change in network
usage in the hypotension application, but there is a 5-fold
improvement for the arrhythmia application and a 4 times
improvement for combination of all. This is due to the size
of the data transmitted.

TABLE 9. Simulation results for network usage.

Our comprehensive experiments for both the edge-based
and cloud-based approaches, taking into account latency
and network utilization, demonstrate the effectiveness of
the proposed edge-based architecture for vital monitoring
systems.

The simulation results for both edge gateway-based
and cloud-based implementations, considering latency and
network usage, highlight the practicality and efficiency of
the edge-based architecture for vital monitoring systems.
Utilizing an edge gateway-based architecture for smart vital
monitoring allows us to promptly detect abnormalities in
patients’ vital signs, predict future changes, and thereby
reduce patient risk. Additionally, these findings underscore
the potential of edge computing in IoT applications where
rapid response times are essential. In summary, the low
latency and minimal network usage of the edge-based
architecture make it highly suitable for real-time applications
and scenarios.

VI. CONCLUSION
In recent years, edge computing has assumed an increasingly
critical role, particularly in time-sensitive applications such
as healthcare. The exponential growth of data generated by
medical devices has amplified the demand for faster response
times and disease prediction. Also, the data requirement and
the compute algorithm required for the same varies for each
disease/condition prediction. To address these challenges,

an IoT-based clinical decision support system has been
proposed in this paper, which uses an edge-compute gateway
architecture that can be configured on the fly for multiple data
flow patterns and decision-making algorithms.

The proposed gateway was implemented using iFogSim.
The simulation results show an average reduction of latency
by 87.66 times compared to a cloud-based architecture. The
latency is impacted by the packet size, the sense time interval,
and the number of devices attached to the edge gateway.
Similarly, network usage improves by 2.59 times as compared
to the cloud-based architecture. The proposed gateway has
been shown to support multiple applications simultaneously
by configuring the gateway with respect to the buffer
sizes needed for each application and the decision-making
algorithm it uses. Looking ahead, this research can be
extended to explore issues related to load balancing, offload-
ing, and security in Edge Compute Gateway-based clinical
decision support systems. The proposed gateway architecture
can also be deployed for applications outside the healthcare
domain.
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