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ABSTRACT As the world’s population rises, there will be a greater need for food, which will have
repercussions on the environment and on crop yields. Increased production, efficient resource allocation,
climate change adaptation, and diminished food waste are the four cornerstones of Agriculture 4.0’s vision
for the future of farming. Agriculture 4.0 makes use of cutting-edge data systems and Internet technology
to acquire, analyze, and organize massive amounts of farming facts such as weather reports, soil conditions,
market demands, and land usage to better guide farmers’ decisions and boost their bottom lines. As a result,
research on agricultural decision support systems for Agriculture 4.0 has gained significant momentum.
Crop monitoring and yield forecasting are two applications where remote sensing has proven useful, and
these two areas are intrinsically linked to variations in soil, weather, and biophysical and biochemical
factors. Multi- and hyper-spectral data, radar, and lidar imaging are just some of the remote tools that
could be employed for crop monitoring and yield forecasting. This paper’s goal is to examine some of the
difficulties that can arise in the future while using agricultural decision-support platforms in the context
of Agriculture 4.0. Addressing these identified obstacles may help future researchers create better decision-
assistance systems. This research examines the possibilities, benefits, and drawbacks of each method, as well
as how well they work in various agricultural settings. Furthermore, these methods are demonstrated in
a variety of strategies that can be effectively employed. In this research, we take a look at some remote
sensing techniques developed to increase farm profits while minimizing their impact on the natural world.
This research shows how remote sensing information can be used to predict crop yields, evaluate plant
nutrient needs and soil nutrient levels, calculate plant moisture levels, and manage weed populations, among
other applications.

INDEX TERMS Agriculture 4.0, decision-support platforms, remote sensing, soil nutrient levels, crop
yields.

I. INTRODUCTION
Information about an object can be gathered by a technique
called ‘‘remote sensing,’’ which does not require physical
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touch. In remotely sensed, data is transmitted using radiation,
which passes through empty space at the speed of light in a
variety of different wavelengths. Remotely sensed datamakes
extensive use of visible light (VIS), near-infrared (NIR),
shortwave (SWIR), thermal (TIR), and microwave bands.
Although derived from remote sensing devices just record
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whatever radiation is reflected or released by the items being
studied, active sensors actually produce radiation of their
own, which interacts with the target under study and is then
reradiated to the survey tool.

The term ‘‘remote sensing’’ denotes to a collection of
techniques that rely on satellites and other forms of space-
based technology, as well as ground-based remarks for
increased precision and accuracy [1]. Visible, infrared, ther-
mal, RADAR, and microwave remote sensing are built
on the electromagnetic spectrum to assess how electro-
magnetic radiation interacts with Earth’s surface [2]. Field
sensors [3], UAVs [4], aircraft [5], LIDAR and RADAR
sensors [6], [7], cameras, and sensors mounted on orbit-
ing satellites are only some of the technologies for remote
sensing used in agriculture. By delivering comprehensive,
timely, repeatable, and cost-effective information on the
Earth’s surface, remote sensing photographs can be used to
map and track changes to the planet’s topography. It’s also
used for things like reconnaissance and defense purposes,
as well as in agrometeorological, forest, and soil research,
crop production, glacier, ice, and ocean management, geo-
logical exploration, mapping, land use and environmental
control, and more. Space-based satellite images are increas-
ingly valuable for gathering spatiotemporal meteorological
and agricultural information and updates to supplement the
conventional approaches, while air-based and earth sys-
tems have restricted use and save time only in limited
situations.

The principle of remote sensing is to evaluate the earth’s
features using the electromagnetic spectrum. Because veg-
etation, bare soil, water, and other similar things typically
respond differently in these wavelength zones, they are uti-
lized to differentiate between them. Passive and active remote
sensing are the two main categories in the field. Sensing
from a distance using only the sun’s kinetic energy (passive).
This can only occur, for instance, when the sun is shining
and making the Earth visible. The lighting for the activity
is provided by their own energy source. The sensor releases
radiation that is aimed toward the object of study. The target’s
radiation reflection is picked up and analyzed by the sensor.
It doesn’t matter what time of day it is or what season it
is, they can always get measurements. Like, say, a laser
or radar.

Renewable and dynamic agricultural resources are crucial.
Over 70% of Indians rely only on agriculture for their income,
and it accounts for almost 35% of the country’s GDP. Since
there is little room for expanding farmland, boosting agricul-
tural output has taken center stage. This calls for careful and
effective management of the planet’s precious soil and water
supplies. The last two decades have seen the use of remote
sensing techniques expanded into new areas of agriculture,
such as the monitoring of crop growth. There needs to be
accurate and thorough data on things like land cover, forest
area, soils, geological information, wasteland, agricultural
crops, surface and subterranean water resources, and natural

disasters like drought and flood.With seasonally specific data
on crops, land used, and yield, the country can take corrective
action to fulfill shortages and apply corrective assistance and
procurement programs.

Tools on the ground include an infrared thermometer,
a spectral radiometer, pilot balloons, and radars. Aircraft
in the air serve as distant sensing equipment. Based on
satellite technology: In order to analyze and understand
remotely sensed data, high-powered computers are used for
digital image processing. Due to the high cost and limited
use of ground and air-based platforms, space-based satellite
technology has proven useful for expanding the scope of
remote sensing’s reach. When compared to the conventional
approach, remote sensing offers numerous benefits while
conducting surveys of agricultural resources. Synoptic views,
rapid surveys, change detection through repeated coverage,
reduced costs, improved precision, and the ability to integrate
hyperspectral data to provide more context are just a few of
the benefits.

When weeds are present in an ecological system, they
contest with the crop for resources, including light, nutri-
ents, water, and gas exchange, lowering crop output and
excellence [8], [9]. Potential herb deprivation for agricultural
production includes the type of plant, its density, its emer-
gence timing and length, and the fact that plants and crops
may emerge at the same time, increasing competition for
scarce artificial fertilizers [10], [11].

II. LITERATURE REVIEW
In the twenty-first century, sustainable farming production
relies heavily on precision agriculture (PA) [12], [13]. There
are a variety of definitions for PA, but they all boil down
to the same thing [14]. To advance crop manufacture while
decreasing water and nutrient economic loss and adverse
environmental effects, PA entails a management strategy
that employs a suite of valuable data, connectivity, and data
analysis methods in the decision-making process [15], [16].
Other terms that are used interchangeably with PA include
information-based control, site-specific cultivation practices,
goal agriculture, variable rate invention, and grid agriculture.
PA is used not only for farming crops but also for horticulture,
viticulture, grazing, and animal management [17].

Environmental parameters such as water value, air emi-
nence, radiation, noise contamination, etc., are monitored
using a wide variety of sensors and Internet of Things (IoT)
devices; [18] provides a critical analysis of these technologies
and offers suggestions for improving their effectiveness. The
study suggests certain unusual tasks to accomplish in order
to successfully install environment monitoring systems using
sensors, the IoT, andAI. In [19], the authors provide a detailed
discussion of the technological, physical, and implementa-
tional developments that have led to today’s state-of-the-art
sensors. This might serve as a helpful guide while researching
and deciding on a sensor.
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FIGURE 1. Sensor nodes in agriculture.

In [20], [21], [22], [23], [24], and [25], several aspects
of IoT, including their designs, implementations, problems,
and privacy concerns, are covered. While trying to determine
which form of IoT would work for a certain application while
also fulfilling the needs of the end user, it is critical to have
a thorough understanding of all of these features. In [26], the
use of edge computing was proposed as a method for creating
efficient IoT applications. In [20], [21], [22], and [23], various
sensor networks used for deploying sensors and IoT-based
applications are described. In [24], the authors explore how
miniaturized pervasive sensors can be used for intelligent
applications across a variety of domains, allowing for more
portability and adaptation in their deployment. There is also
talk of agricultural and distant sensing sensors. In [21], [25],
[26], [27], [28], [29], and [30], the authors provide a thorough
overview of IoT and its applications, with a particular focus
on how to best use IoT in the field of remote sensing.

Researchers have used a variety of approaches to the issue
of crop categorization using spectral information [31], [32].
To better categorize Brazil’s sugarcane crops, a system based
on a regression model was developed. The EO-1 satellite
was used to gather this HSI data [33]. The method suggested
in [34], which was actually applied to Hyperion remotely
sensed data, is a hybrid of Support Vector Machine (SVM)
and linear spectral models. Also, in Guangzhou, litchi crops
were categorized in this way. Using the Hyperion data, the
Spectral Angular Mapper (SAM) classifier was used to cate-
gorize crops in the Karnataka region [35].
For quite some time, researchers have been aware of the

requirement to map land and soil use datasets for the purpose
of achieving sustainable supervision of natural resources on
a local, provincial, and national scale [36], [37]. It is crucial
to have knowledge of the soil’s mechanical, microbiologi-
cal, and chemical qualities in order to create and implement
crop methodologies, which are essential components of PA.
Some of these crop management strategies include irriga-
tion, permeability, and nutrient management. In a similar

vein, land use mapping can assist in evaluating the effects
of pre-existing administration and strategy on a scale rang-
ing from regional to national. Even before 1958, when the
phrase ‘‘remote sensing’’ was first established [38], there was
already a conventional method of applying remote sensing
techniques in agricultural settings. For instance, aerial pho-
tography was utilized in the 1930s and 1940s in the United
States to record the soils, land usage, and crop conditions at
that time [39]. Nonetheless, these traditional approaches to
soil mapping and property use classification (for example,
low-altitude imagery and ground personnel) often involve
substantial fieldwork and laboratory investigation, both of
which are time-consuming and costly [40]. The development
of remote sensing satellites in later years made it possible to
map land uses at scales that ranged from regional to national
to worldwide with greater accuracy and efficiency.

III. MATERIALS AND METHODS
A. REMOTE SENSING WITH SMART SENSORS
More and more sensors are being embedded into machine
parts to give inventors and operators data on the features
of organizations’ active (field) loading, as well as recurrent
biotic and abiotic stresses. According to ecological and eco-
nomic sustainability standards, technical advancements can
be achieved by analyzing data from sensors put on the earth,
in harvests, and in animals. Major advancements are made in
the areas of physical and non-contact proximal discovery.

Sensors that are either moved vertically and horizontally in
the soil or remain in one place can capture a wealth of useful
data. With the advent of nanotechnology, sensors are getting
even smaller. Not only can information be gathered from ani-
mals by inserting microchips into their bodies, but nano-sized
sensors might also be used to collect crop data. That way,
it’s possible to track how various environmental factors
affect the internal health of living things. Devices posi-
tioned above the soil, in the soil, or the lab under prescribed
light circumstances can determine soil moisture content,
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TABLE 1. Sensors in remote sensing for agriculture.

texture (dispersal of particle sizes), chemical makeup, and
other physical aspects using tests based on hyperspectral
reflectance, made possible by nanotechnology (own refer-
ence) as shown in Fig. 1. UGV (in this instance, small-smart
robotics), drones, aircraft, and spacecraft equipped with Nor-
malized Difference Vegetation Index (NDVI) cameras can
be used to estimate crop yields. Hyperspectral and NDRE
(Normalized Difference Red Edge) cameras can be used to
improve the estimations’ precision. Artificial neural networks
(ANNs) and principal component analysis (PCA) have been
used to develop color-based maturity assessments for crops
(fruits).

Gloves with built-in sensors for touch pressure, images,
inertia assessment, location, and RFID (Radio Frequency
Identification) are used to categorize fruits [41]. Because
of this, losses are cut down during hand harvesting while
production speeds up. In addition, the groundwork is laid
for a crop to be classified in accordance with its direct qual-
ity, making it possible to prevent loss-making classification
down the line. Connecting Internet-of-Things devices with
unmanned aerial vehicles combines two cutting-edge tools.
With the use of computer vision and good grasping gear,
the drone can also be used to pick fruit. Robots that can fly
autonomously have been used to harvest fruit. The role of
natural pollinators is being taken over by artificial bees. There
is potential for UAVs equipped with sensors for sight and
smell to be utilized in the future as a pest-free alternative to
the usage of insecticides. Table 1 shows the usage of sensors
in agriculture for remote sensing.

B. WSN IN AGRICULTURE
The computerized analysis and evaluation of multiple input
characteristics simultaneously require extensive databases.
Soil moisture, soil temperature, soil nutrient content, leaf
temperature, relative humidity, air temperature, rainfall,
vapor pressure, and available sunlight are only some of

the physical and environmental characteristics that may be
monitored with a wireless sensor network. The physical,
chemical, and environmental factors are tracked by a WSN’s
dispersed sensor nodes. With the use of sensors, wire-
less technology, and processing tools, WSNs can accurately
measure a wide range of physical properties. After being
processed, the parameters are sent across a gateway and into a
centralized database, where the user can access and evaluate
the information from a remote location. The various sensors
that make up aWSN-based system are connected to electrical
hardware via an array of data processing tools. In addition, the
electronic components feature wireless technology modules,
which modulate the observed data and send it over a network
using a predetermined protocol. In WSN, these terminals are
known as motes. Several wireless sensors are interfaced with
each mole, and the exact sensors used will vary between
applications. Each sensor can be set to either a continuous
or discrete mode. We present the most important aspects of
WSNs that make them a viable instrument for automation in
agriculture in Table 2.
Precision agriculture relies on extensive sensing of envi-

ronmental conditions at the ground level, and WSN is seen as
a potential technology that can help update data collecting in
the agricultural field and facilitate the automation of agricul-
ture systems. Precision agriculture, which makes use ofWSN
technologies, is becoming increasingly popular because of its
positive effects on agricultural productivity in a variety of
contexts. With WSN, farmers might learn more about their
farms and find the optimal approach. WSN can monitor soil
moisture and temperature, manage irrigation, and help farm-
ers make better decisions. Hence, collecting data, monitoring
the environment, and analyzing that data are the primary
motivations forWSN implementation in agricultural settings.

Several protocols, such as Zigbee, Bluetooth, and Wi-Fi,
have been created by researchers to facilitate communica-
tion between sensor nodes and the deployment of WSNs.
Zigbee is one of the best options for precision agriculture
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TABLE 2. The advantage of WSN in agriculture.

applications since it allows for periodic data updates in areas
such as irrigation control, water quality monitoring, and fer-
tilizer and pesticide tracking. Zigbee, a wireless protocol that
is low-cost, flexible, dependable, and easy to implement,
streamlines the monitoring of a wide range of environ-
mental factors, such as soil health, weed disease detection,
crop growth, and agricultural product quality. Zigbee can be
effectively implemented in the precision agriculture industry.
One such application is a smart irrigation system built on
the Zigbee network protocol. The system’s actuator node is
designed to respond to changes in soil moisture detected by
the system’s sensor node, which monitors soil water levels.
Zigbee’s capacity to overcome the limits of wire connec-
tion and facilitate greenhouse management development also
demonstrates its value in protected agriculture. Greenhouse
monitoring and control can benefit from the incorporation of
Zigbee-basedWSN systems because they are simple to main-
tain and increase automation and efficiency. WSN allows

for real-time monitoring and regulation of greenhouse envi-
ronment parameters like humidity, temperature, light, and
air pressure, improving plant development, increasing yield
production, and decreasing the severity of damaging natural
catastrophes on farms. The reduced power consumption and
extended communication range of WSN could prove invalu-
able in greenhouses for health monitoring and prediction,
fertilizer supply assurance, and cost-effective precision agri-
culture [43].

C. MODERN, CREATIVE, AND SUSTAINABLE FARMING
Sustainable agro-innovation is only measured if it satisfies
ecological opportunities, such as being ecologically friendly,
helping to increase biodiversity on and about the field, being
climate neutral or mitigating the negative belongings of cli-
mate modification, and narrowing the gap between rich and
poor nations by eliminating hunger and guaranteeing that
all people have admission to clean water [44]. Economic
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studies in terms of novelty, new skills, or operations should
be conducted only after these conditions have been met and
then only on a global and local scale. This is the bedrock upon
which all moral and ethical norms rest. So, in industrialized
nations, the explosive increase in livelihoods that was fore-
casted is impossible to achieve; convergence should begin;
otherwise, we will broaden the disparity in living conditions
between advanced and developing nations, which could have
unanticipated implications.

In contrast, the innovation process requires various consid-
erations in industrialized and poor countries. By expanding
output, the First Industrial Revolution and the three that
followed served to supplant man’s physical strength. This is
the result of progress in science and technology. The second
machine age, which began in the last decade, is characterized
by artificial intelligence’s gradual but steady assumption of
the function of decision-maker. There is a ‘‘threat’’ that AI
will not act in our best interest in this area as well. Many
ethical and moral problems, such as local and international
conflicts of interest, are also brought up.

The exploitation of developing nations is still widespread,
stymying progress in many sectors. While rapid technolog-
ical advancement has many positive outcomes, it also has
two major drawbacks. It isolates people living in developed
nations from nature and widens the separation of wealth
and poverty. Development and Least Developed Countries
(LDCs) have a growing population, which means there is a
pressing need to increase food production in a sustainable
manner. The industrialized world has learned the hard way
that increasing yields at the expense of environmental dam-
age is not the way forward [45]. The advanced nations will
continue their trend of rapid technological advancement and
groundbreaking new discoveries. The repercussions of cli-
mate change, which are largely generated by affluent nations,
are felt most acutely by poor nations. Hence, reducing eco-
nomic gaps between industrialized and developing countries
is a key criterion for sustainable growth worldwide.

Today, thanks to the Internet of Things (IoT) [46], smart
sensors that can exchange data with one another and the
outside world are being used in industrialized nations’
farms [47]. In addition to humans, robots, Drones, aircraft,
and satellites all contribute to the data collection process.
Data for IoT systems will rely heavily on distant sensing,
especially in low-income regions. With the use of cloud
computing [48], artificial intelligence [49] processes the data.

IV. CHALLENGES IN THE AGRICULTURE MANAGEMENT
SYSTEM
A. IRRIGATION DECISION SUPPORT SYSTEM
The precision irrigation procedure necessitates a water appli-
cation system that can precisely regulate the amount of
water supplied to a field’s various irrigation management
units in a given amount of time. Continuous motion systems
have been the primary focus of research and development
for variable-rate water application systems. Databases with

FIGURE 2. The Irrigation decision support system structure.

geo-referenced data describing irrigation management units
are used to regulate water claims on continuous move sys-
tems. To adjust the amount of water delivered to each
management unit, you can adjust the sprinkler’s flow rate or
the ground’s speed in a continuous movement system. Fig. 2
depicts the irrigation decision support system.

Sprinkler nozzles typically employ pulse modulation to
allow for a wide range of application rates. Normally, opened
solenoid valves are used to regulate water distribution to
certain sprinkler heads or zones. A solenoid controls thewater
flow at a sprinkler location to accomplish a set application
depth within a given cycle time. Pulse cycles are measured
in terms of the cycle time, which is the number of times the
solenoid valves must flip (either to the on or off phase).

Unmanned Aerial Vehicles (UAVs) have found widespread
use in a variety of contexts thanks to the evolution of sophis-
ticated robotics, and this is especially true in the field of
agriculture. The on-board decision-making approach seeks
to pinpoint the specific locations of infected crops so that
appropriate actions, such as the application of herbicides, can
be carried out. Toxic damage to the fields can be largely mit-
igated with the careful application of herbicides. Meanwhile,
using UAVs for spraying missions increases productivity
because of the increased efficiency of the workers. The
Observation, Orientation, Decision, andAction (OODA) loop
depicted in Fig. 3 serves as the conceptual foundation for the
method provided. The technique depicted in Fig. 3 uses inputs
such as ultrasonic sensor readings and camera images and
received orders to compile data during the observation phase.

Once UAVs have gathered this information, they will begin
their mission and proceed in a straight line to their des-
tinations. Mission execution is where the UAV’s onboard
computer checks to see if the vehicle is on the right track.
If a UAV’s altitude [50] is determined to be too high, the
decision-making component will issue an order for the vehi-
cle to lower its altitude until it is within the predetermined
range. Meanwhile, the decision-making part is in charge of
revisiting previously visited waypoints to track progress in
the objective. Imaging, approaching waypoints, and spraying
herbicides are all examples of actions that fall under this
category. UAVs are required to return to base after completing
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FIGURE 3. On-board decision-making approach.

a mission and switch to observation mode. Several flights
served to validate the onboard decision-making strategy.
UAVs have been shown to be able to hover above their
intended destinations upon arrival, according to the results
of recent experiments. The proposed method successfully
directs UAVs to all of their waypoints.

Here, we take a look at the current state of precision irri-
gation study and equipment by reviewing published works,
land-grant university extension materials, commercial offer-
ings, and US patents. We zeroed in on four key areas of
difficulty in precision irrigation decision-support systems:

(a) data accessibility and scalability;
(b) assessment of plant water stress;
(c) model uncertainties and limits, and
(d) producers’ engagement and motivation.
Then, we discovered openings to tackle those four

problems:
Increase the widespread implementation of decision-

support systems for precision irrigation by,
(a) using satellite integration results with high time and

spatial granularity in conjunction with inexpensive sensing
devices.

(b) explicitly analyze the connection between soil water
availability, atmospheric water demand, and plant physi-
ological management to optimize irrigation decisions by
mechanistic measurement of ‘plant water stress’ as triggers;

(c) use data-model fusion techniques to place constraints
on process-based machine-learning models at the field level
for scalable solutions; and

(d) Provide adaptable, user-friendly tools, and encourage
more monetary and policy backing from governments.

B. REMOTE SENSING-BASED CROP MONITORING
For effective decision-making and to forestall food mar-
ket disruptions and speculation, timely and accurate
temporal-spatial and qualitative data on crop conditions is
essential. Observing these characteristics is crucial for track-
ing crop performance. Biophysical characteristics [51] of
crops are used as surrogates for environmental factors. For
this reason, thesemeasures have been used to analyze agricul-
tural growth status and the effects of agroclimatic conditions,
pests and diseases, water trees, and management methods on
crop growth and to aid in the development of early warning
systems. The detrimental effects of abrupt shifts in aberrant
weather conditions on crops are complex, interconnected, and
typically associated with particular crops, growth phases, and

FIGURE 4. Sample recorded temperatures (T) from crop monitoring.

FIGURE 5. Sample-related humidity (RH) from crop monitoring.

genetic types. Nonetheless, in areas where winter harvests
are farmed through the dovetail joints stage, frosts and stress
brought on by low weather and/or cold shocks are fre-
quently recorded despite winter crops’ greater cold resistance
compared to the growing season. Quantitatively classified
methods and criteria can infer differences in yield, area,
and production from pointers and/or metrics used primarily
for assessing crop conditions, stress, and drought severity.
These evaluations don’t separate the stresses and disturbances
from the indicators and/or metrics used to gauge the state of
crop growth. Hyperspectral data, light detection and ranging
(LiDAR) data, and optical data in grouping show promise for
effectively enhancing the potential to produce early cautions
and discriminating the origins of regional agricultural stress
and the degree of the stress in terms of consequences on
ultimate yield. Nevertheless, due to their limited coverage
areas, enormous footprints, or low resolutions, these satellites
are currently incapable of meeting operational needs. Fig. 4
and Fig. 5 illustrate the most significant climatological crop
growth metrics that were obtained from the data: tempera-
tures (T) and relative humidities (RH) are being measured
(no rainfall occurred during the drying periods).
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In addition, remote sensing data has been used to make
forecasts about crop yields, crop stress assessment, and
yield modeling. The ability to quickly identify plant diseases
and to plan for accurate management estimates are crucial
for maintaining agricultural production. Potential uses of
remote sensing in agriculture include yield estimation and
pest/drought detection. Strong vegetation has a higher reflec-
tivity in the near-infrared region and a lower reflectance in the
visible region. Plants that have been impacted by illness show
an increase in perceptible band reflectance and a decrease in
infrared area reflectance. In practice, this concept can be used
to differentiate between healthy and diseased harvests.

As plants become sick, they may absorb less sunlight due
to changes in their internal structure or because of a decrease
in the amount of chlorophyll they produce, both of which are
symptoms of the disease. Because of assimilation fluctuation,
infected plant reflectance varies. Scientists are able to identify
the stress potency of green foliage by comparing the ranges
of infected and healthy plants.

1) CHALLENGES IN MONITORING CROP CONDITION
Most global, regional, and national Crop monitoring sys-
tems use the same approaches for real-time crop condition
analysis, with a focus on maps showing how measures devi-
ate from their norms to examine geographical differences
or on temporal development to depict crop growth dynam-
ics. Nevertheless, changes in crop factors may cause the
differential technique to be biased and prevent it from pro-
viding accurate judgments. In order to successfully lessen
uncertainties in crop condition monitoring, it is necessary to
determine a proper benchmark product and an appropriate
remotely sensed product at a reasonable spatial resolution.
For example, as the health of irrigated crops and rain-
fed crops differs greatly, particularly during the dry terms
(and in drought-prone locations), each type of crop might
be monitored separately based on the irrigation practices
in place at a given site. However, current crop condition
monitoring approaches still rely heavily on low-resolution
satellite measurements; such data frequently cover multiple
crop production in coarse pixels and can rarely suggest the
circumstances of independent crops, except in large parcels.
Medium- to high-resolution crop health monitoring is now
possible thanks to the growing accessibility of Sentinel-2-
like satellite data, but this requires a massive amount of data
dispensation. Furthermore, high spatial-resolution data could
lead to other problems, such as geolocation mismatch and
ground cover impressions. Users should have the option to
pick data at the spatial scale most suitable to their monitoring
needs.

C. CHALLENGES WITH ACCURATELY ASSESSING THE
ROLE OF NUTRIENTS, DISEASES, AND PESTS IN CROP
STRESS
If bad weather isn’t to blame for crop stress, then nutrient
deficiency, pathogens, or pests probably are. After water,
a lack of nutrients has been identified as a major worldwide

stressor. CCC and leaf nitrogen content (LNC) inversion
algorithms have been established to identify nutritional stress
in wheat and other crops. It has been proven that the red-edge
groups, which are distinct bands situated between some of
the red and near-infrared bands, are much more responsive to
chlorophyll concentration than any of the several visible-band
VIs reported to correlate to chlorophyll or nutrient content.
The red-edge band’s benefit in identifying nutritional status
or total chlorophyll has been repeatedly shown. However,
it works best for dense crops. Chlorophyll can be seen in
images captured by the Sentinel-2 satellites thanks to the
presence of three red-edge bands in their spectral range.

Disease and pest types can be identified, the severity of
infection can be evaluated, and distribution can be mapped
at the plot or regional level using a variety of criteria that
have been created over the years. However, prior knowledge
of the local diseases, pests, and other pressures that occur
in the field is required. Because many of the symptoms and
plant damage associated with agricultural pests and viruses
can also be produced by other variables, such as nutrition
shortages, it is problematic to proactively accomplish con-
sistent and exact assessments in places where there is a lack
of prior knowledge. The photochemical reflectance index
(PRI), for instance, has traditionally been used to sense water
pressure, frost pressure and destruction, and nitrogen content
and stress, in addition to wheat yellow rust. Differentiating
between stressors and their origins, as well as quantifying
their many manifestations, requires the development of novel
indicators and metrics.

D. CHALLENGES IN AI-BASED FIELD MONITORING
The potential applications of the aforementioned robotic prin-
ciples in agricultural settings require additional study. The
authors are confident that the increasing need for intelligent,
compact machines will spur rapid advances in robotics. Both
the efficiency of small farms and the diversity of their crops
and animals should improve as a result of this. Autonomous
robots are useful because they can act independently of a
human programmer. Managers’ expectations can be formu-
lated at the same time, and the robot will account for them
while making decisions (such as whether a crop is ready to
be picked or not). They get to determine what constitutes an
acceptable crop in terms of yield, shape, color, and size. AI,
or in this case, digital, artificial image processing, is neces-
sary for such endeavors to be accomplished.

Self-propelled or integratedwith self-propelled equipment,
field data-gathering robots need to have their current prices
lowered if they are to become commonplace. For industrial
robots in the field, Arduino and Raspberry Pi are the two
most essential computing systems. Proximal sensorsmounted
on smart-small robots collect data in areas that cannot be
detected by other methods, such as drones, airplanes, or satel-
lites, during a certain vegetative time. Clever, compact robots
have the potential to bring revolutionary change to the field.
It’s important to bring attention to the prospect of constant
monitoring of microclimate features. The lack of 5G is now
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FIGURE 6. Sample association between the diurnal variation in land
surface temperature (day minus night) and the sub - pixel luminosity of
the irrigation region.

one of the biggest obstacles to the digital transformation of
agriculture. But its effects on the quality of life need more
explanation. The deployment of a robotic workforce should
be prioritized because of the various economic benefits it pro-
vides. Some of these advantages involve but are not restricted
to, the systematic gathering of information on the soil, vege-
tation, and natural landscape in the outdoors. The potential of
Machine-to-Machine communication, the NewMachine Era,
and entirely independent fertile landmanufacturing hinges on
this.

Fig. 6 demonstrates that as the difference in tempera-
ture between the lowest and highest land surface tempera-
tures diminishes, the intensity of irrigated crop production
increases. This is because the presence of vegetation and
moisture enhances the regulation of radiative warmth. Using
thermometers that are attached to the land’s surface and oper-
ating at perception level frequencies, this data can be used to
map the extent of irrigated land immediately.

The extensive usage of robots has resulted in the elim-
ination of many different types of employment, which has
a significant impact on policymakers. The first step is to
reconsider the potential benefits of AI as a decision-making
system for fostering human cooperation. However, we need
to look into what tools and resources may be employed to
improve the efficacy of retraining. An important factor here
will be the knowledge gained from past interactions between
humans and artificial intelligence. Agricultural equipment
simulators are becoming increasingly important in the class-
room. Generalized retraining of the human population is the
next emerging field. We have difficulty in that there may be
a lack of faith in robots as we increasingly rely on advanced
technology, especially in the workplace (and AI). But, if soci-
ety establishes proper guidelines for robots, we may take use
of their many benefits.

There are a lot of problems that need fixing in the smart
manufacturing and farming industries; AI technologies like
CPS (Cyber-Physical Systems), Big Data, the Internet of
Things, and cloud computing could be the answer. There are
high hopes that robot technology will advance in the agri-
cultural sector. Often in manufacturing facilities, the product
is in motion while the intervention robot remains stationary.
Yet, robots are mobile in agriculture, for example, in crop
production, unlike in animal husbandry. Autonomous robots
have manipulators that allow them to move on their own.
Robots for gathering data can constantly check their findings
with IoT-connected soil or plant sensors and relay that data to
a central IoT database.

E. SPECIFIC CHALLENGES OF AGRICULTURE IN THE
INDIAN SCENARIO
There are issues with agricultural WSN systems in the Indian
context that are distinct from those faced globally. Listed
below are some of the unique difficulties India faces today.

A key barrier to these applications in LMICs is the high
cost of the sensors and accompanying systems. The most dif-
ficult aspect of developing a WSN-based system for farming
in India is the wide range of climatic conditions and soil
types present across the country. The characteristics of the
programmust be adjusted so that it works correctly in various
geographical settings. India’s divided farmland presents a
unique problem that necessitates a well-thought-out deploy-
ment architecture for wireless sensor network (WSN)-based
agricultural applications like irrigation control. The average
amount of land owned by an Indian farmer is smaller com-
pared to the rest of the world. This necessitates a shift towards
more compact and individualized solutions. To be success-
ful, implementing automation in the agricultural sector will
require careful planning that takes into account the varied
topography of the land and the specific needs of individual
farmers.

F. SPECTRAL DATA CHALLENGES
A significant challenge for remotely sensing irrigated areas
across diverse geographical locations is selecting spectral
bands or indices that encompass the largest amount of
information relevant to agriculture and linking this data to
complex forms of irrigation activity. Find vegetated areas in
agricultural fields with the use of satellite-derived indices
but pinpoint the cause of temporal and spatial variations
in biomass, such as irrigation or precipitation, with more
difficulty. When just supplementary irrigation is used, fur-
ther difficulties may occur. Center pivot irrigation fields
have a distinctive shape, but this detail is not immediately
apparent and cannot be easily included in automated image
classification.

To address these difficulties, it is necessary to first identify
the distinctive features of irrigated areas, in particular, the
features that can be monitored using remote sensing. The
‘‘greenness’’ of plants is one such quality. Almost everyone
agrees that the NDVI is useful for keeping tabs on crops,
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FIGURE 7. Sample Relative Sensitivity Index (RSI) values for four
vegetation indices (NDVI, EVI, GI, and WDRVI) in response to the presence
of irrigation. Each index was calculated as the mean response from a
random sampling of roughly five different websites.

whether or not they’re being watered by a sprinkler sys-
tem. In semi-arid regions with a single irrigation period and
straightforward land cover types, the NDVI signal related
to irrigation makes it possible to identify irrigated lands.
However, in many other parts of the world, there are multiple
irrigation periods and a variety of crop types with varying
schedules. It’s possible that the NDVI signal linked to irri-
gation is weaker in these areas. Mapping these areas might
be aided by the use of high-frequency NDVI observations
from satellites like MODIS, which could then be used to
establish when to take high-resolution pictures of the area.
Yet, in areas where the same crop variety is cultivated with
and without irrigation during the same growing season, iden-
tifying irrigated from non-irrigated crops can be challenging.
It is possible that the temporal NDVI profiles of irrigated and
non-irrigated crops in these areas follow the same trend. The
NDVI variance among irrigated and non-irrigated fields is
tiny and likely irrelevant, despite the fact that irrigated fields
tend to be greener than non-irrigated ones because of the
accessibility of moisture. As a result, it’s possible that a more
complex index is needed to make this division.

Comparisons were made between the normalized dif-
ference vegetation index (NDVI), the green normalized
difference vegetation index (GNDVI), and the expanded veg-
etation index (EVI2), and a brand-new index was developed
as a result of these comparisons. The following are the for-
mulae for NDVI, GNDVI, and EVI2:

NDVI =
NIR − R
NIR + R

(1)

GNDVI =
NIR − G
NIR + G

(2)

EVI2 = 2.5 ×
NIR − R

NIR + 2.4 · R+ 1
(3)

where each variable stands for a different spectral component
of the surface reflectance.

We examined the linear association between each index
and the spectral bands for the times of year when the crop
covers the entire area. This was done by taking into con-
sideration the spectral features of the vegetation in each
wavelength. According to a significant body of literature
on spectral remote sensing of vegetation canopies, spectral
indices associated to chlorophyll content are very sensitive
to moisture stress in vegetation. The Green Index (GI) is one
such metric that can be utilized with the MODIS sensor.

GI =
pn
pg

(4)

where pg is the reflectivity in the green spectral range.
Irrigated plants with little to no soil moisture pressure

will have higher chlorophyll concentration than non-irrigated
cultivars that could experience water stress, which is the the-
oretical basis for employing the GI for irrigation evaluation.

Relative Sensitivity Index (RSI) =
Ii − In

In (max) − In (min)
(5)

The irrigated and non-irrigated values of each index, I,
at each time period are represented by Ii and In, respectively,
in Equation (5), with Ii normalised by the annual amplitude
(maximum-minimum) of In. The relative size of the differ-
ential between the watered and non-irrigated values of an
index relative to the non-irrigated value’s seasonal maximum
change is represented by the relative size of the RSI is shown
in Fig. 7. The GI is the most sensitive of the four indexes to
the presence of irrigation when crop growth is at its peak.

Research on Internet of Things (IoT) and smart sensors for
agricultural claims is summarized in Table 3, along with an
overview and critical evaluation of related literature. Smart
farming systems that regulate and monitor environmental
parameters have been built on the basis of Remote Sensing
data and other agricultural data acquired with the help of
sensors, and these systems can be implemented on low-cost
platforms. Internet-of-Things (IoT) and UAVs (unmanned
aerial vehicles) that run on low to medium cost platforms
are essential for this kind of development. As mentioned in,
state-of-the-art technology like Arduino-based controllers;
machine learning and deep learning-based techniques, and so
on, can help make agriculture smarter and therefore improve
it. The Flying IoT stands out as an innovative smart agricul-
tural platform because it has been put through its paces in
a real-world setting and its performance has been assessed
in the context of smart farming practices employed in var-
ious nations. The low-cost IoT-based solutions are used to
evaluate crop quality, control drought, and calculate drought-
related losses. Smart farming makes use of remote sensing
techniques to improve crop control by, for example, keeping
an eye on how much water is being pumped out of the
ground and determining what that number should be. Using
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TABLE 3. Result analysis of existing with proposed imlea-stlf method on dataset.

the IoT and sensor systems can be helpful in smart agriculture
because of certain indices utilized in this field.

These are some examples of major indices:

• Index for Evaporative Stress (ESI).
• Vegetation health index (VHI)
• Vegetation Index Enhanced (EVI).
• Standardized Anomaly Index (SAI).

In order to calculate the aforementioned indices or metrics,
satellite-based Remote Sensing data is used. As an indica-
tor of agricultural drought, the value of ESI is predicted to
remain high, giving some indication of their significance. EVI
demonstrates the improvement in the VHI, which measures
the health of the vegetation. SAI is determined by combining
the results of the other indices.

V. CONCLUSION
Precision agriculture has both financial and environmental
benefits. That will eventually become the norm. Forecast-
ing precisely when that day occurs is tricky. How quickly
producer cadres learn and apply geospatial techniques will
be a deciding element. The Upper Midwest Aerospace Con-
sortium developed a novel learning community strategy in
response to the challenges that have prevented agricultural
producers from ‘‘catching on’’ to the technology’s poten-
tial benefits. The manufacturers and scientists collaborate
to develop the appropriate geospatial goods and make them
available in near real-time, share expertise through structured
training programs, and help each other find new applications,
laying the groundwork for the technology’s continued use and
adoption. The number of companies that use these technolo-
gies has expanded substantially throughout the years. By their
triumphs, the early adopters and inventors are now inspiring
and guiding the rest.

This methodical review aims to bridge the gap between
research and practice by focusing on precision irrigation,
identifying significant obstacles and possibilities in areas
that can be considered future research instructions of preci-
sion irrigation decision support systems. Our ideal precision
irrigation decision-support system would use the most up-
to-date technologies to irrigate every field in every region
at a reasonable cost, and greater study in these areas would

help get us there. New low-cost sensor networks and satellite
fusion products with high spatial and temporal resolution
offer great potential for expanding the usage of decision
support systems for precision irrigation. Mechanically quan-
tifying ‘plant water stress’ is proposed as a trigger to enhance
irrigation conclusion by considering the interplay between
soil water availability, atmospheric water demand, and plant
physiological regulation. Observations and database design
fusion methods should be used to analyze plant water con-
nections for scaled fertigation systems. Adoption rates of
new irrigation technology can be increased by the creation
of adaptable tools and the rise of monetary incentives and
support from governments.

ACKNOWLEDGMENT
This research work was funded by Institutional Fund Projects
under grant no. (IFPIP: 1740-135-1443). The authors grate-
fully acknowledge technical and financial support provided
by the Ministry of Education and King Abdulaziz University,
DSR, Jeddah, Saudi Arabia.

REFERENCES
[1] T. Ahamed, L. Tian, Y. Zhang, and K. C. Ting, ‘‘A review of remote sensing

methods for biomass feedstock production,’’ Biomass Bioenergy, vol. 35,
no. 7, pp. 2455–2469, Jul. 2011.

[2] P. Defourny et al., ‘‘Near real-time agriculture monitoring at national scale
at parcel resolution: Performance assessment of the Sen2-Agri automated
system in various cropping systems around the world,’’ Remote Sens.
Environ., vol. 221, pp. 551–568, Feb. 2019.

[3] E. Svotwa, A. J. Masuka, B. Maasdorp, A.Murwira, andM. Shamudzarira,
‘‘Remote sensing applications in tobacco yield estimation and the recom-
mended research in Zimbabwe,’’ Int. Scholarly Res. Notices, vol. 2013,
Dec. 2013, Art. no. 941873, doi: 10.1155/2013/941873.

[4] X. Zhou, H. B. Zheng, X. Q. Xu, J. Y. He, X. K. Ge, X. Yao, T. Cheng,
Y. Zhu, W. X. Cao, and Y. C. Tian, ‘‘Predicting grain yield in Rice using
multi-temporal vegetation indices from UAV-based multispectral and digi-
tal imagery,’’ ISPRS J. Photogramm. Remote Sens., vol. 130, pp. 246–255,
Aug. 2017.

[5] F. Tack, A. Merlaud, A. C. Meier, T. Vlemmix, T. Ruhtz, M. D. Iordache,
and M. Van Roozendael, ‘‘Intercomparison of four airborne imaging
DOAS systems for tropospheric NO2 mapping—The AROMAPEX cam-
paign,’’ Atmos. Meas. Techn., vol. 12, no. 1, pp. 211–236, 2019, doi:
10.5194/amt-12-211-2019.

[6] S. Esch, T. G. Reichenau, W. Korres, and K. Schneider, ‘‘Soil moisture
index from ERS-SAR and its application to the analysis of spatial pat-
terns in agricultural areas the analysis of spatial patterns in agricultural
areas,’’ J. Appl. Remote Sens., vol. 12, no. 2, 2018, Art. no. 022206, doi:
10.1117/1.JRS.12.022206.

44796 VOLUME 12, 2024

http://dx.doi.org/10.1155/2013/941873
http://dx.doi.org/10.5194/amt-12-211-2019
http://dx.doi.org/10.1117/1.JRS.12.022206


I. M. Mehedi et al.: Remote Sensing and Decision Support System Applications in PA

[7] B. Buchholz, B. Kühnreich, H. G. J. Smit, and V. Ebert, ‘‘Validation
of an extractive, airborne, compact TDL spectrometer for atmospheric
humidity sensing by blind intercomparison,’’ Appl. Phys. B, vol. 110, no. 2,
pp. 249–262, Feb. 2013.

[8] A. A. G. Hassan, I. Ngah, and S. D. Applanaidu, ‘‘Agricultural transforma-
tion in Malaysia: The role of smallholders and area development,’’ World
Bank Agricult. Transformation Inclusive Growth, vol. 15, no. 2, pp. 1–32,
2018.

[9] M.A. Khan, K. B.Marwat, H. Z. Umm-e-Kalsoom, Z. Hussain, S. Hashim,
A. Rab, and K. Nawab, ‘‘Weed control effects on the wheat-pea intercrop-
ping,’’ Pak. J. Bot., vol. 45, no. 5, pp. 1743–1748, 2013.

[10] H. H. Ali, A. M. Peerzada, Z. Hanif, S. Hashim, and B. S. Chauhan,
‘‘Weed management using crop competition in Pakistan: A review,’’ Crop
Protection, vol. 95, pp. 22–30, May 2017.

[11] D. Prabakaran and K. Sheela, ‘‘A strong authentication for fortifying
wireless healthcare sensor network using elliptical curve cryptography,’’
in Proc. IEEE Mysore Sub Sect. Int. Conf. (MysuruCon), Hassan, India,
Oct. 2021, pp. 249–254.

[12] J. Delgado, N. M. Short, D. P. Roberts, and B. Vandenberg, ‘‘Big data
analysis for sustainable agriculture on a geospatial cloud framework,’’
Front. Sustain. Food Syst., vol. 3, p. 54, Jul. 2019.

[13] J. K. Berry, J. A. Delgado, R. Khosla, and F. J. Pierce, ‘‘Precision conser-
vation for environmental sustainability,’’ J. Soil Water Conserv., vol. 58,
no. 6, pp. 332–339, 2003.

[14] A. Srinivasan, Handbook of Precision Agriculture: Principles and Appli-
cations. New York, NY, USA: Haworth Press, 2006.

[15] B. A. Aubert, A. Schroeder, and J. Grimaudo, ‘‘IT as enabler of sustainable
farming: An empirical analysis of farmers’ adoption decision of precision
agriculture technology,’’ Decis. Support Syst., vol. 54, no. 1, pp. 510–520,
Dec. 2012.

[16] E. Pierpaoli, G. Carli, E. Pignatti, and M. Canavari, ‘‘Drivers of precision
agriculture technologies adoption: A literature review,’’ Proc. Technol.,
vol. 8, pp. 61–69, Jan. 2013.

[17] C. Hedley, ‘‘The role of precision agriculture for improved nutrient man-
agement on farms,’’ J. Sci. Food Agricult., vol. 95, no. 1, pp. 12–19,
Jan. 2015.

[18] R. Arridha, S. Sukaridhoto, D. Pramadihanto, and N. Funabiki, ‘‘Classi-
fication extension based on IoT-big data analytic for smart environment
monitoring and analytic in real-time system,’’ Int. J. Space-Based Situated
Comput., vol. 7, no. 2, pp. 82–93, 2017.

[19] G. R. Sinha,Advances inModern Sensors-Physics, Design, Simulation and
Applications. Bristol, U.K.: IOP Publishing, 2020.

[20] D. D. Koo, J. J. Lee, A. Sebastiani, and J. Kim, ‘‘An Internet-of-
Things (IoT) system development and implementation for bathroom safety
enhancement,’’ Proc. Eng., vol. 145, pp. 396–403, Jan. 2016.

[21] R. Hassan, F. Qamar, M. K. Hasan, A. H. M. Aman, and A. S. Ahmed,
‘‘Internet of Things and its applications: A comprehensive survey,’’ Sym-
metry, vol. 12, no. 10, p. 1674, Oct. 2020.

[22] C. Ji, H. Lu, C. Ji, and J. Yan, ‘‘An IoT andmobile cloud-based architecture
for smart planting,’’ in Proc. 3rd Int. Conf. Machinery, Mater. Inf. Technol.
Appl., Qingdao, China, Nov. 2015, pp. 1001–1005.

[23] L. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, ‘‘IoT privacy
and security: Challenges and solutions,’’Appl. Sci., vol. 10, no. 12, p. 4102,
Jun. 2020.

[24] C. Brewster, I. Roussaki, N. Kalatzis, K. Doolin, and K. Ellis, ‘‘IoT in
agriculture: Designing a Europe-wide large-scale pilot,’’ IEEE Commun.
Mag., vol. 55, no. 9, pp. 26–33, Sep. 2017.

[25] S. Hadzovic, S. Mrdovic, and M. Radonjic, ‘‘Identification of IoT actors,’’
Sensors, vol. 21, no. 6, p. 2093, Mar. 2021.

[26] E. Cordelli, G. Pennazza, M. Sabatini, M. Santonico, and L. Vollero,
‘‘An open-source smart sensor architecture for edge computing in IoT
applications,’’ Proceedings, vol. 2, no. 13, p. 955, 2018.

[27] T. Syrový, R. Vik, S. Pretl, L. Syrová, J. Čengery, A. Hamáček, L. Kubáč,
and L. Menšík, ‘‘Fully printed disposable IoT soil moisture sensors for
precision agriculture,’’ Chemosensors, vol. 8, no. 4, p. 125, Dec. 2020.

[28] J. Rodríguez-Robles, Á. Martin, S. Martin, J. A. Ruipérez-Valiente, and
M. Castro, ‘‘Autonomous sensor network for rural agriculture environ-
ments, low cost, and energy self-charge,’’ Sustainability, vol. 12, no. 15,
p. 5913, Jul. 2020.

[29] C. Koulamas and M. T. Lazarescu, ‘‘Real-time sensor networks and sys-
tems for the industrial IoT: What next?’’ Sensors, vol. 20, no. 18, p. 5023,
Sep. 2020.

[30] M. Carminati, G. R. Sinha, S. Mohdiwale, and S. L. Ullo, ‘‘Miniaturized
pervasive sensors for indoor health monitoring in smart cities,’’ Smart
Cities, vol. 4, no. 1, pp. 146–155, Jan. 2021.

[31] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, ‘‘Deep
supervised learning for hyperspectral data classification through convolu-
tional neural networks,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS), Milan, Italy, Jul. 2015, pp. 4959–4962.

[32] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep
convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[33] L. S. Galvão, A. R. Formaggio, and D. A. Tisot, ‘‘Discrimination of
sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data,’’
Remote Sens. Environ., vol. 94, no. 4, pp. 523–534, Feb. 2005.

[34] D. Li, S. Chen, and X. Chen, ‘‘Research on method for extracting vegeta-
tion information based on hyperspectral remote sensing data,’’ Trans. Chin.
Soc. Agric. Eng., vol. 26, no. 7, pp. 181–185, 2010.

[35] B. E. Bhojaraja and G. Hegde, ‘‘Mapping agewise discrimination of are-
canut crop water requirement using hyperspectral remote sensing,’’ in
Proc. Int. Conf. Water Resour., Coastal Ocean Eng., Mangalore, India,
Mar. 2015, pp. 1437–1444.

[36] P. Pereira, E. Brevik, M. Muñoz-Rojas, and B. Miller, Soil Mapping and
Process Modeling for Sustainable Land Use Management. Amsterdam,
The Netherlands: Elsevier, 2017.

[37] G. Metternicht, Land Use and Spatial Planning: Enabling Sustainable
Management of Land Resources. New York, NY, USA: Springer, 2018.

[38] M. D. Nellis, K. P. Price, and D. Rundquist, ‘‘Remote sensing of cropland
agriculture,’’ in The SAGE Handbook of Remote Sensing. London, U.K.:
Sage, 2009.

[39] J. Bell, E. Gebremichael, A. Molthan, L. Schultz, F. Meyer, and
S. Shrestha, ‘‘Synthetic aperture radar and optical remote sensing of crop
damage attributed to severe weather in the Central United States,’’ in Proc.
IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), United States, Jul. 2019,
pp. 9938–9941.

[40] S. Najem, N. Baghdadi, H. Bazzi, N. Lalande, and L. Bouchet, ‘‘Detec-
tion and mapping of cover crops using Sentinel-1 SAR remote sensing
data,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 17,
pp. 1446–1461, 2024.

[41] C. Occhiuzzi, F. Camera, M. D’Orazio, N. D’Uva, S. Amendola,
G. M. Bianco, C. Miozzi, L. Garavaglia, E. Martinelli, and G. Marrocco,
‘‘Automatic monitoring of fruit ripening rooms by UHF RFID sensor
network and machine learning,’’ IEEE J. Radio Freq. Identificat., vol. 6,
pp. 649–659, 2022.

[42] J. Daniel, R. Shyamala, R. Pugalenthi, and P. M. Kumar, ‘‘RANC-
CROP recommendation attributed to soil nutrients and stock analysis
using machine learning,’’ IETE J. Res., vol. 69, no. 11, pp. 8077–8089,
Nov. 2023.

[43] D. Prabakaran and H. Sathyapriya, ‘‘A review on methodologies and
performance analysis of device identity masking techniques,’’ Int. J. Sci.
Technol. Res., vol. 8, no. 12, pp. 2018–2022, 2019.

[44] Y. Liu, N. Zhang, H. Guo, S. Huang, M. Huang, and S. Liu, ‘‘Spectral
properties analysis of wastewater in oil field and its remote sensing detec-
tion with GF-2,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Waikoloa, HI, USA, Sep. 2020, pp. 1287–1290.

[45] Y. Xie, D. Feng, H. Chen, Z. Liu, W. Mao, J. Zhu, Y. Hu, and
S. W. Baik, ‘‘Damaged building detection from post-earthquake remote
sensing imagery considering heterogeneity characteristics,’’ IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 4708417.

[46] M. Leccisi, M. Cagnetti, F. Leccese, and G. S. Spagnolo, ‘‘Compar-
ing routing protocols for WSN in agricultural scenario,’’ in Proc. IEEE
Int. Workshop Metrol. Agricult. Forestry (MetroAgriFor), Nov. 2021,
pp. 80–85.

[47] M. Cagnetti, M. Leccisi, and F. Leccese, ‘‘A modified MPRR protocol for
WSN in agricultural scenario,’’ in Proc. 10th Int. Conf. Sensor Netw., 2021,
pp. 143–150.

[48] M. Maesano, F. V. Moresi, M. Greco, F. Leccese, M. Leccisi,
E. D. Francesco, E. Brunori, R. Biasi, and G. S. Mugnozza, ‘‘Smart mon-
itoring technologies for defining variability in vineyard microclimate, and
vinegrape performances,’’ in Proc. IEEE Int. Workshop Metrol. Agricult.
Forestry (MetroAgriFor), Trento-Bolzano, France, Nov. 2021, pp. 17–21.

[49] M. Greco, F. Leccese, S. Giarnetti, and E. De Francesco, ‘‘A multipor-
pouse amphibious rover (MAR) as platform in archaeological field,’’ in
Proc. TC4 Int. Conf. Metrol. Archaeol. Cultural Heritage (IMEKO), 2023,
pp. 252–256.

VOLUME 12, 2024 44797



I. M. Mehedi et al.: Remote Sensing and Decision Support System Applications in PA

[50] E. Petritoli, F. Leccese, and M. Leccisi, ‘‘Inertial navigation systems
for UAV: Uncertainty and error measurements,’’ in Proc. IEEE 5th Int.
Workshop Metrol. Aerosp. (MetroAeroSpace), Jun. 2019, pp. 1–5.

[51] E. Petritoli and F. Leccese, ‘‘Beamriding homing systems for UAV: New
approaches and applications,’’ in Proc. IEEE 9th Int. Workshop Metrol.
Aerosp. (MetroAeroSpace), Jun. 2022, pp. 560–565.

IBRAHIM M. MEHEDI (Senior Member, IEEE) received the Ph.D. degree
from The University of Tokyo, Japan. He is a Distinguished Expert in
control systems, renewable energy, biomedical engineering, AI, aerospace
engineering, and biosensors. He has taught a diverse array of courses at King
Abdulaziz University (KAU), Saudi Arabia, and the King Fahd University
of Petroleum and Minerals (KFUPM), Saudi Arabia, for over a decade.
He has published over 100 peer-reviewed journal articles, holds five U.S.
patents, and more than 1300 citations. He was recognized as a top 2%
scientist worldwide according to the prestigious listing generated by Stanford
University and published by Elsevier. In addition, he serves on the review
panel for the U.S. National Defense Science and Engineering Graduate
(NDSEG) Fellowship Program.

MUHAMMAD SHEHZAD HANIF received
the B.Sc. degree in electrical engineering from
the University of Engineering and Technology,
Lahore, Pakistan, in 2001, and the M.S. degree
in engineering sciences and the Ph.D. degree in
computer engineering from Sorbonne University,
Paris, France, in 2006 and 2009, respectively.
He is currently an Associate Professor with the
Department of Electrical and Computer Science,
King Abdulaziz University, Jeddah, Saudi Arabia.

His research interests include machine learning, image analysis, and infor-
mation fusion.

MUHAMMAD BILAL was a Postdoctoral
Researcher with KAIST, South Korea. He is cur-
rently an Educator, a Researcher, and a Maker.
He is also an Associate Professor with the Depart-
ment of Electrical and Computer Engineering,
King Abdulaziz University. His research interests
include digital image/signal processing, machine
learning/AI, digital/analog circuit design, embed-
ded systems, and robotics.

MAHENDIRAN T. VELLINGIRI received the B.E. degree in electri-
cal and electronics engineering from the Maharaja Engineering College,
Avinashi, affiliated to Bharathiyar University, Coimbatore, Tamil Nadu,
India, in 2000, the M.E. degree in power electronics and drives from the
K. S. Rangasamy College of Technology, Tiruchengode, affiliated to Anna
University, Chennai, Tamil Nadu, in 2006, and the Ph.D. degree in electrical
engineering from Anna University, in 2014. He is currently an Assistant
Professor with theDepartment of Electrical andComputer Engineering, King
Abdulaziz University, Jeddah, Saudi Arabia. His research interests include
soft computing applications in control of power electronics drives, control
systems, electrical machines, solar energy, and power systems.

THANGAM PALANISWAMY (Senior Member, IEEE) received the B.E.
degree in computer hardware and software engineering fromAvinashilingam
University, India, in 2001, and theM.E. degree in computer science and engi-
neering and the Ph.D. degree in information and communication engineering
from Anna University, India, in 2007 and 2013, respectively. She has a total
teaching experience of 15 years in various reputed engineering colleges
in Tamil Nadu. She is currently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering, King Abdulaziz University,
Saudi Arabia. Her research interests include databases, data processing and
mining, medical image analysis, image processing, cryptography, embedded
systems, and the Internet of Things. Her contributions in professional soci-
eties include IEEE, the International Association of Engineers, the Indian
Society for Technical Education, and the International Association of Com-
puter Science and Information Technology.

44798 VOLUME 12, 2024


