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ABSTRACT Camouflaged objects are typically assimilated into their surroundings. Consequently,
in contrast to generic object detection/segmentation, camouflaged object detection proves to be considerably
more intricate due to the indistinct boundaries and heightened intrinsic similarities between foreground
targets and the surrounding environment. Despite the proposition of numerous algorithms that have
demonstrated commendable performance across various scenarios, these approaches may still grapple with
blurred boundaries, leading to the inadvertent omission of camouflaged targets in challenging scenes. In this
paper, we introduce a multi-stage framework tailored for segmenting camouflaged objects through a process
of coarse-to-fine refinement. Specifically, our network encompasses three distinct decoders, each fulfilling
a unique role in the model. In the initial decoder, we introduce the Bi-directional Locating Module to
excavate foreground and background cues, enhancing target localization. The second decoder focuses on
leveraging boundary information to augment overall performance, incorporating the Multi-level Feature
FusionModule to generate predictionmaps with finer boundaries. Subsequently, the third decoder introduces
the Mask-guided Fusion Module, designed to process high-resolution features under the guidance of the
second decoder’s results. This approach enables the preservation of structural details and the generation
of fine-grained prediction maps. Through the integration of the three decoders, our model effectively
identifies and segments camouflaged targets. Extensive experiments are conducted on three commonly used
benchmark datasets. The results of these experiments demonstrate that, even without the application of
pre-processing or post-processing techniques, our model outperforms 14 state-of-the-art algorithms.

INDEX TERMS Camouflaged object detection, coarse-to-fine refinement, convolutional neural network,
multi-stage detection.

I. INTRODUCTION
In nature, numerous wild animals strive to seamlessly blend
into their surroundings, adapting to the environment [1], [2],
[3], [4]. Camouflage, as an effective technique for deceiving
the observer’s visual perceptual system, is widely adopted by
prey to minimize the risk of detection by predators [5]. Tar-
geting the identification of objects with a similar appearance
to the background, Camouflaged Object Detection (COD)
has garnered significant attention [6], [7], [8]. Serving as
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a fundamental pre-processing approach, COD has not only
captured growing research interest but has also catalyzed
advancements in various computer vision tasks, such as polyp
segmentation [9], lung infection segmentation [10], defect
detection [11], recreational art [12], and transparent object
detection [13].

Similar to other tasks (e.g., salient object detection
[14], [15]), early COD methods [16], [17], [18], [19]
primarily rely on hard-crafted features to generate prediction
maps. However, as a highly challenging problem, COD
necessitates a substantial amount of visual perception knowl-
edge [8] to eliminate ambiguities arising from the intrinsic
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similarities between foreground targets and their surrounding
environment. Since these conventional methods can only
extract low-level detailed cues (e.g, edge [19], and motion
pattern [20]), when confronted with complex scenarios, they
tend to produce inaccurate results or even overlook targets
due to the absence of high-level contextual information.

Recently, with the rapid development of Convolutional
Neural Networks (CNNs), researchers have endeavored to
construct CNN-based models to address the COD problem.
Diverging from early traditional hard-crafted methods, CNN-
based approaches can simultaneously exploit low-level
detailed cues and high-level semantic information. Conse-
quently, CNN-based methods outperform their traditional
counterparts by a significant margin and have become the
mainstream solution.

Thanks to the development of large-scale benchmark
datasets [1], [21], numerous CNN-based models [22], [23],
[24], [25], [26] have been proposed. Despite the remarkable
performance of thesemethods, there is still room for improve-
ment. Firstly, the majority of existing methods primarily
concentrate on the main body of the targets while neglecting
the boundaries. As emphasized in [27], pixels situated at
boundaries pose greater difficulty and are consequently more
pivotal than others. Consequently, these methods frequently
encounter challenges related to fuzzy boundaries. Secondly,
most approaches [1], [2], [3], [6], [7], [8] adhere to the
encoder-decoder framework, in which a single decoder is
employed to consolidate multi-level features extracted from
the encoder. Typically, during the decoder stage, high-level
features are transmitted to shallower levels to pinpoint the
targets and suppress background noise. However, as indicated
in [28], high-level features may overlook certain object
parts and details. Thus, the straightforward encoder-decoder
framework can lead to a decline in performance.

To address the aforementioned problem, we develop a
novel CNN-based framework, namely Multi-stage Coarse-
to-fine Refinement Network (MCRNet). MCRNet can yield
accurate results and demonstrates outstanding performance in
various complex scenarios.

First, we introduce a Bi-directional Locating Module
(BLM), comprising two independent blocks designed to
exploit foreground and background information separately.
It is noteworthy that the intersection area of the foreground
and background delineates the contour of the camouflaged
target. Consequently, by employing the BLM, we not only
bilaterally explore foreground and background information
to enhance target localization but also generate a boundary
prediction map to facilitate subsequent optimization. Second,
a Multi-level Feature Fusion Module (MFFM) is devised to
facilitate the aggregation of multi-level features. In the pro-
cess of feature aggregation, the complementary relationship
between multi-level features is exploited to enhance overall
feature quality. Additionally, the boundary prediction map
is incorporated to augment overall performance. Moreover,
as highlighted in [29], the effective receptive field size
of a CNN is generally smaller than the theoretical value.

Tomitigate this issue, we utilizemultiple convolutional layers
to significantly expand the receptive fields, thereby also
aiding in the extraction of multi-scale information to enhance
the model’s resilience to scale variation [30].

By employing the BLMs and MFFMs, we construct two
decoders. The first decoder, based on BLMs, is designed
to pinpoint the target, while the second one, built on
MFFMs, generates prediction maps with sharper boundaries.
Previous researches [27], [31], [32], [33] have confirmed that
utilizing multiple decoders for iterative refinement enhances
performance. Therefore, drawing inspiration from [32],
we adopt a bifurcated backbone network as the encoder.
Features extracted from the two branches of the encoder
are independently fed to the two decoders. It is crucial to
note that the spatial resolution of features obtained from
the two branches is relatively small. Consequently, structural
information may be compromised during the subsampling
process, such as convolution and pooling. To address
this issue, we introduce a Mask-guided Fusion Module
(MFM). TheMFM takes the low-level high-resolution feature
map and the results of the second decoder as inputs.
By leveraging the prediction maps, we effectively suppress
background noise in low-level features while preserving
structural details. Through the incorporation of these key
modules, the proposed MCRNet demonstrates the capability
to produce high-quality results across a range of challenging
scenarios.

To showcase the exceptional performance of MCRNet
and substantiate the efficacy of the proposed modules,
we conduct experiments on three widely adopted benchmark
datasets. The experimental outcomes confirm the superiority
of MCRNet. In summary, this paper makes four major
contributions:

• We introduce the Bi-directional Locating Module,
which exploits foreground and background information
bilaterally to locate the camouflaged targets and deduce
the initial position of their boundaries more effectively.

• We design the Multi-level Feature Fusion Module to
extract multi-scale information, rendering the model
resilient to scale variation.Moreover, the effective recep-
tive field size is expanded, enabling the capture of richer
contextual cues that contribute to the enhancement of
COD performance.

• We develop the Mask-guided Fusion Module, which
concurrently leverages semantic information from the
generated estimated camouflaged regions and comple-
mentary structural details from the low-level encoder
feature. By fully capitalizing on this complementarity,
the proposed module suppresses background noises,
yielding more accurate results.

• We conduct extensive experiments on 3 widely used
COD datasets. The experimental results validate that
MCRNet surpasses 14 state-of-the-art CNN-based algo-
rithms across six universally agreed evaluation metrics,
which validates the effectiveness of our proposed
method.
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II. RELATED WORKS
A. CAMOUFLAGED OBJECT DETECTION
COD aims to identify the camouflaged targets within their
high-similarity surrounding environment. Similar to other
computer vision tasks, COD methods can be categorized into
two classes: traditional and deep-learning-based. Concretely,
early methods are designed based on hard-crafted features
(e.g, 3D convexity [34], motion boundary [20], and intensity
features [35]). However, as highlighted in [36], these
traditional algorithms are less robust and are prone to generate
erroneous results in complex scenarios. Recently, owing
to the availability of large-scale COD dataset [1], [21],
an increasing number of deep-learning-based COD models
have emerged.

Le et al. (ANet) [21] propose an anabranch model.
The classification branch of the model is used to judge
whether the input image contains camouflaged objects.
The main branch is employed to segment the camouflaged
targets. Fan et al. (SINet) [1] collect the currently largest
COD dataset and develop a simple but effective framework
for COD. Sun et al. (C2FNet) [22] employ a dual-branch
global context module to exploit affluent contextual cues.
Furthermore, an attention-induced cross-level fusion module
is designed to integrate features. Mei et al. [8] introduce
a bio-inspired framework, which can mimic the process
of predation in the wild. Lv et al. (LSR) [37] argue that
explicitly modeling the conspicuousness of camouflaged
targets against the background is helpful in boosting the
performance. A ranking-based model is then proposed to
simultaneously localize, segment, and rank camouflaged
targets. Li et al. (JCOD) [26] develop a paradigm of exploiting
the contradictory information to enhance the detection
ability of both COD and salient object detection (SOD).
Zhuge et al. (CubeNet) [38] introduce χ connection to
the widely used encoder-decoder framework. Wang et al.
(D2CNet) [39] design a novel approach for COD. The
proposed model simulates the observation process of human
visual mechanisms and employs self-refine and cross-
refine units to compute more accurate camouflaged maps.
Liu et al. (MSCAFNet) [40] focus on learning multi-scale
context-aware features. An enhanced receptive field module
and a cross-scale feature fusion module are introduced
to fully refine multi-level features and achieve sufficient
interaction of multi-scale cues.

Different from these methods, some works try to intro-
duce auxiliary cues to further improve the performance.
Zhu et al. (TINet) [41] introduce a texture label to boost
the COD performance. Besides, an interactive guidance
framework is developed to capture the fuzzy boundaries
and the texture differences. Ren et al. (TANet) [25]
develop a texture-aware refinement module to emphasize
the texture differences between the camouflaged objects
and the surroundings. Besides, a boundary-consistency
loss is proposed to explore the object detail structures.
Chen et al. (BgNet) [42] design a Locating module to exca-
vate local detailed cues and global contextual information.

Thus, when contextual information is deficient, the extracted
local cues can provide informative information to identify
the targets. Sun et al. (BGNet) [3] propose a boundary-
guided model, which is competent to learn valuable
and extra object-related boundary semantics to guide the
detection process. Zhai et al. (DTCNet) [43] employ
the spatial organization of textons in the foreground and
background area as important cues for COD. He et al.
(ELDNet) [44] develop a novel method to generate progres-
sively polished boundary likelihood maps, which are then
employed to guide the feature fusion of camouflaged objects.
Chen et al. (BCNet) [2] use pseudo-3D convolution opera-
tions to investigate the complementary relationship between
the camouflaged regions and the corresponding boundaries.

B. MULTI-STAGE DETECTION
The effectiveness of using multiple decoders to conduct
coarse-to-fine refinement has been validated by many
methods. Generally, early algorithms tend to employ several
decoders with the same architecture to iteratively polish
features extracted from the encoder. Wei et al. (F3Net)
[27] design the cross feature module to adaptively selects
complementary cues from input multi-level features, which
is beneficial to avoid introducing redundant information
that might bring negative impacts on the final performance.
Furthermore, the cascaded feedback decoder (CFD) is
developed. CFD consists of multiple sub-decoders with the
same structure. Thus, the input features can be polished
iteratively to obtain better performance. Wu et al. (CPD)
[32] design the bifurcated encoder and build two decoders
to aggregate features. A cascaded optimization mechanism is
also developed to further improve the performance. Zhai et al.
(BBSNet) [45] devise a cascaded refinement network, where
multi-level features are split into two groups. Afterward,
two decoders are employed to respectively process the two
groups of features. Chen et al. (AFNet) [14] develop the
cascaded feature interweaved decoder to investigate the
complementary cuews between input features and refine them
iteratively to yield fine-grained prediction maps.

Recently, some works have found that using multiple
decoders with different architectures may lead to better
performance. Chen et al. (BgNet) [42] adopt the bifurcated
encoder and design two decoders. In the first decoder, a locat-
ing module is utilized to generate a coarse segmentation
result and a boundary prediction map, which are then fed
to the second decoder. By leveraging the results of the first
decoder, the second decoder can generate prediction maps
with finer details. Fan et al. (SINetV2) [4] develop a neighbor
connection decoder to locate the potential targets. The second
decoder is composed of multiple group-reversal attention
modules, which can effectively reproduce the identification
stages of wild animal predation. However, in these methods,
only high-level features are utilized to generate prediction
maps. It is worth noting that high-level features lack structural
details due to the multiple subsampling operations in the
encoder. Thus, the performance might be degraded.
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FIGURE 1. The overall pipeline of our proposed MCRNet.

III. METHODOLOGY
A. OVERVIEW OF THE PROPOSED MCRNET
The overall pipeline of the proposed MCRNet is illustrated
in Figure 1. As depicted in the figure, MCRNet comprises
a bifurcated backbone encoder and three decoders. When
presented with an input image having a spatial resolution of
H × W , the encoder initially extracts features at five levels,
denoted as {fi; i = 1, 2, 3, 4, 5}, respectively. Subsequently,
f3, f4, f5 are input into the first decoder to produce a
coarse result and a boundary prediction map. In this initial
decoding stage, the primary emphasis is on pinpointing the
target. As emphasized in [32], low-level features make a
lesser contribution to the final performance and significantly
amplify computational and memory overhead. Consequently,
only the three high-level features are employed in the first
decoder. The outcomes of the first decoder are computed as
follows:

f ′

5,m
1
5, e

1
5 = BLM (f5), (1)

f ′

4,m
1
4, e

1
4 = BLM (f4 + f ′

5), (2)

f ′

3,M1,E1 = BLM (f5 + f ′

4), (3)

where BLM denotes the BLM, {M1,m4,m5} are segmentaion
results, {E1, e4, e5} are boundary prediction maps. Note that

we use bilinear interpolation operation for upsampling and all
upsampling processes are omitted for conciseness.

After acquiring the preliminary results, we can utilize the
prediction maps to eliminate background noises in encoder
features. Nevertheless, the outcomes from the initial decoder
typically exhibit coarseness in boundary delineation. Directly
multiplying an encoder feature with the segmentation result
might inadvertently remove edge information related to
camouflaged targets, resulting in a decline in performance.
Therefore, we incorporate the Holistic Attention module
(HAM) [32]. Specifically, HAM takes the feature map f3 and
the prediction map of the first decoder M1 as inputs. The
output of HAM can be obtained by computing:

F3 = f3 ×MAX (fminmax(Convg(M1, k)),M1), (4)

whereConvg denotes a convolution operationwith aGaussian
kernel k and 0 bias, fminmax is a normalization function,
MAX is used to compare Convg(M1, k) and M1 to get the
larger result. By employing HAM, we can highlight the entire
camouflaged regions.

The enhanced feature F3 is then propagated to the second
branch of the encoder. Afterward, we can obtain three
high-level features {Fi; i = 3, 4, 5}, which are then fed to
the second decoder to calculate the finer results. The process
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FIGURE 2. The results of different decoders.

can be formulated as:

F ′

5,m
2
5, e

2
5 = MFFM (F5,E1), (5)

F ′

4,m
2
4, e

2
4 = MFFM (F4,F ′

5, e
2
5), (6)

F ′

3,M2,E2 = MFFM (F3,F ′

4,F
′

5, e
2
4), (7)

where MFFM denotes the MFFM, M2 and E2 are the
output segmentation result and the boundary prediction map,
respectively.

As depicted in Figure 2, the output of the second decoder
may exhibit blurring at its boundaries. We posit that this
phenomenon can be partly ascribed to the subsampling
operations employed in the encoder. Given the relatively
small size of the input features for the two decoders, there
exists a potential loss of structural information. While it is
possible to upscale the generated prediction map to attain
the full size, the retrieval of the lost information remains
incomplete. Consequently, we introduce the MFM, which
takes the high-resolution feature f2 and incorporates the
outputs of the second decoder as input. This process is
expressed as

M3,E3 = MFM (f2,M2,E2), (8)

whereM3 and E3 are the final result.
The proposed MCRNet can be trained in an end-to-end

manner. Without bells and whistles, MCRNet consistently
produces accurate results across diverse challenging scenar-
ios. Besides, the MCRNet can achieve a real-time inference
speed of 31 FPS on a workstation with a single NVIDIA Titan
XP GPU card.

B. BI-DIRECTIONAL LOCATING MODULE
The structure of the proposed BLM is illustrated in Figure 3.
For an input feature fin, we first use a 1 × 1 convolutional
layer for channel compression, which is effective in reducing
the computational and memory overhead. Subsequently, the
compressed feature f is fed to two independent blocks,
namely the foreground block and the background block. It is
noteworthy that the architectures of these two blocks are
identical. Consequently, the details of the background block
are omitted in Figure 3 for simplicity.

The foreground block is composed of four branches,
each containing a 3 × 3 convolutional layer. Following the
application of the 3 × 3 convolutional layers, the outcomes
{f ic ; i = 1, 2, 3, 4} are acquired. In the initial branch, a

FIGURE 3. The structure of the proposed BLM.

3 × 3 dilated convolutional layer with a dilation rate of 1 is
employed. Subsequently, the outcome of the first branch is
fused with f 2c through element-wise addition. For further
refinement, a 3×3 dilated convolutional layer with a dilation
rate of 2 is implemented in the second branch. The result
of the second branch undergoes the same process in the
third branch. This iterative process facilitates the continuous
refinement of the input feature, significantly expanding the
receptive fields. Upon obtaining the outcomes from the
four branches, a channel-wise concatenation is performed
to integrate them. The concatenated feature undergoes
processing through a 3×3 convolutional layer. Subsequently,
a normalization function is applied to constrain the feature
values within the range of [0, 1]. The entire process can be
expressed as follows:

f id =

{
Di(f ic ), i = 1,
Di(f ic + f i−1

d ), i = 2, 3, 4,
(9)

fn = fminmax(C3(cat(f 1d , f 2d , f 3d , f 4d ))), (10)

where Di denotes a 3 × 3 convolutional layer with a dilation
rate of i, f id represent the output of the i branch, cat is the
concatenation operation, C3 denotes a 3 × 3 convolutional
layer, fn is the output of the normalization function.
Similarly, we can derive the output of the background

block, denoted as bn. It is important to observe that the
boundaries of the camouflaged targets coincide with the
intersection area of the foreground and background regions.
Consequently, the boundary prediction map can be obtained
by computing:

E = C3(C3(fn × bn)). (11)

As pointed out in [28], exploring potential targets in
background regions is helpful in improving the performance.
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Thus, we concatenate the foreground and background fea-
tures along the channel dimension. The fused feature is then
fed to a 3 × 3 convolutional layer for channel compression
and refinement. Then, a 3 × 3 convolutional layer is utilized
to generate the segmentation result. The whole process can
be formulated as:

fout = C3(cat(fn, bn)), (12)

M = C3(fout ), (13)

where fout is the output feature,M is the segmentation result.

FIGURE 4. The structure of the proposed MFFM.

C. MULTI-LEVEL FEATURE FUSION MODULE
The structure of the proposed MFFM is shown in Figure 4.
In the figure, f denotes the side-output encoder feature,
while f ′ and e respectively represent the output feature
and the boundary prediction map of the preceding MFFM.
Furthermore, f ′′ corresponds to the output feature of the
initial MFFM.

As illustrated in the figure, the MFFM encompasses a
left-to-right process and a right-to-left process. In the left-
to-right process, multi-level features are aggregated, and
the receptive fields are expanded. More specifically, the
left-to-right process can be delineated into three stages.
In each stage, we initially apply a 3 × 3 convolutional layer
followed by a 2× 2 max-pooling layer to exploit multi-scale
information and augment the receptive fields. Subsequently,
the resultant feature is integrated with other features or
prediction maps. Following this, a 3×3 dilated convolutional
layer with a dilation rate of 2 is employed for further
refinement. The entire process can be formulated as follows:

f 0 = C1(f ), (14)

f i =

{
P2(C3(f i−1)), i = 1,
P2(C3(f

i−1
d )), i = 2, 3,

(15)

f id =


D2(cat(f i + f ′, e)), i = 1,
D2(f i + f ′′), i = 2,
D2(f i), i = 3.

(16)

While the left-to-right process can integrate multi-level
features, structural information is lost due to the multiple
subsampling operations. In contrast, in the right-to-left
process, we progressively upsample the features and integrate
them with higher resolution features to recover structural
details. The process can be depicted as:

f ia =


f 0 + C3(f 2a ) i = 1,
f id + C3(f i+1

a ) i = 2,
f id + f i−1

d i = 3,

(17)

where fout = f 1a is the output feature.
As indicated in [30], [46], and [47], low-level features

capture rich spatial information and effectively highlight
boundaries. However, they also contain abundant background
noise. In contrast, high-level features encode semantic
knowledge, thus facilitatingmore accurate target localization.
Through the integration of multi-level features, we can
effectively eliminate background noise while preserving
intricate spatial details. Additionally, multi-scale information
is leveraged to enhance the model’s robustness to scale
variation. It is worth noting that the majority of convolution
operations in MFFM are performed on subsampled features,
resulting in a minimal computational overhead for the
module.
After obtaining fout , we can generate the segmentation

result and the corresponding boundary prediction map by
computing:

M = C3(fout ),E = C3(C3(fout )). (18)

FIGURE 5. The structure of the proposed MFM.

D. MASK-GUIDED FUSION MODULE
The structure of our proposed MFM is illustrated in Figure 5.
The MFM model takes the results from the second decoder
and the encoder feature as inputs. In the figure, the
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FIGURE 6. Per-channel visualization results. Introducing MFM allows the MCRNet to eliminate background noises and precisely locate the target.

encoder feature is denoted by f , while m and e represent
the segmentation result and the boundary prediction map,
respectively.

We initiate the process by applying a 1 × 1 convolutional
layer to reduce the channel number of f . As depicted in
the figure, MFM comprises five branches. It is crucial to
note that, being a low-level feature, f generally contains
significant background noise. Therefore, in the first branch,
we initially combine the feature with m through channel-
wise concatenation. Subsequently, a 16 × 16 maxpooling
layer is employed to decrease the spatial resolution. This
step is essential as it allows for the utilization of a
dilated convolutional layer to more effectively capture global
contextual information and eliminate background noise in the
feature map. Following this, the resultant feature undergoes
upsampling and is concatenated with e, which enhances the
generation of results with sharper boundaries. It is important
to mention that the upsampling process is not depicted
in the figure for the sake of conciseness. Subsequently,
a 3 × 3 convolutional layer is employed for refinement. The
entire process can be formulated as follows:

fc = C1(f ), (19)
f 1c = D2(P16(cat(fc,m))), (20)
f 1b = C3(cat(f 1c , e)), (21)

where f 1b is the result of the first branch.

Although the first branch can help alleviate the negative
impacts of background interference, the 16×16 max-pooling
operation may result in a loss of details. Hence, we combine
f 1b with fc to recover the lost details. In contrast to the first
branch, we employ P8 in the second branch to generate
features with finer details. Additionally, we utilize a standard
convolution operation for refinement. By progressively
reducing the kernel sizes of the pooling layers, we can
effectively eliminate background noises while preserving
rich spatial details. The results of the five branches can be
expressed as:

f ic =

{
D2(P16(cat(fc,m))), i = 1,
D2(P25−i(cat(fc+f

i−1
d ,m))), i=2, 3, 4, 5,

(22)

f id =

{
C3(cat(f ic , e)), i = 1, 2, 3, 4, 5, (23)

where P1 is an identical mapping, f id is the result of the i-th
branch.

Then, the final segmentation result M and the boundary
prediction map E can be calculated as:

M = C3(f 5d ),E = C3(C3(f 5d )). (24)

To demonstrate the effectiveness of the proposed MFM,
we visualize some feature maps. As shown in Figure 6,
by comparing fc with f 5d , it can be clearly found that
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TABLE 1. Comparison of the proposed MCRNet with 14 high-performance models on 3 COD benchmark datasets in terms of 4 evaluation metrics. The
best results are shown in. ‘-’ indicates that both the segmentation results and the evaluation scores are not available.

introducing MFM allows the MCRNet to eliminate back-
ground noises and precisely locate the target.

E. LOSS FUNCTION
As done in many previous methods [4], [42], we adopt the
hybrid loss function [27], which is defined as:

L = LwIoU + LwBCE , (25)

where LwBCE is the weighted binary cross entropy (wBCE)
loss and LwIoU is the weighted intersection-over-union (wIoU)
loss. he standard BCE loss allocates equal weights to
all pixels. Nevertheless, pixels situated at boundaries or
within elongated regions pose greater difficulty and warrant
increased significance. In response to this challenge, both
wBCE and wIoU losses augment the weights assigned to
hard pixels. The efficacy of these loss functions has been
substantiated in numerous prior studies [4], [8], [42]. In this
context, we incorporate the deep supervision strategy for the
outcomes produced by the three decoders. The total loss for
the proposed MCRNet is formulated as follows:

Lt =

3∑
i=1

L(Mi,MG) +

3∑
i=1

L(Ei,EG), (26)

where Mi and Ei are respectively segmentation result and
boundary prediction map of the i decoder, MG and EG are
the groundtruth.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION METRICS
We conduct experiments to evaluate MCRNet on 3 widely
used COD datasets, i.e., CAMO [21], COD10K [1], and
NC4K [37]. CAMO contains 1.25K precisely annotated
images, which are divided into a training subset (1K images)
and an evaluation subset (0.25k images). COD10K is the
currently largest dataset for COD, which is composed of
5,066 images featuring various camouflaged objects in
challenging scenarios. It is divided into a training subset of

3,040 samples and a testing subset of 2,026 images. NC4K
has 4,121 high-quality samples gathered from the Internet.
As a dataset with the most images for evaluation, it can better
reveal the generalization ability of COD models.

To better evaluate the performance, we adopt six widely
used metrics, including 1) S-measure (Sm) [51], 2) weighted
F-measure (Fwβ ) [52], 3) mean absolute error (M ), 4) mean

E-measure (Eφ) [53], 5) Precision-Recall curves,
6) F-measure curves. For M , a higher value indicates worse
performance. For other evaluation metrics, higher is better.
(1) Precision-Recall curves (PR-curves): By employing a

threshold ranging from 0 to 255, the produced segmentation
results can be converted into binary maps. Consequently,
precision and recall scores for a prediction map can
be calculated by comparing the corresponding binarized
map with the groundtruth. Additionally, when applied to
a benchmark dataset, precision and recall scores can be
acquired by averaging the scores of all segmentation results.
As a result, a series of average precision-recall pairs can
be computed by adjusting the threshold. Subsequently, PR-
curves can be plotted.
(2) F-measure curves: As a harmonic average of precision

and recall, F-measure can be obtain by computing:

Fβ =

(
1 + β2

)
× Precision× Recall

β2 × Precision+ Recall
, (27)

where β2
= 0.3 to highlight precision as done in [4] and [8].

Based on the precision-recall pairs, we compute a series of
F-measure values and plot the F-measure curves.
(3) S-measure (Sm) [51]: Sm is employed to judge the

structural similarity of the segmentation result and the
groundtruth. It can obtained by compute the weighted sum of
Sr (i.e., region-aware structural similarity) and So (i.e., object-
aware structural similarity) as follows:

Sm = (1 − α)Sr + αSo, (28)

where α = 0.5 as done in [4], [8], [22], and [42].
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(4) weighted F-measure (Fwβ ) [52]: As shown in many
works [51], [53], the weighted F-measure [52] has been
proven more reliable than the traditional F-measure when
used for evaluation. Thus, we adopt Fwβ as a supplementary
evaluation metric.
(5) Mean absolute error (M): The mean absolute error is

widely used in many image segmentaion tasks. It reveals the
per-pixel difference between a segmentation result and its
groundtruth.
(6) E-measure (Eφ) [53]: By leveraging image-level

statistics and local pixel-level matching, E-measure can be
used to evaluate the similarity between a segmentation result
and the corresponding groundtruth label. We report the mean
Eφ as done in [1], [4], [8], and [42].

B. IMPLEMENTATION DETAILS
We implementMCRNet utilizing the PyTorch toolbox. As the
most widely used backbone network in COD, ResNet-50
[54] is adopted to build the bifurcated encoder. Throughout
the training phase, all images are resized to 384 × 384 and
augmented usingmultiple strategies (e.g., horizontal flipping,
random rotating, and border clipping) to mitigate the risk
of overfitting [45]. We set the batch size to 16 and adopt
Adam optimizer [55] with an initial learning rate of 4e-5 for
model optimization. The learning rate is divided by 10 every
40 epochs. MCRNet is trained for 120 epochs and the whole
training process consume approximately 15 hours on a single
NVIDIA Titian XP GPU. During testing, images are also
resized to 384×384.We only leverage the segmentation result
of the last decoder for evaluation.

C. COMPARISONS TO THE STATE-OF-THE-ARTS
We compare our proposed MCRNet with 14 state-of-the-art
methods including SINet [1], ERRNet [48], CubeNet [38],
TANet [25], TINet [41], DTCNet [43], PFNet [8], PraNet
[9], BSANet [23], C2FNet [22], FAPNet [7], SINetV2 [4]),
TSFNet [50] and BGNet [3]. The evaluation results of SINet
and C2FNet on NC4K dataset is not provided. Thus, we run
the released codes with pretrained models for evaluation.
Both the source codes and the segmentation results of some
methods (e.g., TINet, DTCNet, CubeNet and TANet) on
NC4K are not available, thus we do not present their results
on NC4K. Since some competing methods are built on
Res2Net-50 [56], we construct MCRNet+ using the same
backbone to ensure a fair comparison.

The quantitative experimental results of MCRNet and all
contenders are demonstrated in Table 1. We As shown in the
table, the proposed MCRNet outperforms all contenders in
terms of all evaluation metrics on the 3 benchmark datasets.
Concretely, performance gains over the best counterparts
built on ResNet-50 backbone network (i.e., PFNet) are
(0.6% ∼ 2.8%, 0% ∼ 3.2%, 0 ∼ 0.010, 0.2% ∼ 2.4%)
for metrics (Sm, Fwβ , M , Eφ). Furthermore, when employing
Res2Net-50 [56] as the backbone encoder, our MCRNet+
shows better performance, and surpasses the best contender

(i.e., BGNet) by (0.3% ∼ 1.8%, 0 ∼ 0.009, 0.1% ∼ 2.1%)
for the metrics (Sm, M , Eφ). The PR-curves and F-measure
curves of the MCRNet and 8 state-of-the-art competing
models are illustrated in Figure 7 and Figure 8 to provide
a more comprehensive evaluation. As we can observe
from the figures, MCRNet (red lines) demonstrate the best
performance.

We present several representative segmentation results of
the MCRNet and eight state-of-the-art models in Figure 9.
Specifically, the first and second rows display the prediction
maps of images with large camouflaged targets. As evident
from the figure, MCRNet excels in capturing the entire
targets, whereas other contenders tend to neglect certain
parts of the targets. This observation substantiates that
the proposed model effectively extracts rich contextual
information. Consequently, MCRNet demonstrates superior
performance when confronted with images featuring large
objects.

In the third and fourth rows, the targets are considerably
small in size. While competing methods mistakenly classify
some background regions as camouflaged objects, our
method produces more reliable results. The fifth and sixth
rows depict images with multiple targets, while the seventh
and eighth rows showcase results from images with intricate
shapes. As evident from the figure, the proposedMCRNet not
only captures the entire targets but also accurately segments
thin structures (e.g., spider legs), which are overlooked by
other algorithms. This demonstrates that the proposed model
preserves detailed structure cues more effectively.

The ninth and tenth rows present two challenging cases
where the internal texture of the camouflaged targets closely
resembles the background. While state-of-the-art contenders
are confused by the background, the proposed MCRNet
precisely locates the targets and accurately segments the cam-
ouflaged regions. In summary, MCRNet adeptly identifies
camouflaged regions and produces fine-grained segmentation
results under various highly challenging scenarios.

D. ABLATION STUDY
We conduct ablation experiments on two datasets
(i.e., CAMO and COD10K) to validate the effectiveness of
the key modules.

1) PERFORMANCE OF DIFFERENT DECODERS
We compare the performance of the three decoders to
demonstrate the effectiveness of ourcoarse-to-fine refinement
strategy. The results are shown in Table 2. As can be seen

TABLE 2. Performance of different decoders.
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FIGURE 7. Precision-recall curves of the proposed MCRNet and 8 state-of-the-art methods.

FIGURE 8. F-measure curves of the proposed MCRNet and 8 state-of-the-art methods.

TABLE 3. Ablation analysis for the proposed BLM.

from the table, the last decoder shows the best performance.
Besides, the second decoder also outperforms the first one by
a significant margin. These experimental results verify that
using multiple decoder for iterative refinement is beneficial
to improve the performance.

2) EFFECTIVENESS OF THE BLM
To validate the effectiveness of the proposed BLM, we con-
duct ablation experiments. Specifically, we train two ver-
sions, namely ‘‘w/o Back’’ and ‘‘w/o MS’’. In ‘‘w/o Back’’,
we remove the background block in BLM. In ‘‘w/o MS’’,
we remove the four branches of convolution operations
in foreground and background blocks. The quantitative
evaluation results are shown in Table 3.

As can be seen from the table, the performance degradation
of ‘‘w/o Back’’ is (Sm: 0.4% ∼ 1.4%, Fwβ : 0.7% ∼

2.4%, M : 0.003 ∼ 0.006, Eφ : 1.2% ∼ 1.5%), which
demonstrates that bilaterally exploring informative cues can
boost the performance. This is because that the foreground
feature may not capture the entire target. Exploring the
potential camouflaged objects in background regions can help
mine neglected targets. Besides, comparing ‘‘w/o MS’’ with
MCRNet suggests that excavating multi-scale information is
effective in improving the performance.

3) EFFECTIVENESS OF THE MFFM
To verify the effectiveness of the MFFM, we train
two variants, namely ‘‘MFFM-WM’’ and ‘‘MFFM-WE’’.
In ‘‘MFFM-WM’’, we first directly aggregate multi-level
feature via element-wise addition. Then, the convolution
operations used for multi-scale information extraction are
removed. In ‘‘MFFM-WE’’, the MFFM does not take
boundary prediction map as input. Besides, it does not
generate boundary prediction map as well. The evaluation
results are available at Table 4.

As can be seen from the table, MCRNet surpasses
‘‘MFFM-WM’’ by a large margin. The performance
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FIGURE 9. Qualitative comparisons of the proposed MCRNet with 8 state-of-the-art methods.

TABLE 4. Ablation analysis for the proposed MFFM.

degradation of ‘‘MFFM-WM’’ is (Sm: 1.0% ∼ 1.5%, Fwβ :
1.6% ∼ 2.9%,M : 0.003 ∼ 0.006, Eφ : 1.1% ∼ 2.4%), which
verify that exploiting multi-scale information is effective
in boosting the performance. The experimental results are
also consistent with previous observations in Section IV-D2.
The performance of ‘‘MFFM-WE’’ is also degraded
(i.e., Sm: 0.4% ∼ 0.7%, Fwβ : 0.7%, M : 0.001 ∼ 0.003, Eφ :
0.5% ∼ 0.7%), which proves that incorporating boundary
information is helpful in generating segmentation results with
finer details.

4) EFFECTIVENESS OF THE MFM
We implement two variants of MCRNet to reveal to the
effectiveness of MFM. Concretely, the first variant is denoted

TABLE 5. Ablation analysis for the proposed MFM.

as ‘‘MFM-WE’’. This model does not take the boundary
prediction map of the second decoder as input. The second
decoder is denoted as ‘‘MFM-WM’’. This variant removes the
four branches of the MFM and only employs the last branch
to integrate high-resolution feature with the prediction maps.
The experimental results are presented in Table 5.

As we can observe, MCRNet shows better perfor-
mance than ‘‘MFM-WE’’. Besides, the performance of
‘‘MFM-WM’’ is also degraded. This is because that the
high-resolution feature contains affluent redundant back-
ground noises. In spite of the guidance of the segmentation
result, a single 3 × 3 convolutional layer is not competent to
fully eliminate the background noises. Besides, the receptive
field size of the 3 × 3 is very small. Thus, the model
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TABLE 6. Average inference speed and complexity comparison with 8 state-of-the-art models. The inference time and MACs of all models are calculated
using 384 × 384 input images.

FIGURE 10. Representative failure cases of the MCRNet.

can hardly capture contextual information, which makes the
model vulnerable to background interference and cannot
generate high-quality prediction maps, especially when the
targets are large in size.

E. FAILURE CASES AND ANALYSES
We illustrate three representative failure cases in Figure 10.
In the first category, the model fails to segment the camou-
flaged target perfectly, as some camouflaged regions are mis-
classified as background areas. This misclassification occurs
because the texture of these regions differs significantly from
the main body of the targets. Consequently, the model tends
to interpret these regions as background noise. The second
situation involves the model incorrectly identifying the back-
ground as the camouflaged part. This misidentification arises
from the relative nature of ‘‘camouflage,’’ where the model’s
performance is influenced by the ratio between the size of
receptive fields and the scale of actual objects. Additionally,
the limited effective receptive field size of CNN-based
methods poses challenges. Consequently, when presented
with an input image featuring a cluttered background, the
model struggles to capture sufficient contextual information
to precisely identify the target. The third type of failure case
occurs when themodel cannot identify targets in dark images.

Generally, most failure cases can be attributed to inter-
ference from background information (e.g., contrast, color).
We propose ideas aimed at addressing these failure cases. The
first suggestion is to use the Vision Transformer [57], [58]
as the backbone encoder. Recently, owing to advancements
in transformers [57], [58], [59], several transformer-based
COD models [60], [61], [62] have been proposed, exhibiting
significantly improved performance compared to their CNN-
based counterparts. By leveraging the vision transformer,
we can better capture contextual information and eliminate
background noises, effectively addressing cluttered back-
grounds.

Inspired by the success of RGB-D SOD [14], [45], [63],
[64] and RGB-T SOD [65], [66] methods, the second idea
is to introduce depth images or thermal infrared data as
auxiliary information to boost performance. This is because
SOD is similar to COD, and SOD methods can perform
well on COD datasets after being retrained using COD
training samples. Thus, introducing these auxiliaries is a
feasible solution to improve performance under challenging
scenarios.

F. COMPUTATIONAL COPMLEXITY
We compare the computational complexities of MCRNet and
8 high-performance models including BGNet [3], BSANet
[23], C2FNet [22], ERRNet [48], PFNet [8], PraNet [9],
SINet [1], and SINetV2 [4] to provide a more comprehensive
evaluation. Experiments are conducted on a workstation with
a single NVIDIA Titan XP GPU. We repeat each experi-
mental case 50 times to avoid the interference of random
factors and ensure more reliable results. The experimental
results are demonstrated in Table 6. As can be seen from
the table, MCRNet can achieve a real-time inference speed
of 31FPS when processing 384 × 384 images. MCRNet and
MCRNet+ are relatively slow, which can be partly attributed
to the MFM. As pointed out in [32], low-level features are
large in size. Hence, employing these features will largely
increase the running time.

V. CONCLUSION
In this paper, we present a novel multi-stage coarse-to-
fine refinement framework and introduce a deep model
for accurate COD. Specifically, we have devised the
BLM to exploit informative cues bilaterally, enhancing the
single-layer representation capability. Additionally, we intro-
duce the MFFM to integrate features at various levels
and uncover complementary cues between concealed targets
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and their boundaries. Subsequently, the MFM is developed
to aggregate high-resolution input features with prediction
maps from the preceding decoder, eliminating redundant
background noise while preserving detailed structural infor-
mation. We conduct extensive experiments on three COD
benchmark datasets, and the results demonstrate that the
proposed MCRNet outperforms state-of-the-art counterparts.
These findings validate the effectiveness of the proposed
model.
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