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ABSTRACT This paper proposes a sliding mode controller with a smooth control signal for a class of
linear plants with nonlinear input state-dependent disturbance. The proposed controller is obtained by
allowing some constant parameters of the earlier Smooth Sliding Control (SSC) to vary as a function of
the output tracking error and its time derivative, improving the control chattering alleviation in practical
implementations. Furthermore, during the sliding mode, the new scheme can synthesize a range of
controllers, such as fixed gain PI controllers and approximations of the Super-Twisting Algorithm (STA).
A complete closed-loop stability analysis is provided, leading to global stability properties, exact output
regulation, and practical output tracking. In addition, realistic simulation results with an Unmanned Aerial
Vehicle (UAV) model, incorporating aerodynamic effects and internal closed-loop controllers, are obtained
and validated via experiments with a commercial hexacopter.

INDEX TERMS Chattering avoidance, sliding-mode control, super-twisting algorithm (STA), unmanned
aerial vehicle (UAV), unmodelled dynamics.

I. INTRODUCTION
The number of UAV applications has been increasing in
the last decade, mainly due to their maneuvering capability,
allowing a variety of remote sensing and monitoring or
inspection tasks [1], [2], [3]. In particular, the development
of UAV trajectory tracking robust controls is crucial for
the detection and identification of oil leaks in offshore
environments, or for the extraction of traffic data via aerial
video images [4], [5], [6], where the wind influence cannot
be disregarded and an optimal desired trajectory in general is
required to reduce the battery consumption, for instance.

Several control systems were proposed for the trajectory
tracking problem of unmanned aerial vehicles. Classic
techniques such as the Proportional-Integral-Derivative (PID)
control have been applied to most existing flight control
systems, because of their simple design and implementation,
when is reasonable to approximate the vehicle dynamics to
a linear model [7], [8], [9], with uniformly norm-bounded
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or almost constant disturbances. When the linearization pro-
cess [10] is not valid, non-linear control methods come into
play, such as optimization strategies for path planning [11],
linear quadratic regulation control (LQR) [12], [13], feedback
linearization control schemes [14], [15] and robust strategies
via sliding modes [16], [17]. In addition, the performance of
classic techniques is, in general, limited by the presence of
uncertainties, disturbances, and unmodelled dynamics.

In contrast, it is well-known that sliding mode-based
controllers are robust concerning external disturbances
(eventually state/output dependent), parameter uncertainties,
and unmodelled dynamics, but suffer from the chattering
phenomenon. In this context, aiming to attenuate chattering,
sliding mode control based on the Super-Twisting Algorithm
has been widely applied [18], [19], [20], [21], [22], [23],
[24]. Solutions for the trajectory tracking problem of UAVs
have been pursued in the literature [25]. In [26] and [27],
the altitude control of a quadrotor is based on a combined
STA and high-order sliding mode (HOSM) observer, and
in [28], a similar combination is addressed to estimate linear
and angular velocities, and unknown lumped disturbance,
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including experimental evaluation with the quadcopter DJI
M100. To be able to cover inspection tasks with UAVs,
manipulators have been attached, such as in [29], where an
STA with gain adaptation law is designed in the presence of
a disturbance caused by the manipulator dynamics.

Additionally, beyond affecting UAV’s dynamics by adding
manipulators, UAV geometric parameters can be variable
over time [30] and the pick-and-place task can generate
mass variation [31], [32]. In [30], a Fast Terminal Sliding
Mode Controller was applied to guarantee the flight stability
and rapid convergence of the states in finite time with a
reconfigurable UAV. In [31], a sliding mode technique was
proposed allowing the UAV control to adapt to the altered
mass without re-tuning the controller and, in [32], the landing
problem on a moving platform was solved together with a
pick-and-place task, by using the so-called SSC scheme.

The SSC was presented in [33], as an alternative modi-
fication in the Variable Structure Model Reference Control
(VS-MRAC) [34], [35], to provide a smooth control effort,
since the VS-MRAC is a strategy with discontinuous control
effort. It introduces an averaging filter to obtain a continuous
control signal. To compensate for the phase lag added by the
averaging filter, an internal prediction loop was employed so
that the ideal sliding mode could be preserved, leading to
chattering avoidance and robustness concerning unmodelled
dynamics [36]. Recently, this strategy was generalized for
plants with time-varying control gain and applied to the
autonomous landing problem in a moving platform [32].
More recently, in [37] was presented a new SSC scheme
with the averaging filter time constant being updated via the
tracking error for a real UAV trajectory tracking application.

In this paper, a novel extension of the results of [37]
is proposed. As the main contributions of the paper,
we consider: (i) the development of the new (dynamic) SSC
scheme, named Dynamic Smooth Sliding Control (DSSC),
where the original fixed parameters of the SSC averaging
filter and the predictor are replaced by functions that are
updated via the tracking error; (ii) a complete closed-loop
stability analysis of the DSSC algorithm for the considered
class of linear plants with nonlinear disturbance; (iii) a
connection of the synthesized DSSC during sliding mode
with the Variable Gain Super-Twisting Algorithm (VGSTA)
and the standard STA, by selecting appropriate functions in
the DSSC; and (iv) experimental evaluation of the DSSC
for trajectory tracking in a real-world scenario with the
commercial DJI M600 Pro hexacopter.

A. NOTATIONS AND TERMINOLOGIES
A mixed time-domain and frequency-domain notation will
be adopted to avoid clutter. In this manner, a rational
function G(s) will denote either an operator, where s is the
differential operator, or a transfer function, where s is the
Laplace complex frequency variable. Therefore, the time and
frequency dependencies of the signals will be mostly omitted.
In general, for a scalar composite function f (e(t), σ (t), t),
where e(t) and σ (t) are scalar functions of the time instant

t ≥ 0 (time-varying functions), we perform along the paper
the abuse of notation f (t) = f (e(t), σ (t), t).

B. MOTIVATION FOR THE CONSIDERED CLASS OF PLANTS
In this paper, the trajectory tracking control problem of aUAV
is addressed. The proposed control scheme considers that
an internal Kalman filter provides full state estimation, and
inaccessible inner controllers are responsible for decoupling
the four UAV degrees of freedom, corresponding to the
UAV’s linear velocity and to the yaw angle rate, see Figure 1,
allowing to perform a cascade control strategy. The UAV
dynamic model is given by:

Mv̇ = −Mge3 + Rfe3 + Fdrag ,

J �̇ = − (�× J�)+M + τdrag + τdist , (1)

Ṙ = R×� ,

ψ̇ = eT3 J
−1
R � ,

where � ∈ IR3 is the angular velocity represented in
the body frame, v =

[
vx vy vz

]T
∈ IR3 is the UAV’s

linear velocity vector (in the inertial frame), R represents the
rotation matrix from the body frame to the inertial frame,
JR is the Jacobian Euler angles representation, vψ = ψ̇

is the yaw angle velocity, g is the gravity acceleration,
J is the (diagonal) inertia matrix, M ∈ IR is the UAV
mass, e3 =

[
0 0 1

]T , M ∈ IR3 is the net moment and
f =

∑nr
i=1 fi is the net thrust magnitude, where fi ∈ IR is

the i-th propeller’s thrust magnitude and nr is the number
of rotors. The drag terms are incorporated in Fdrag and
τdrag and τdist is a torque disturbance depending on the
propellers’ angular velocity and acceleration, see details in
the Appendix A. The inner controllers generate the torques
and forces commands via propellers’ thrusts for tracking the
velocity references (ux , uy, uz or uψ ) generated by the outer
controller (DSSC), which in turn is designed for tracking
position and orientation, i.e., to assure that the UAV position
px , py, pz track the desired positions pxd , pyd , pzd and that the
yaw angle ψ tracks the desired angle ψd . For the dynamics
of each degree of freedom (DOF), the inner controllers and
the Kalman filter can be treated as unmodelled dynamics for
the outer controller (DSSC), so that a kinematic model from
velocities commands to actual velocities is considered.

We consider the complete model for the UAV based on the
following premises and motivations:
1) Low/medium velocity profiles are considered so that

the motors and the motors drivers (ESCs) dynamic can
be neglected, as well as, the internal Kalman Filter
dynamics of the UAV leading to the availability of the
full UAV state vector.

2) The proposed DSSC scheme acts as an outer controller
that provides velocity commands as references for
the inner velocity control loops. These inner velocity
control loops are designed so that a reasonable control
performance is achieved.1

1However, the outer controller can compensate for the eventual low
performances of the inner controllers.
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FIGURE 1. The inner and outer control topology for UAV trajectory tracking. The inner controllers are PI controller with feedback linearization and
feedforward terms. The DSSC outer controller is provided in Table 1. Ideally, the decoupling/coupling blocks are constant matrices depending only on the
UAV geometry such that M = Mc and f = fc .

As a motivation for the class of plants considered in
this paper, let us describe shortly the resulting closed-loop
dynamics with a given inner controller for the altitude degree
of freedom. The same idea can be extended to the other
degrees of freedom.

Here, the control objective is to assure that the altitude
velocity ν tracks the desired velocity command u, at least,
with some residual error. From the last component of the
ν-dynamics Mν̇ = −Mge3 + Rfe3 + Fdrag, see Figure 1,
one possible control law is given by a composition of a
feedback linearization control term f := M(U + g), which
is parameter dependent, and a PI-control law U := −kp(ν −

u)− ki
∫ t
0 (ν(τ )− u(τ ))dτ , where the roll and pitch angles are

considered small. The closed-loop dynamic behavior from
the velocity command input u to the actual velocity ν is
given by

(ν̈ − ü) = −kp(ν̇ − u̇) − ki(ν − u) +
[
Ḋ − ü

]
, (2)

where D = eT3 Fdrag/M is a disturbance due to the
aerodynamic drag Fdrag, see Figure 1. Thus, by choosing
the control gains appropriately one can impose an acceptable
closed-loop performance and conclude that, for low accel-
eration commands (ü ≈ 0) and for low aerodynamic drag,
e(t) := ν − u tends to zero, as t → ∞. For any eventual
residual error in the inner control loop, the outer position
control loop (DSSC) can compensate for it. Moreover, a more
elaborate inner controller could be considered [38], but this
is not the focus of this paper.

The closed-loop system (2) can be represented by ν =

G(s)(u + d), where G(s) =
(kps+ki)

(s2+kps+ki)
and d =

s
(kps+ki)

D.
Note thatG(s) is a relative degree one and minimum phase
(kp, ki > 0) transfer function from u + d to ν. This system
can be written in state-space in the normal form as

η̇ = aηη + bην , (3)

ν̇ = −apν − cηη + kp(u+ d) , (4)

where η ∈ IR is the zero dynamics state vector (for details, see
Appendix B). The disturbance d could also incorporate other
eventually remaining terms due to any mismatch parameters
in the feedback linearization control term.

In what follows, motivated by (3)–(4), a class of relative
degree one and minimum phase plants, of arbitrary order,

is considered for the linear position and yaw angle tracking
control problem formulation.

II. PROBLEM FORMULATION: ONE DEGREE OF FREEDOM
Consider the following class of uncertain plants given by

η̇(t) = Aηη(t) + Bηx2(t) , (5)

ẋ1(t) = x2(t) , (6)

ẋ2(t) = −apx2(t) − Cηη + kp[up(t) + d(y, ẏ, t)] , (7)

y(t) = x1(t) , (8)

where up ∈ IR is the control input, y ∈ IR is the plant output,
η ∈ IRn−2 is the inverse system (zero dynamics) state vector,
d ∈ IR is regarded as a matched input disturbance, kp > 0 is
the uncertain high-frequency gain (HFG), ap is an uncertain
parameter, and

x :=
[
x1 x2

]T
:=

[
y ẏ

]T
∈ IR2

is the state vector. Without loss of generality, consider that
the inverse system has a state-space realization (Aη,Bη,Cη),
with (Aη,Bη) in the canonical controllable form with Bη =[
0 . . . 0 1

]T
∈ IRn−2. We assume that Aη is a Hurwitz

matrix (minimum phase assumption) and η is unavailable
for feedback. The uncertain function d(y, ẏ, t) is assumed
piecewise continuous in t and locally Lipschitz continuous
in the other arguments. For each solution of (5)–(7), there
exists a maximal time interval of definition given by [0, tM ),
where tM may be finite or infinite. Thus, finite-time escape
is not precluded a priori. Regarding the application covered
in this paper, in (7)–(8), y is a generic output representing
a UAV’s degree of freedom (px , py, pz or ψ) and up is the
corresponding generic velocity command input (ux , uy, uz or
uψ ), see Figure 1.
Remark 1 Plant Input Disturbance: UAV’s Application:

In (5)–(8), the input disturbance d(y, ẏ, t) represents the
coupling between degrees of freedom, the wind influence, and
possible nonlinearities remaining due to some unmatched
parameters in the inner velocity loop. Moreover, it is con-
sidered that the wind velocity has low-frequency components
or can be represented by piecewise functions with jump
discontinuities where the discontinuity points have zero
measure.
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A. CONTROL OBJECTIVE
The aim is to achieve global convergence properties in the
sense of uniform signal boundedness and asymptotic output
practical tracking. The control objective is to design a control
law up(t) for the uncertain plant (5)–(8) such that y(t) tracks
a bounded desired trajectory ym(t) as close as possible, i.e.,
the tracking error

e(t) := y(t) − ym(t) , (9)

converges to zero as t → +∞, or at least, to the
neighborhood of zero (practical tracking). The desired
trajectory ym(t) is assumed to be smooth enough so that ẏm
and ÿm are well defined available signals.
For the sake of simplicity and to focus on the novelty of the

proposed controller (DSSC) in comparison to the previous
version (SSC), we assume that y and ẏ are available for
feedback. Furthermore, as mentioned before, the application
considered in the paper endorses this assumption.

Let the relative degree one output variable σ (y, ẏ, t) :

IR3
→ IR be defined by

σ := ė+ l0e . (10)

The main idea is to design up so that σ tends to zero as
t → +∞, or at least, to the vicinity of zero, despite the input
disturbance d(y, ẏ, t). Thus, the convergence of the tracking
error e(t) to a residual set is assured by setting l0 > 0,
according to (10).

The extension to the case where only y is available for
feedback can be obtained by using the approximation ẏ ≈

yf :=
s

(τf s+1)y, with τf > 0 being a design constant, and
extension to systems with an arbitrary relative degree can be
obtained by using a linear lead filter, a high gain observer
(HGO) [39], or a robust exactly differentiator (RED) [40],
as in [36], [41], and [42].

B. ERROR DYNAMICS
Let the control signal be composed of two terms

up(t) = u(t) + un(t) , (11)

where the control effort u is the DSSC robust control effort
and un is a nominal control law, both to be defined later on.
In practical applications there exists some level of knowl-

edge of the plant parameters and, in general, a nominal
control based on this knowledge can be applied to reduce
the magnitude of the robust action (here being the DSSC),
which is designed to deal with disturbances and/or parameter
uncertainties.

From (10), the e-dynamics is directly obtained as

ė = −l0e+ σ . (12)

Moreover, from (10), one has σ̇ = ÿ+ l0ẏ− σ̇m, where σm :=

ẏm + l0ym. Moreover, from (6)–(7) and (11) one can write
ÿ = −apẏ + kp(u + un) + kp(d − Cηη/kp). Therefore, the
σ -dynamics is given by

σ̇ = kpu+ dσ , (13)

where dσ := kpun + (l0 − ap)ẏ− σ̇m + kpd − Cηη is treated
as a disturbance term.

III. DYNAMIC SMOOTH SLIDING CONTROL (DSSC)
In Figure 2, it is illustrated the DSSC block diagram, which
has the same structure as the original SSC [33], [43], [44].
In comparison to the SSC, the Dynamic SSC (DSSC) differs
in one main aspect: the averaging filter time constant τav,
the predictor time constant τm and the predictor gain ko are
allowed to vary with the time t and/or the plant signals σ (t)
and e(t). The DSSC law is given by

u := −uav0 , (14)

with a time-varying averaging filter

τav(t) u̇av0 = −uav0 + u0 , (15)

where τav(t) = τav(σ (t), e(t), t) > 0 (∀σ, e, t) and

u0 = ϱ(t) sgn(σ̃ ) , ϱ(t) > 0 , (16)

is the predictor’s discontinuous term, with modulation
function ϱ(t). In the DSSC, the sliding variable σ̃ is
defined as

σ̃ := σ − σ̂ , (17)

where σ̂ is the output of the predictor

˙̂σ = −
1

τm(t)
σ̂ + ko(t)[−uav0 + u0] , (18)

with τm(t) = τm(σ (t), e(t), t) > 0 (∀σ, e, t) and ko(t) =

ko(σ (t), e(t), t) > 0 (∀σ, e, t). Note that, all the functions

ko(t) , τm(t) , τav(t) , ϱ(t) ,

can depend on exogenous time-varying functions, as well as,
on the output tracking error e (or σ ), which in turn depends
on the closed-loop system dynamics. Henceforth, we denote
these functions by state-dependent functions. The DSSC’s
block diagram is presented in Figure 2, including the linear
lead filter for completeness of the presentation.2

A. EXISTENCE OF IDEAL SLIDING MODE
With σ̃ defined in (17), the σ -dynamics in (13) and the
smooth control law (14), one has that ˙̃σ = σ̇ − ˙̂σ =

[−kpuav0 + kpun + (l0 − ap)ẏ + kp(d − Cηη/kp) − σ̇m] − ˙̂σ .
Moreover, by using the predictor dynamics in (18) and the
relationship σ̂ = σ − σ̃ , one can further obtain

τm ˙̃σ = −σ̃ + koτm[−u0 + d0/ko] , (19)

where

d0 := (ko − kp)uav0 + d̃1 + d̃2 , (20)

2Despite that, the original SSC [33] can be applied for a broader class
of plants with arbitrary relative degree [43] and [44], we focus on the case
where y and ẏ are available for feedback. However, the DSSC scheme can
also deal with arbitrary relative degree plants, by using linear lead filters to
estimate output time derivatives. We restrict ourselves to the case of relative
degree one which is the simplest case amenable by pure Lyapunov design.
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FIGURE 2. General DSSC block diagram for arbitrary relative degree case and with generic state-dependent functions
τm(σ (t), e(t), t), ko(σ (t), e(t), t) and τav (σ (t), e(t), t). The predictor is given in (18) and depends on ko and τm, while the
averaging filter is given in (15) and depends on τav . For the class relative degree one plants considered here with ẏ
available for feedback, one can set τf = 0, so that σf = σ with σ in (10).

with d̃1 := kpun − apẏ+ kp(d − Cηη/kp) being an uncertain
term and d̃2 := σ/τm + l0ẏ − σ̇m being a known signal
that could be directly canceled by redefining the control
term u0 in (16). For simplicity, at the cost of being more
conservatism, we treat d̃2 as an uncertain term too.

As in the original SSC, sliding mode occurs at σ̃ ≡ 0 so
that σ̃ converges to zero in some finite time ts ∈ [0, tM ),
i.e., σ̂ (t) = σ (t), ∀t ∈ [ts, tM ), provided that the modulation
function ϱ (in the discontinuous term u0) satisfies

ϱ > d0/ko ,

modulo vanishing terms due to initial conditions, i.e., being
designed to dominate the norm of the total disturbance d0/ko
faced by u0 in the (19), after some initial transient. The proof
of the sliding mode existence and the avoidance of finite
time escape (mainly due to the unboundedness observability
property of the closed-loop system) are provided later on in
Theorem 1.

B. MAIN FEATURES OF THE PROPOSE DSSC
The main features of the new DSSC scheme can be
summarized as follows: (i) the algorithm presents robustness
w.r.t. unmodelled dynamics and global/semi-global stability
properties (the full proof is provided), and (ii) it is observed an
improvement w.r.t. the previous SSC, where a better control
chattering alleviation is obtained.

The complete closed-loop stability analysis is one of the
main contributions of this paper and it is provided later on for
the class of plants (5)–(8). In addition, the robustness of the
proposed control scheme (DSSC)w.r.t. unmodelled dynamics
is verified in the experiments with the DJI M600 and via
numerical simulations with the full coupled dynamics model,
including the inner controllers and aerodynamic effects,
corroborating that a relative degree one is fair enough for
representing each of the four DOF, mainly for low/medium
velocity profiles. Any residual coupling between the DOFs is
embedded in an input disturbance.

Moreover, with this modification in the original SSC, one
can observe an improvement in control chattering allevia-
tion in practical implementations where discretization, for

instance, generates numerical chattering even for the relative
degree one case. Let us explain this improvement when the
averaging filter has a pass-band inversely proportional to
|e(t)|. First, we point out that in both the SSC and the DSSC,
sliding mode occurs in an internal variable different from the
output tracking error e. In general, sliding mode takes place
from the beginning, when |e| can be large, as well as, the
modulation function ϱ. Second, in the SSC, practical tracking
is obtained in the sense that the tracking error converges to a
residual set O(τav) proportional to the fixed averaging filter
time constant τav. In the DSSC, in contrast, the residual set is
proportional to the steady-state value τ ∗

av of τav(e(t)).
Thus, to obtain high tracking precision in the SSC, the fixed

time constant should be small, while in the DSSC, only the
steady-state value τ ∗

av should be small. It means that, if one
set τav(e(t)) ∝ |e(t)| +O(τ ∗

av), then the DSSC filters out the
high frequencies of the switching control more than the SSC,
exactly in the time interval where the modulation function
and the tracking error are large. When e is small, the filter can
allow high frequencies to pass, since the modulation function
is small. The final result is a smoother control action when
comparedwith the original SSC,maintaining at least the same
level of tracking precision.

IV. DESIGN OF THE STATE-DEPENDENT FUNCTIONS OF
THE DSSC
As mentioned in Section III-A, the modulation function ϱ is
designed to overcome the disturbance in the σ̃ -dynamics (19)
to assure ideal sliding mode at the manifold σ̃ = 0. After
achieving the ideal sliding mode, an equivalent synthesized
controller results. This synthesized controller depends on
the state-dependent functions τav, τm and ko. At this point,
we have freedom to choose the DSSC functions.

A. GENERAL SYNTHESIZED EQUIVALENT CONTROLLER
DURING SLIDING MODE
Now, let us find a general formulation for the synthesized
equivalent DSSC control law during sliding mode. First,
denote ūav0 = uav0 as the solution of (15), when the
discontinuous control u0 is replaced by the equivalent control
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ueq =
d0
ko
, directly obtained from the σ̃ -dynamics (19). This is

the so called reduced dynamics τav(t) ˙̄uav0 = −ūav0 + ueq. Also
replace u0 by ueq in the predictor dynamics (18), leading to
τm(t) ˙̂σ = −σ̂ + τm(t)ko(t)[τav(t) ˙̄uav0 ]. Since, during sliding
mode at σ̃ = 0 one has σ̂ = σ , then one can further write

τm(t)σ̇ = −σ + τm(t)ko(t)[τav(t) ˙̄uav0 ] , (21)

leading to the time derivative of the synthesized DSSC law
ū := ūav0 given by3

˙̄u(t) = −

[
1

ko(t)τav(t)

]
σ̇ (t) −

[
σ (t)

ko(t)τav(t)τm(t)

]
. (22)

Let us rewrite the terms in square brackets of (22) in
a more convenient form for selecting the DSSC functions
ko(t), τav(t) and τm(t), in terms of σ, e and t . One can find
appropriate functions g1(t) = g1(σ (t), e(t), t) and g2(t) =

g2(σ (t), e(t), t) such that[
1

koτav

]
=
∂[g1σ ]
∂σ

, and[
σ

koτavτm

]
=

[
∂(g1σ )
∂e

ė+
∂(g1σ )
∂t

+ g2σ
]
. (23)

The functions g1(σ, e, t) > 0 and g2(σ, e, t) > 0 must be
chosen sufficiently smooth and so that ko, τav > 0 and τm >
0 are well-defined for all finite values of σ, e and t . Then, (22)
can be rewritten as

˙̄u(t) = −
d [g1(t)σ (t)]

dt
− g2(t)σ (t) . (24)

Therefore, by integrating both sides of (24), the synthesized
DSSC law can be written as:

ū(t) = −g1(t)σ (t) −

∫ t

ts
g2(τ )σ (τ )dτ + Cs , (25)

∀t ≥ ts, where Cs := ū(ts) + g1(ts)σ (ts) is a constant4 and
g1(t) and g2(t) are nonlinear gains that should be designed so
that the functions ko(t), τm(t) and τav(t) be positive.

Depending on the choices for the nonlinear gains g1 and
g2 the resulting synthesized controller has different structures
and properties. In fact, as illustrated in Appendix C, one can
arrive at synthesized controllers starting from a simple PI
controller, passing through an approximation for the standard
STA [16], [18], to approximation for the variable gain STA
(VGSTA) [19], [23].

A simple PI control or the standard STA (with constant
gains) can deal with second-order plants, without inverse
dynamics. However, as in [19] and [23], plants with inverse
dynamics require the STA’s gains to be state-dependent,
leading to the VGSTA.

Our focus is on the choice for g1 and g2 which leads
to an approximation for the VGSTA since the plant (5)–(7)
has inverse dynamics, which is considered in the complete
stability analysis given later on in Theorem 1.

3The DSSC can also be designed for high-order plants with arbitrary
relative degrees, in this case, the synthesized controller has more terms
than (22).

4This constant is an unknown constant. However, this is not an issue since
the expression for ū is used only for analysis purposes.

B. A PARTICULAR SYNTHESIZED CONTROLLER
Let φ̂2(σ ) := φ̂1(σ )φ̂′

1(σ ) with φ̂1 defined as

φ̂1(σ ) :=
φaσ

(|σ |1/2 + δ)
+ φbσ , (26)

where φ̂1(σ ) can be rewritten as

φ̂1(σ ) =

[
φa|σ |

1/2

(|σ |1/2 + δ)

]
|σ |

1/2sgn(σ ) + φbσ ,

δ > 0 is an arbitrary small constant and φa > 0 and φb >
0 are design constants. Note that

φ̂′

1 = φa

[
(|σ |

1/2
+ 2δ)

2(|σ |1/2 + δ)2

]
+ φb .

By defining the nonlinear variable gains g1 and g2 as

g1σ = κ1φ̂1 , and g2σ = κ2φ̂2 = κ2φ̂1φ̂
′

1 , σ ̸= 0 ,

and g1 = g2 = 0, for σ = 0, the synthesized DSSC law (25)
becomes ū = ûvgsta +Cs, with Cs := ū(ts)+ κ1(ts)φ̂1(ts) and

ûvgsta(t) = −κ1(t)φ̂1(t) −

∫ t

ts
κ2(τ )φ̂2(τ )dτ . (27)

For φa = 1 and φb = κ3, the control law (27) is
an approximation for the VGSTA control law uvgsta(t) :=

−κ1φ1(σ (t)) −
∫ t
ts
κ2φ2(σ (τ ))dτ , of [19] and [23], with

φ1(σ ) := |σ |
1/2sgn(σ ) + κ3σ and φ2(σ ) := φ′

1(σ )φ1(σ ).
Now, since the variable gains κ1 > 0 and κ2 > 0 are

functions of the time t and the plant’s states σ and e, then from
(23), one has to select the DSSC’s state-dependent functions
ko, τav and τm to satisfy[

1
koτav

]
=

[
κ ′

1φ̂1 + κ1φ̂
′

1

]
,

and [
σ

koτavτm

]
= φ̂1

[
∂κ1

∂e
ė+

∂κ1

∂t
+ κ2φ̂

′

1

]
.

Thus, one has to select ko, τav and τm so that

koτav :=
1[

κ ′

1φ̂1 + κ1φ̂
′

1

] , (28)

and

τm :=

[
κ ′

1φ̂1 + κ1φ̂
′

1

]
[

φa
(|σ |1/2+δ)

+ φb

] [
∂κ1
∂e [−l0e+ σ ] +

∂κ1
∂t + κ2φ̂

′

1

] ,
(29)

where the relationship ė = −l0e + σ was used. Note
that, in (28), an extra degree of freedom is allowed for
choosing ko and τav: (i) ko being a constant function and
τav time-varying function or vice-versa and (ii) both being
time-varying functions.

In fact, the variable gains κ1(σ, e, t) > 0 and κ2(σ, e, t) >
0 must be designed so that τav > 0 and τm > 0 are
well-defined for all finite values of σ, e. The DSSC’s
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state-dependent functions and the design guidelines of the
corresponding control parameters are given in Appendix F
and summarized in Table 1.
The synthesized equivalent controller approaches the

VGSTA, far from the origin of the state-space (σ, e), and
acting like a reduced gain version of the VGSTA, near the
origin.

V. THE CASE STUDIED: STABILITY RESULTS, NUMERICAL
SIMULATIONS, AND EXPERIMENTAL RESULTS
In what follows, we provide the main stability results with
the DSSC functions in Table 1, the corresponding numerical
simulations with the full UAV’s dynamicmodel (1), including
the aerodynamic effects and the inner control loops, and with
themodel (5)–(8), and the corresponding experimental results
obtained with the commercial DJI M600 Pro hexacopter.

A. CLOSED-LOOP STABILITY RESULTS
To obtain the stability result and perform the full stability
analysis, some assumptions must be considered. The plant
parameters kp and ap in (7) are assumed uncertain with known
bounds and we consider a class of input disturbances that can
be partitioned as

d(y, ẏ, t) := d1(y, ẏ, t) + d2(y, t) + d3(t) . (30)

The following assumption is considered:
(A0.a) There exist positive constants kp, k̄p and āp, such that

0 < kp ≤ |kp| ≤ k̄p and |ap| ≤ āp ,

where kp and āp are known constants.
(A0.b) There exists a known non-negative scalar function

αd (y, ẏ, t) : IR3
→ IR+, locally Lipschitz in y and ẏ,

piecewise continuous and upper bounded in t such that
the input disturbance d(y, ẏ, t) satisfies

|d(y, ẏ, t)| ≤ αd (y, ẏ, t) , ∀y, ẏ , ∀t ∈ [0, tM ) ,

with αd (y, ẏ, t) < ασ (|σ |)+αe(|e|)+αt (t), where ασ , αe
are class-K functions and αt is a non-negative scalar
function upper bounded in t .

Regarding the input disturbance partition (30), we also
assume that:
(A1) There exist known constants kd1 ≥ 0, kd2 ≥ 0 and

kd3 ≥ 0 and known a non-negative scalar function
αd1(y, ẏ, t) : IR3

→ IR+, locally Lipschitz in y and ẏ,
piecewise continuous and upper bounded in t such that
the term d1(y, ẏ, t) in (30) satisfy

|d1(y, ẏ, t)| ≤ αd1(y, ẏ, t)|σ | , ∀y, ẏ ,

and ∀t ∈ [0, tM ), with αd1(y, ẏ, t) := kd1|y| + kd2|ẏ| +

kd3 and σ (y, ẏ, t) in (10).
(A2) There exist known constants kd4 ≥ 0 and kd5 ≥ 0 and a

known non-negative scalar function αd2(t) : IR → IR+,
piecewise continuous and upper bounded in t , such that
the term d2(y, t) in (30) satisfies

∣∣∣ ∂d2(y,t)∂y

∣∣∣ ≤ kd4 and∣∣∣ ∂d2(y,t)∂t

∣∣∣ ≤ kd5|y| + αd2(t), ∀t ∈ [0, tM ).

(A3) There exists a known non-negative scalar function
αd3(t) : IR → IR+, piecewise continuous and upper
bounded in t , such that the time derivative of the term
d3(t) in (30) satisfies |ḋ3(t)| ≤ αd3(t), ∀t ∈ [0, tM ).

Before state the main theorem, let us define the nominal
control law composed by: (i) a feedforward term unm(t);
(ii) unp(e(t)), representing a proportional feedback action;
(iii) und (σ (t)), contributing to a derivative plus proportional
feedback action (since σ = l0e + ė); and (iv) uni (t) =∫ t
0 ū

n
i (e(τ ), σ (τ ))dτ , as an integral feedback action. The

nominal control is written in the form

un(t) := unp(t) + und (t) + uni (t) + unm(t) , (31)

where unp(t) = unp(e(t)) and u
n
d (t) = und (σ (t)). For simplicity

and without loss of generality, we restrict the nominal
control to have terms that satisfy the following additional
assumption:
(A4) There exist non-negative constants cσ , ce1, ce2, ciσ , cie

and cm such that

|unp(e)| ≤ ce1|e| ,

∣∣∣∣dunp(e)de

∣∣∣∣ ≤ ce2 ,

|ūni (e, σ )| ≤ (ciσ |σ | + cie|e|)|σ | ,

|und (σ )| ≤ cσ |σ | , and |unm| ≤ cm . (32)

It must be highlighted that the nominal control is not regarded
as a disturbance and can be disregarded when the plant
uncertainty is large.
Remark 2 Modulation Function Design: To satisfy ϱ >

d0/ko, modulo vanishing terms due to initial conditions, the
modulation function can be chosen as:

ϱ := (ko + k̄p)|uav0 |/ko + D̃/ko + δρ/ko , (33)

where

D̃ := k̄p|un| + (āp + l0)|ẏ| + k̄pαd + |σ̇m| +
|σ |

τm
+ η̄ , (34)

is an available norm bound for the sum d̃1 + d̃2 and δρ >
0 is an arbitrary small constant. In (34), we have used a
norm observer for the inverse system state norm to generate
η̄ > ∥Cηη∥, modulo vanishing terms due to initial conditions.
We have also considered the available norm bound function
αd for the plant input disturbance d, given in (A1), and the
available upper bounds k̄p and āp for kp and ap, respectively,
both given in (A0).
The main results are summarized in the following theorem.
Theorem 1: Consider the plant represented in (5)–(8),

Assumptions (A0)–(A4) and the DSSC’ s algorithm and
parameters in Table 1. Then, for φb (from Table 1) sufficiently
large, the output tracking error is globally exponentially
convergent w.r.t. a small residual set of order O(1/φ2b ),
satisfying the inequality

|e(t)| ≤ O(1/φ2b ) + πe , φb ̸= 0 , (35)

where πe is an exponentially decaying term depending on
the initial conditions and this residual set does not depend
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TABLE 1. DSSC’s dynamic functions and parameters. The free parameters are: l0, φa, ϵ, δ > 0, and εi > 0 (i = 1, 2, 3).

on the initial conditions. In addition, all closed-loop signals
remain uniformly bounded, finite-time escape is avoided and
the sliding variable becomes identically null after some finite
time ts ≥ 0.

Proof: For this particular case, where the functions
τav(t), τm(t) and ko(t) are chosen according to (28) and
(29), an approximation for VGSTA is synthesized during the
sliding mode, and the main idea of the proof is as follows.
Firstly, we prove that finite-time escape cannot occur before
σ̃ (t) = 0, i.e., before sliding mode takes place. Secondly,
once σ̃ = 0 enters in sliding motion in finite time, then
the proof follows the main steps of the proof given in [19],
[23] and [45]. The main difference is the introduction of the
Small-Gain Theorem to deal with the approximation of the
VGSTA. See Appendix D for the complete proof.

1) ADDITIONAL COMMENTS
First, we recall that φb ̸= 0 in Theorem 1 allows obtaining
global results. However, semi-global stability results can be
achieved, when φb = 0, since one can perform similar
stability analysis as in Theorem 1, where the main difference
is that the gains κ1 and κ2 can be designed constant around
the origin of (σ, e), depending on the initial conditions.

Second, in the regulationmode case, one has that β̄m and ẏm
are zero in the small-gain based analysis (Appendix D), since
kd5 = 0 and αd2 = αd3 = 0 when a constant disturbance
is under consideration. Thus, in this case, the tracking error e
converges to zero, exponentially, and a constant disturbance
is rejected.

Third, additionally to Theorem 1, prescribed finite-time
convergence for the residual set can be assessed. Following
the proof in Appendix D, the term −2ϵ 1

µ
V

λmax {P}
, in (55),

is responsible to assure that σ and the tracking error e reach
a residual set in a prescribed finite-time.

2) UNMODELLED DYNAMICS ROBUSTNESS ANALYSIS
Assume that an unmodelled dynamic represented by a
transfer function of the form

Gµ(µs) := 1 + µsWµ(µs) ,

where Wµ(µs) is stable and strictly proper, is now in series
with the plant input up = u+ un, in (7), i.e.

up = u+ un + dµ , dµ := µsWµ(µs)(u+ un) ,

modulo exponentially decaying terms due to the unmodelled
dynamics initial conditions. This extra term dµ can be
regarded as an additional input disturbance and incorporated
in the input disturbance d , in (7). Recalling that u = −uav0 and
τavu̇av0 = −uav0 + u0, then one can write

dµ := µsWµ(µs)u = µWµ(µs)u̇ =
µ

τav
Wµ(µs)(uav0 − u0) .

As some examples for the unmodelled dynamics transfer
function, one has: (i) Wµ(µs) = −

1
(µs+1) and Gµ(µs) =

1
(µs+1) ; and (ii) Wµ(µs) = −

(µs+2)
(µs+1)2

and Gµ(µs) =
1

(µs+1)2
.

Thus, this additional disturbance dµ is a filtered version of
the averaging control uav0 and the discontinuous control u0,
via a proper and stable transfer function of order O(µ/τav).
Thus, for µ/τav sufficiently small and despite some parasitic
dynamics µ, the ideal sliding mode can still be enforced after
some finite time, for the appropriate design of the modulation
function.

To explain the main idea, for simplicity, consider that:
(i) un = 0, (ii) τav is a constant and τm = (|σ |

1/2
+δ)/κ1, with

κ1 and δ being positive constants, (iii) the system has order
two (no zero dynamics) and is perfectly known (anp = ap
and knp = kp), and (iv) the nominal control is given by
knpu

n
:= −(l0 − anp)ẏ+ σ̇m. So, dσ and the σ -dynamics, both
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in (13), become

dσ := knpd and σ̇ = knp (−u
av
0 + d) , (36)

respectively, where we have replaced u by the DSSC’s control
law u = −uav0 , with uav0 in (15).
Now, one can subsequently conclude that: (i) the distur-

bance term d̃1, in (20), reduces to d̃1 = (−l0ẏ + σ̇m + knpd);
(ii) d̃2, in (20), reduces to d̃2 = (σ/τm + l0ẏ − σ̇m);
(iii) d̃1 + d̃2 = knpd + σ/τm; (iv) and d0, in (20), reduces
to d0 = (ko − knp )u

av
0 + knpd + σ/τm. Let ūav0 = uav0 be

the solution of the reduced dynamics, resulting by replacing
the discontinuous control u0 in (15) by the equivalent control
ueq = d0/ko, obtained from the σ̃ -dynamics (19). Then, one
can write

ueq =
d0
ko

=

(
1 −

knp
ko

)
ūav0 +

knp
ko
d +

1
koτm

σ .

Now, an approximated analysis can be carried out for
understanding the superior performance of the DSSC in com-
parison to the STA, in the presence of unmodelled dynamics.
Since the averaging control ūav0 is an approximation of the
equivalent control ueq, for τav sufficiently small [46], one has
that ueq ≈ ūav0 implies

ūav0 ≈ d +
1

knpτm
σ .

With uav0 = ūav0 in (36), the closed-loop σ -dynamics can be
approximated by

σ̇ ≈ −
1
τm
σ ≈ −

κ1

(|σ |1/2 + δ)
σ ≈ κ1|σ |

1/2sgn(σ ) ,

for δ > 0 and small. Thus, the closed-loop σ -dynamics with
the DSSC law approaches the closed-loop σ -dynamics with
the standard STA, without the presence of input disturbance
(with κ2 = 0). Finally, since d incorporates the equivalent
disturbance dµ generated by the unmodelled dynamics,
it becomes evident that the DSSC should outperform the
corresponding STA.

B. NUMERICAL SIMULATION
The UAV’s dynamic model is developed for low-velocity
profiles. It means that the dynamics of the motors and
the motors’ drivers (ESC’s) and the internal Kalman Filter
dynamics (full state feedback) can be neglected, while the
more relevant effects are due to the aerodynamic forces and
torques.

The inner control was considered as simple as possible
to be representative of the unavailable internal control loops
in the DJI M600, without putting any effort into stability
analysis or tuning control parameters methodologies. The
consistency of the inner control loops developed here was
verified first with the DJI Assistant 2 Simulator5 and then
with experimental data.

5The DJI Assistant 2 Simulator,6 a program developed by DJI company
that allows the users to upload flight data, calibrate vision sensors, and
provide a simulator with dynamics very close to the real DJI M600 drone.

In what follows, we first present simulation results
with the full UAV’s dynamic model, including the aero-
dynamic effects and the inner control loops, and with the
model (5)–(8).

The aerodynamics parameters (see Appendix A), extracted
from the literature [47], are as follows: the thrust aerodynamic
coefficient kTi = 0.0024, inNs2/rad , the aerodynamic torque
coefficient cτ = 0.57, in mrad/s2, the matrix coefficient
KFd = diag

([
0.03 0.03 0.015

])
of the drag force on the

structure, in Ns2/m2, and the matrix coefficient KFdi =

diag
([
1 1 1

])
(8 × 10−6) of the propeller drag force, in

Ns2/(mrad).
To simplify the control allocation, we consider a quadrotor

with the same weight, size, and geometry as the DJI M600.
The UAV’s parameters can be summarized as follows: the
number of rotors nr = 4, the directions of rotation s1 = 1,
s2 = −1, s3 = 1 and s4 = −1, the propeller half length
r = 0.1m (radius), the rotor displacement measured from the
center of mass and along the horizontal plane d = 0.57m, the
UAV’s inertia tensor (in kgm2) Ib = diag

([
0.4 0.4 0.74

])
,

the UAV’s mass M = 10.9kg, the propeller hub inertia
tensor (in kgm2) Ii = diag

([
0.01 0.01 0.5 × 10−5

])
. The

arm length is, thus, L =
√
d2 + h2 = 0.57m. The inner

control loops are based on state feedback linearization-based
controllers with feedforward and integral actions, with
control gains: kzp = 0, kzd = 1, kψp = 0.2, kψd = 1, kφp = 60,
kφd = 15, kθp = 60, kθd = 15, kxp = 0, kxd = 1, kyp = 0 and
kyd = 1.

All initial conditions were set at zero except the drone
position px(0) = 40m, py(0) = 10m and pz(0) =

10m, and yaw angle ψ(0) = (π/4)rad (45deg). The
desired trajectories are: pxd (t) = 20 sin(2π/40t), pyd (t) =

20 cos(2π/40t), pzd (t) = 3 sin(2π/60t) + 5, and ψd (t) =

−(π/4) sin(2π/40t) + π/4. For all four degrees of freedom,
the DSSC algorithm is implemented with τav constant and
with the state-dependent functions

ko(t) := κo(|σ (t)|1/2 + δ) , τm(t) := κm(|σ (t)|1/2 + δ) ,

where δ = 1 and κm = 4.0166. Moreover, for the x and
y subsystems, were selected the parameters κo = 110.651,
τav = 0.03 and ϱ = 1.5. For the z-subsystem, were selected
κo = 55.3255, τav = 0.06 and ϱ = 0.5. For theψ-subsystem,
were selected κo = 55.3255, τav = 0.06 and ϱ = 0.15. The
other DSSC’s parameter is l0 = 0.2, for all subsystems.
Now, we consider two cases.
Case 1: the full UAV dynamic (1), see also Figure 1, with a

constant wind velocity vw =
[
8 −8 8

]T , in m/s, added after
t = 20s. This effect can be observed only for the full UAV’s
model which incorporates the aerodynamic drag terms (blue
lines).
Case 2: the simplified UAV model (6)–(8), without inverse

dynamics and with a constant input disturbance d added in
each subsystem (5)–(8), after t = 20s: d = −0.8, for the
x-subsystem; d = 0.8, for the y-subsystem; d = 0.2, for the
z-subsystem; and d = 0.1, for the ψ-subsystem.
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FIGURE 3. Simulations of the DSSC with the full UAV dynamic model (blue
line) and with the simplified model (red line). The control efforts are in
the left column, while the tracking errors are given in the right column.

For simplicity, we set anp = ap = 1 and knp = kp = 1 for the
four subsystems in Case 2. This lead to a simplified nominal
control, which can be chosen as

un := −cee− cσσ − cm1ẏm − cm2ÿm , (37)

with constants ce = (anp−l0)l0/k
n
p , cm1 = −anp, cm2 = −1 and

a time-varying coefficient cσ (t) = (l0 − anp + 1/τm(t))/knp ,
which satisfies |cσ (t)| ≤ (|l0 − anp| + 1/(κmδ))/knp . This
nominal control was also considered in Case 1.

In the left column of Figure 3, one can see the velocity
command reactions to compensate for the disturbances, after
t = 20s. Recall that the disturbances are different for the
full UAV dynamic (wind disturbance) and for the UAVmodel
dynamics (5)–(8) (input disturbance d). However, before the
disturbances (t < 20), both tracking errors’ behavior (right
column) is very similar, except for a residual oscillation in the
DSSC control signal (left column), when applied to the full
UAV model case (blue line), due to the inner control loops
(unmodelled dynamics effect).

Figure 4 illustrates the time-varying behavior of the
state-dependent functions ko(t) and τm(t), where both
increase when the disturbance acts after t = 20s.
In what follows, we study the robustness of the DSSC

scheme w.r.t. unmodelled dynamics in comparison to the
STA. Consider the STA and the DSSC applied to the full UAV
model, without wind disturbance. For the x and y subsystems,
were selected the parameters τav = 0.03 and ϱ = 0.375. For
the z-subsystem, were selected τav = 0.06 and ϱ = 0.125.
For the ψ-subsystem, were selected τav = 0.06 and ϱ =

0.0375. The other DSSC’s parameters (for all subsystems)
are: δ = 2 for ko, δ = 0.0025 for τm, and l0 = 0.2.
For the x, y, and ψ subsystems, the STA’s gain κ2 =

100 provokes significant oscillations when compared with
the DSSC equivalent implementation, see Figure 5. For the
z subsystem, in particular, this effect is attenuated since
the inner control performs perfect decoupling and feedback

FIGURE 4. Simulations of the DSSC with the full UAV dynamics model
(solid line) and with the simplified model (dash line). The time history of
ko(t) and τm(t) are illustrated for the 4 degree of freedom.

FIGURE 5. Simulations of the DSSC (blue line) and the STA (red line) with
the full UAV dynamic model.

linearization. For small values of κ2, both controllers have
similar behavior (curves not shown).

C. EXPERIMENTAL RESULTS
The desired trajectory for the commercial DJI M600 Pro
hexacopter was created to be executed in the field next to
the laboratory (a soccer field), which is free of obstacles and
barriers, at the Federal University of Rio de Janeiro. The
path was obtained by using the Path Sketch Interface (PSI),
a Python interface with a satellite image from the area of
interest that allows the users to choose the desired points, see
Figure 6. Then, a Matlab script converts the georeferenced
points to the east-north-up (ENU) reference system and
generates a smooth trajectory version using a differentiable
parametric curves approach. Finally, the controllers are
developed using the Robotic Operation System (ROS) and
C++. The ROS control node runs on an onboard Raspberry
Pi 4 and loads the trajectory information generated by the
Matlab script to execute the mission.
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FIGURE 6. Desired trajectory obtained via the developed Path Sketch
Interface (PSI).

Our main purpose here is to experimentally evaluate the
DSSC scheme in a real environment with the presence of
real wind disturbances while ratifying that its closed-loop
behavior during sliding mode approaches the STA.

It must be highlighted that the same code implemented
for all control laws works for the real-time implementation
embedded in the UAV computer, as well as, in the simulator
developed based on the full UAV model (1) and in the DJI
Assistant 2 Simulator. The controllers were satisfactory tested
with wind disturbance in the DJI Assistant 2 considering the
wind speed of 8 m/s for the x − y axes and 2 m/s for the z
axis. The results are omitted due to lack of space.

After the test in the simulator, the controllers were tested
in a representative environment within the Federal University
of Rio de Janeiro, a soccer field (Figure 6), on the same day
(April 20, 2022) and with the same wind conditions, i.e.,
a moderate wind with speed ranging from 5 m/s to 8 m/s,
according to the anemometer installed in the field.

It was assumed that the nominal values for the uncertain
parameters are (for all channels): anp = knp = 2. The same
DSSC’s control parameters, as well as, the STA’s parameters
are used in all subsystems (x, y, x, and ψ). It was verified
that a constant modulation function (ϱ(t) = 4) was enough to
deal with the uncertainties and the relative degree one output
variable σ , in (10), was implemented with l0 = 2.
The STA control was tuned to ensure acceptable perfor-

mance in the real scenario, resulting in κ2 = 0.035 and
κ1 = 0.075. The DSSC was implemented with

τav(t) :=
2

koκ1
|σ (t)|1/2 + δ , τm(t) :=

κ1

2κ2
|σ (t)|1/2 + δ ,

ko = 10 and δ = 0.1, for all subsystems. The control gains
of the STA and the DSSC’s parameters were increased in
the experiments in comparison to the gains used in the DJI
Assistant 2 simulator.

Figure 7 shows the closed-loop tracking performance for
both controls. To put in evidence the influence of the STA’s
gains, we have left the gain of the STA altitude control

FIGURE 7. Field Test. Trajectory tracking performance under STA (dash
blue) and DSSC (dot red) and the trajectory error along the three axes.
The desired trajectory is illustrated in black.

(z axis) at the same level as in the simulation. This effect
is observed at the bottom of Figure 7, where the tracking
error using the STA (red line) is significantly greater than the
error using the DSSC scheme (blue line). The left-bottom xy
plot appearing in Figure 6 illustrates the path tracking in the
xy axes. The corresponding control efforts are very similar,
ratifying that the DSSC closed-loop behavior during sliding
mode approaches the STA, but the curves are not shown to
save space.

VI. CONCLUSION
A modification in the previous Smooth Sliding Control
was proposed, named Dynamic Smooth Sliding Control
(DSSC), which incorporates functions in the predictor and the
averaging filter depending on the output tracking error e and
its time derivative. The internal predictor and averaging filter
are responsible for ensuring ideal sliding mode (in an internal
variable) and smooth control effort, respectively, leading to
chattering avoidance.

Global stability properties were achieved, leading to exact
output regulation and exponential convergence of the output
tracking error to a residual set depending on the steady-state
value of the smooth filter pass-band (practical tracking).

Experimental evaluation with a commercial hexacopter
corroborated that the new design based on the class of plants
considered here, in fact, is robust to unmodelled dynamics
and is feasible to be digitally implemented with a regular
sampling rate.

A. DISCUSSION AND FUTURE WORKS
It was verified that the DSSC can be designed so that the
synthesized control law during sliding mode generates a
family of controllers, in particular, approximations for the
standard and variable gain STA. This has motivated the
complete stability analysis of the DSSC inspired by the STA
analysis.
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Improvement was obtained in the practical implementa-
tion where discretization, for instance, generates numerical
chattering even for the relative degree one case. Since sliding
motion can occur even with still large output error, so that
the modulation function is also large, a time-varying pass-
band (inversely proportional to e) resulted in a practical
smoother control action when compared with the original
SSC, maintaining at least the same level of tracking precision.
The robustness concerning unmodelled dynamics (parasitic)
was inherited from the intrinsic robustness with respect to
the smooth filter. Moreover, numerical simulations with a
UAV dynamic model including aerodynamics effects and
inner controllers and with the DJI Assistant 2 simulator, also
illustrated that the class of plants fits the application.

Investigation of alternative state-dependent functions for
the DSSC, closed-loop stability analysis in the presence of
parasitic or unmodelled dynamics, and a methodology to
adapt the actual UAV simulation model for other types of
UAVs are under development.

APPENDIX A UAV MODEL: AERODYNAMIC TERMS AND
DISTURBANCES
In the UAV dynamic model (see also Figure 1), the term τdist
and the parameter J are defined as

τdist :=
[
Iz�y

∑nr
i=1 θ̇i −Iz�x

∑nr
i=1 θ̇i Iz

∑nr
i=1 θ̈i

]T
,

and

J = diag
([
nr Ixy + Ibx nr Ixy + Iby nr Iz + Ibz

])
,

where the inertia tensor of the i-th propeller hub (propeller
plus motor), represented in Ei (the i-th propeller frame),
is a diagonal matrix Ii = diag

([
Ixi Iyi Izi

])
, with Ixi =

Iyi = Ixy and Izi = Iz (∀i); and the inertia tensor of
the UAV’s structure, represented in Eb, is a diagonal matrix
Ib = diag

([
Ibx Iby Ibz

])
.

The following terms incorporate all drag effects on the
UAV:

Fdrag :=

nr∑
i=1

Fdi + Fd , and τdrag :=

nr∑
i=1

(pbi × RTFdi) ,

where pbi is the position vector of the origin of the propeller
frame relative to the origin of the body frame (represented
in the body frame), and for the control allocation, M :=∑nr

i=1(pbi × Ti) +
∑nr

i=1 τdi is the net moment, and f =∑nr
i=1 fi is the net thrust magnitude. The aerodynamic terms

are defined in what follows. The Propeller Aerodynamic
Thrust is given by Ti (body frame) with the thrust magnitude
fi := kTi θ̇

2
i proportional to the rotor spin rate square via

Rayleigh’s equation, where kTi > 0 is the thrust aerodynamic
constant and θ̇i is the i-th propeller spin rate. The Propeller
Aerodynamic Drag Torque is denoted by τdi (body frame),
with magnitude |τdi| = cτ kTi θ̇

2
i , torque direction si =

sgn(τdi) = −sgn(θ̇i) and aerodynamic torque constant cτ >
0. The Propeller Aerodynamic Drag Force is given by
Fdi := −KFdi |θ̇i| vri (inertial frame), where vri := vi − vw

is the propeller air-relative velocity, vi is the linear velocity
of the i-th propeller frame, vw is the wind velocity, both
represented in the inertial frame and KFdi > 0 is the propeller
aerodynamic drag force matrix coefficient. Finally, Fd :=

−RKFdR
T vr ∥vr∥ is the UAV Aerodynamics Drag Force on

the Structure, where vr := v− vw is the air-relative velocity,
and KFd > 0 is the structure aerodynamic drag force matrix
coefficient.

APPENDIX B NORMAL FORM
In this section, the development of the normal form (3)–(4) is
provided. From (2), one has that

(ν̈ − ü) = −kp(ν̇ − u̇) − ki(ν − u) +
[
Ḋ − ü

]
, (38)

or, equivalently,

ν̈ + kpν̇ + kiν = kpu̇+ kiu+ Ḋ . (39)

Reminding that d =
s

(kps+ki)
D, one can further write kpḋ +

kid = Ḋ, leading to

ν̈ + kpν̇ + kiν = kp(u̇+ ḋ) + ki(u+ d) . (40)

Now, with the change of coordinate

η := −
k2p
k2i

[
ν̇ +

(k2p − ki)

kp
ν − kp(u+ d)

]
, (41)

one has

η̇ := −
k2p
k2i

[
ν̈ +

(k2p − ki)

kp
ν̇ − kp(u̇+ ḋ)

]

= −
k2p
k2i

[
−kiν −

ki
kp
ν̇ + ki(u+ d)

]
=
kp
ki

[
kpν + ν̇ − kp(u+ d)

]
,

where the last two equalities comes from (40). In addition,
from (41) one can write

aηη :=
kp
ki

[
ν̇ + kpν − kp(u+ d)

]
− ν ,

with aη := −

[
ki
kp

]
and obtain (3), with bη = 1. Finally, one

can further write from (41) that

ν̇ = −
k2i
k2p
η + kp(u+ d) −

(k2p − ki)

kp
ν , (42)

which is precisely (4), with ap =

[
k2p−ki
kp

]
and cη =

[
ki
kp

]2
.

APPENDIX C SOME CASES OF DSSC’S SYNTHESIZED
CONTROLLERS
To illustrate some of those possibilities, consider the four
cases illustrated in Table 2, where for simplicity, we let koτav,
τm, g1 and g2 be functions of σ , only. Thus, ∂g1

∂e =
∂g1
∂t =

0 and, from (23), one has[
1

koτav

]
= g′

1σ + g1 , and
[

1
koτavτm

]
= g2 . (43)
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TABLE 2. Some special cases of synthesized controllers (PI, standard STA, and two approximations for the standard STA). For the standard STA case, since
koτav and τm tend to zero as σ → 0, then the DSSC’s averaging filter and predictor dynamic become very fast, leading to an undesired stiff problem.
To avoid this problem, the idea is to use approximations φ̂1 and φ̂2, for φ1 and φ2, respectively. For the first approximation for the STA, the DSSC’s
state-dependent functions are well defined for all finite σ , and one has that φ̂1 → φ1 = |σ |1/2sgn(σ ) and φ̂2 = φ̂′

1φ̂1 → φ2 = φ′

1φ1 = sgn(σ )/2, as δ → 0.
As an alternative, in the second approximation for the STA, another choice for φ̂2 can be explored, even if not satisfying the relationship φ̂2 = φ̂′

1φ̂1.
However, one still have φ̂2 → φ2 = φ′

1φ1 = sgn(σ )/2, as δ → 0, but φ̂2 ̸= φ̂′

1φ̂1. For all cases, κ1 and κ2 are positive constant gains, and δ > 0 is an
arbitrarily small constant.

From Table 2, for the plant (5)–(7), the synthesized DSSC
can result in an approximation for the STA [16], [18]. This
approximation acts like a gain reducer near the origin of the
error system state-space (σ, e), thus, improving the robustness
concerning unmodelled dynamics. In what follows, we point
out some remarkable features of the synthesized DSSC.

From a theoretical point of view, this synthesized approx-
imation becomes exactly the standard STA, as δ → 0.
In addition, when the pass-band of the averaging filter tends
to infinity, the closed-loop dynamics with the synthesized
DSSC law approaches the closed-loop dynamics with the
STA, in the absence of unmodelled dynamics, as described
in the approximated analysis in Section V-A2.
On the other hand, from a practical point of view, small

values for δ are enough to obtain similar results as the
standard STA, far away from the origin, while assuring
acceptable input disturbance rejection capabilities near the
origin.

In addition, it should be highlighted that the initial value
of the DSSC’s control effort can be arbitrary chosen (e.g.,
at zero) by setting the initial condition of the averaging filter.

APPENDIX D PROOF OF THEOREM 1
The proof is carried out in two parts: before and after sliding
mode takes place.

PART A: ANALYSIS DURING THE REACHING PHASE
From the σ̃ -dynamics (19), one can obtain ˙̃σ σ̃ ≤ −1/τmσ̃ 2

−

δϱ|σ̃ | ≤ −δϱ|σ̃ |, since the modulation function was designed
in (33) to overcome the disturbance d0/ko, i.e., to satisfy
ϱ > |d0|/ko+δϱ/ko. The last inequality established the well-
known δρ-reachability condition [48]. Now, one can write

˙̃σ σ̃ =
1
2
d
dt

[
σ̃ 2(t)

]
≤ −δϱ|σ̃ (t)| , (44)

and integrating (44) from t0 to t ∈ [t0, tM ), with t ≤ Ts and
Ts := t0 + |σ̃ (t0)|/δϱ, it follows that

|σ̃ (t)| ≤ −δϱ(t − t0) + |σ̃ (t0)| ≤ |σ̃ (t0)| ,

∀t ∈ [t0, tM ) and t ≤ Ts. It is clear that σ̃ (t0) = 0 implies
sliding mode at the manifold σ̃ (t) ≡ 0, starting from the
beginning, i.e., ∀t ∈ [t0, tM ), since Ts = t0 + |σ̃ (t0)|/δϱ =

t0 and the δρ-reachability condition (44) is satisfied. In this
case, finite-time escape cannot occur before sliding mode
takes place. Thus, from now on, assume that σ̃ (t0) ̸= 0.
Assuming that tM is finite, then there exists a finite t∗ (t0 <

tM < t∗) such that some close-loop signal escapes at t =

t∗. Moreover, aiming to prove that finite-time escape cannot
occur before sliding mode takes place, assume that σ̃ (t) ̸= 0,
∀t ∈ [t0, t∗].
Due to the unboundedness observability property of the

closed-loop system, finite-time escape can occur if and only
if the output σ = ė + l0e escapes in finite-time. In addition,
since the δρ-reachability condition holds, then σ̃ is uniformly
norm bound in the time interval [t0, t∗].
Then, σ̂ (t) = σ (t) − σ̃ (t) must also escapes at t = t∗ and

limt→t∗ |σ̂ (t)| = ∞. However, at this point, σ̂ can escape to
infinity while oscillating around zero (and switching sign),
or monotonically with a fixed sign. The first case does not
occur. Indeed, since ϱ in (33) satisfies ϱ ≥ |uav0 |, then the
term [−uav0 + u0] = [−uav0 + ϱsgn(σ̃ (t0))], appearing in the
predictor σ̂ -dynamics (18), has the same sign as σ̃ (t0), where
we have used the fact that sgn(σ̃ (t)) = sgn(σ̃ (t0)). Therefore,
one can write the σ̂ -dynamics as

τm(t) ˙̂σ = −σ̂ + τm(t)ko(t)| − uav0 + u0|sgn(σ̃ (t0)) ,

and σ̂ cannot escape in finite-time oscillating and crossing
zero, since the input of the σ̂ -dynamics has the fixed sign
sgn(σ̃ (t0)) in the interval [t0, t∗]. So, there exists T0 ∈ [t0, t∗]
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such that σ̂ (t) ̸= 0, ∀t ∈ [T0, t∗], escaping monotonically
with a fixed sign.

However, for sgn(σ̃ (t0)) = 1, one has σ̃ (t) > 0, σ (t) >
σ̂ (t), limt→t∗ σ̂ (t) = +∞ and the strictly inequality q(t) :=
σ (t)
σ̂ (t) > 1 holds. Now, note that the quotient q(t) =

σ (t)
σ̂ (t) = 1+

σ̃ (t)
σ̂ (t) and limt→t∗

σ̃ (t)
σ̂ (t) = 0, where we have used the facts that

σ̃ (t) is uniformly norm-bounded in the closed time interval
[t0, t∗] and limt→t∗ σ̂ (t) = +∞. Thus, one can further write
limt→t∗ q(t) = 1, which is a contradiction since q(t) is strictly
greater than one, ∀t ∈ [t0, t∗]. For sgn(σ̃ (t0)) = −1, one
has σ̃ (t) < 0, kσσ (t) < σ̂ (t), limt→t∗ σ̂ (t) = −∞ and
the inequality q(t) :=

kσ σ (t)
σ̂ (t) < 1 holds in the closed time

interval [t0, t∗]. Analogously, the quotient q(t) also satisfies
limt→t∗ q(t) = 1, which again is a contradiction since q(t) is
strictly less than one, ∀t ∈ [t0, t∗].

Finally, one can conclude that sliding mode occurs before
any closed-loop signal escapes in finite time. However,
finite-time escape is not precluded after sliding mode takes
place. To complete the proof, we will evoke the Small Gain
Theorem.

PART B: ANALYSIS IN SLIDING MODE
From Part (a), there exists a finite time ts ∈ [0, tM ) such that,
∀t ∈ [ts, tM ), sliding mode occurs, i.e., the sliding variable
σ̃ (t) becomes identically null.
During sliding mode, the synthesized DSSC law is given

by ū = ûvgsta + Cs, with Cs := ū(ts) + κ1(ts)φ̂1(ts) and ûvgsta
in (27), leading to

ū(t) = −κ1(t)φ̂1(t) −

∫ t

ts
κ2(τ )φ̂2(τ )dτ + Cs . (45)

Now, in what follows, consider the signal and the norm
bounds given in Appendix E. Then, with u = ū, defining the
auxiliary variable

z := −kp

∫ t

ts
κ2(τ )φ̂2(σ (τ ))dτ + σa + kpCs , (46)

with σa in (64) and σ̇a in (65), the closed-loop system during
sliding mode can be written as (∀t ∈ [ts, tM ))

ė = −l0e+ σ , (47)

σ̇ = −kpκ1φ̂1 + β1 + z , (48)

ż = −kpκ2φ̂2 + β2 + βe + βm , (49)

with β1 in (63), β2 in (68), βe in (67), βm in (66), where
we have used the fact that Cs is a constant. As in [23],
an additional transformation will be useful for the conver-
gence analysis and gains design. Defining

ζ :=
[
ζ1 ζ2

]
=

[
φ̂1 z

]
,

and noting that ζ̇1 = φ̂′

1σ̇ and φ̂2 = φ̂′

1φ̂1, we rewrite (48)

and (49) as ζ̇1 = φ̂′

1

[
−(kpκ1 − α1)φ̂1 + z

]
and ζ̇2 =

φ̂′

1

[
−(kpκ2 − α2)φ̂1

]
+ βe + βm, respectively, where α1 and

α2 are treated as uncertain disturbances functions defined by

α1φ̂1 := β1 and α2φ̂2 := β2 , ∀σ ̸= 0 , (50)

and α1 = α2 = 0, for σ = 0. Finally, the closed-loop
dynamics during sliding mode can be written in the compact
form:

ė = −l0e+ σ , (51)

ζ̇ = φ̂′

1A(σ, e, t)ζ + B(βe + βm) , (52)

where

A(σ, e, t) :=

[
−(kpκ1 − α1) 1
−(kpκ2 − α2) 0

]
, B :=

[
0 1

]T
,

βe in (67), βm in (66) and α1 and α2 in (50). Similarly to [23],
consider the Lyapunov function candidate

V (ζ ) := ζ TPζ , P :=

[
γ kp −2ϵ
−2ϵ 1

]
, (53)

where γ, ϵ > 0 are design constants and kp is one of the
uncertain plant parameter (thus, P is an uncertain matrix).
Then, one can obtain

V̇ = −φ̂′

1ζ
TQζ + 2ζ TPB(βe + βm) , (54)

where Q := −
(
ATP+ PA

)
. The variable gains are designed

(Table 1) to assure that matrix Q − 2ϵI is positive definite,
see Appendix F. Now, with Q− 2ϵI > 0 and reminding that
φ̂′

1 = φa

[
(|σ |

1/2
+2δ)

2(|σ |1/2+δ)2

]
+ φb, then one can write −φ̂′

1ζ
TQζ ≤

−2ϵ 1
µ
∥ζ∥2 − 2ϵφb∥ζ∥2 and

−φ̂′

1ζ
TQζ ≤ −2ϵ

1
µ

V
λmax{P}

− 2ϵφb
V

λmax{P}
, (55)

where

µ :=
2
φa

[
(|σ |

1/2
+ δ)2

(|σ |1/2 + 2δ)

]
, φa , δ > 0 ,

and the Rayleigh quotient was applied. To simplify the
analysis at the cost of being more conservative and losing
the capability of achieving the prescribed finite-time con-
vergence for a residual set, we disregard this negative term
−2ϵ 1

µ
V

λmax {P}
in (55), leading to

−φ̂′

1ζ
TQζ ≤ −2ϵφb

V
λmax{P}

. (56)

In addition, from (71) and (70), one can write |βe + βm| ≤

∥CηAη∥∥η∥+ κe|e|+ β̄m, where β̄m := k̄pkd5|ym|+ k̄p|u̇nm|+

|σ̈m|+ (l0 + āp)|ÿm|+ (k̄pkd4 +∥CηBη∥)|ẏm|+ k̄p(αd2 +αd3).
Then, the term 2ζ TPB(βe + βm) in (54) satisfies

|2ζ TPB(βe + βm)|≤
2∥PB∥

λ
1/2
min{P}

V 1/2(∥CηAη∥∥η∥+κe|e|+β̄m) ,

(57)

where the relationship ∥ζ∥ ≤
V 1/2

λ
1/2
min{P}

was used. Hence,

one can directly obtain the inequality V̇ ≤ −
2ϵφb

λmax {P}
V +

2∥PB∥

λ
1/2
min{P}

V 1/2(κη|Cηη| + κe|e| + β̄m), or, equivalently,

Ẇv≤−
ϵφb

λmax{P}
Wv +

∥PB∥

λ
1/2
min{P}

(∥CηAη∥∥η∥+κe|e| + β̄m) ,

(58)
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whereWv := V 1/2.
Moreover, reminding that ẏ = [−l0e + σ + ẏm], then

from (5) the inverse dynamics is given by η̇ = Aηη +

Bη[−l0e+σ+ẏm]. Thus, one can put together the e-dynamics
(ė = −l0e+ σ ) and the inverse dynamics and write

ẋη = Axηxη + Bσσ + Bmẏm , xη :=
[
ηT e

]T
, (59)

where Axη :=

[
Aη −l0Bη
0 −l0

]
, Bσ :=

[
BTη 1

]T
and Bm :=[

BTη 0
]T
. Then, defining Vη := xTη Pηxη, with Pη = PTη >

0 satisfying ATxηPη + PηAxη = −2I , since Axη is a Hurwitz
matrix, then one can obtain

V̇η ≤ −
2

λmax{Pη}
Vη + 2∥PηBσ∥

V 1/2
η

λ
1/2
min{Pη}

|σ |+

+ 2∥PηBm∥
V 1/2
η

λ
1/2
min{Pη}

|ẏm| ,

since ∥xxη∥ ≤
V 1/2
η

λ
1/2
min{Pη}

. Equivalently, with Wη := V 1/2
η , one

has

Ẇη ≤−
1

λmax{Pη}
Wη +

∥PηBσ∥

λ
1/2
min{Pη}

|σ |+
∥PηBm∥

λ
1/2
min{Pη}

|ẏm| . (60)

Now, reminding that

|φ̂1| ≤ ∥ζ∥ ≤
V 1/2

λ
1/2
min{P}

=
Wv

λ
1/2
min{P}

,

and

|φ̂1(σ )| :=

[
φa

(|σ |1/2 + δ)
+ φb

]
|σ | ,

then |φ̂1(σ )| ≥ φb|σ | and |σ | ≤
Wv

φbλ
1/2
min{P}

. From (58)

and (60), one has the following pair of inequalities:

Ẇη ≤ −kη1Wη + kη2Wv + kη3|ẏm| , (61)

Ẇv ≤ −kv1Wv + kv2Wη + kv3β̄m , (62)

where kη1 :=
1

λmax {Pη}
, kη2 :=

∥PηBσ ∥

φbλmin{Pη}
, kη3 :=

∥PηBm∥

λ
1/2
min{Pη}

,

kv1 :=
ϵφb

λmax {P}
, kv2 :=

∥PB∥(κe+∥CηAη∥)

λ
1/2
min{P}λ

1/2
min{Pη}

, kv3 :=
∥PB∥

λ
1/2
min{P}

and we use the fact that |e|, ∥η∥ ≤ ∥xη∥ ≤ Wη/λ
1/2
min{Pη}.

Now, let W̄v and W̄η be the solutions of the differential
equations corresponding to the equalities in (61)–(62), with
initial conditions W̄v(ts) = Wv(ts) and W̄η(ts) = Wη(ts). Thus,
by using the Comparison Lemma [39], one hasWv ≤ W̄v and
Wη ≤ W̄η, ∀t ∈ [ts, tM ).
Now, the proof follows by using the Small-Gain

Theorem [49] applied to the pair of differential equations cor-
responding to the equalities in (61)–(62). From Appendix G,
for φb sufficiently large so that

φ2b ≥
∥PηBσ∥∥PB∥(κe + κη∥Cη∥)λmax{P}λmax{Pη}

4ϵλ1/2
min{P}λ

3/2
min{Pη}

one can, subsequently, conclude that: |z| converges exponen-
tially to a residual set of orderO(1/φb), |σ | and |e| converges
exponentially to a residual set of order O(1/φ2b ) and finite-
time escape is avoided in all closed-loop signals.

APPENDIX E AUXILIARY SIGNALS AND NORM BOUNDS
By considering the partitions (30) and (31) of the plant input
disturbance d = d1(y, ẏ, t)+d2(y, t)+d3(t) and the nominal
control un = unp(e)+u

n
d (σ )+u

n
i (t)+u

n
m(t), one can decompose

the disturbance dσ in (13) as dσ := β1 + σa, leading to σ̇ =

kpu+ β1 + σa, where β1 is the σ -independent signal

β1 := kpund (σ ) + (l0 − ap)σ + kpd1(y, ẏ, t) , (63)

and σa is the auxiliary signal

σa := (l0 − ap)(−l0e+ ẏm) + kp(unp + uni + unm) − σ̇m

+ kp(d2 + d3) − Cηη . (64)

The time derivative of the auxiliary signal σa is
σ -dependent, but can be decomposed in three signals: (i)
β2, which is σ -dependent; (ii) βe, which is e-dependent; and
βm, which is an exogenous uniformly norm-bounded time-
varying signal.

In fact, σ̇a can be written as σ̇a := −(l0 − ap)l0ė +

kp
dunp(e)
de ė+kpūni +kpu̇

n
m−σ̈m+(l0−ap)ÿm+kpḋ2+kpḋ3−Cηη̇.

Now, since ḋ2 =
∂d2(y,t)
∂y ẏ +

∂d2(y,t)
∂t , ẏ = −l0e + σ + ẏm,

ė = −l0e+ σ and η̇ = Aηη + Bηẏ, one can write

σ̇a := β2 + βe + βm , (65)

where

βm := kpu̇nm − σ̈m + (l0 − ap)ÿm + kp
∂d2(y, t)
∂y

ẏm

+ kpḋ3 − CηBηẏm , (66)

βe := l0

[
(l0 − ap)l0 −

dunp(e)

de
+ kpl0

∂d2(y, t)
∂y

+ CηBη
]
e− CηAηη + kp

∂d2(y, t)
∂t

, (67)

β2 :=

[
−(l0 − ap)l0 + kp

dunp(e)

de
+ kp

∂d2(y, t)
∂y

− CηBη
]
σ + kpūni . (68)

A. AUXILIARY NORM BOUNDS
In this section, the norm bounds for the β-terms are obtained.
From Assumption (A4), one can obtain a non-negative
constant c̄σ , such that |kpund + (l0 − ap)σ | ≤ c̄σ |σ |. Hence,
from Assumptions (A0)–(A1), the disturbance β1 in (63)
satisfies |β1| ≤ |kpund+(l0−ap)σ |+|kpd1| ≤ [c̄σ+k̄p(kd1|y|+
kd2|ẏ| + kd3)]|σ |. Moreover, recalling that y = e + ym and
ė = −l0e+ σ , thus ẏ = ė+ ẏm = −l0e+ σ + ẏm and

|β1| ≤ (k̄d1|e| + k̄d2|σ | + k̄d3)|σ | , (69)

with appropriate known constants k̄d1, k̄d2, k̄d3 ≥ 0, since ym
and ẏm are uniformly norm-bounded signals.
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From Assumption (A3), the term kpḋ3(t) of the signal βm
defined in (66) satisfies |kpḋ3(t)| ≤ k̄pαd3(t). Thus, βm is a
uniformly norm-bounded signal which satisfies

|βm| ≤ k̄p|u̇nm| + |σ̈m| + (l0 + āp)|ÿm| + k̄pkd4|ẏm|

+ k̄pαd3 + ∥CηBη∥|ẏm| . (70)

From Assumptions (A2) and (A4), one can subsequently
conclude that: (i) the term βe satisfies

|βe| ≤ ∥CηAη∥∥η∥ + κe|e| + k̄pkd5|ym| + k̄pαd2 , (71)

where κe := l0
[
(l0 + āp)l0 + ce2 + k̄pl0kd4 + ∥CηBη∥

]
+

k̄pkd5; and (ii) the term β2 satisfies

|β2| ≤ (kσ + ciσ |σ | + cie|e|)|σ | , (72)

where kσ :=
[
(l0 + āp)l0 + k̄pce2 + k̄pkd4 + ∥CηBη∥

]
.

NORM BOUNDS ρ1 AND ρ2
From (50) and (69), one can write φb|σ ||α1| ≤ |φ̂1||α1| =

|β1| ≤ (k̄d1|e| + k̄d2|σ | + k̄d3)|σ |, where the lower
norm-bound comes from the fact that φ̂1 > φb|σ |, with
φ̂1 defined in (26). Hence, one has |α1| < ρ1, where

ρ1 :=
(k̄d1|e| + k̄d2|σ | + k̄d3)

φb
.

Analogously, from (50) and (72), one can write φ2b |σ ||α2| ≤

|φ̂1φ̂
′

1||α2| = |β2| ≤ (kσ + ciσ |σ | + cie|e|)|σ |, which leads to
the norm bound |α2| < ρ2, where

ρ2 :=
(kσ + ciσ |σ | + cie|e|)

φ2b
.

APPENDIX F GAIN FUNCTIONS DESIGN
The variable gains κ1 and κ2 are designed so that the matrix
Q, appearing in (54), satisfies Q − 2ϵI > 0. One possibility
is to set

κ2 = 2ϵκ1 + γ , (73)

which leads to

Q− 2ϵI =

[
kq 2ϵα1 − α2

2ϵα1 − α2 2ϵ

]
,

with kq := 2(γ kp−4ϵ2)kpκ1+4ϵkpγ −2γ kpα1+4ϵα2−2ϵ.
One has that Q − 2ϵI is positive definite for every value of
(t, e, σ ) if

(γ kp − 4ϵ2)kpκ1>
1
4ϵ

(2ϵα1−α2)2−2ϵα2+γ kp(α1−2ϵ)+ϵ .

(74)

It is clear that inequality (74) holds if the following one is
valid

(γ kp − 4ϵ2)kpκ1 ≥

[
1
4ϵ

(2ϵρ1 + ρ2)2 + 2ϵρ2

+ γ kp(ρ1 + 2ϵ) + ϵ
]
, (75)

with γ satisfying γ kp − 4ϵ2 > 0, kp being considered as an
uncertain parameter and ρ1 and ρ2 being known norm bounds
for α1 and α2, respectively, obtained in what follows by using
the available norm bounds for β1 and β2.

IMPLEMENTATION OF THE VARIABLE GAIN κ1
The gain κ1 is designed to satisfy (75), which can be
rewritten as

4ϵkp(γ kp − 4ϵ2)κ1

>
[
ρ2 + 8ϵ2ρ2 + 4ϵγ kpρ1 + 8ϵ2γ kp + 4ϵ2

]
, (76)

where ρ := 2ϵρ1 + ρ2 =
(k̄d2φb+k̄pciσ )

φ2b
|σ | +

(k̄d1φb+k̄pcie)
φ2b

|e| +
(k̄d3φb+kσ )

φ2b
. In addition, one sufficient condition to assure

that (76) holds is given by

4ϵkp(γ kp − 4ϵ2)κ1>
[
ρ2+(8ϵ2+2γ kp)ρ+8ϵ2γ kp + 4ϵ2

]
,

(77)

by noting that ρ ≥ ρ2 and ρ ≥ 2ϵρ1. Hence, since ρ, ρ1 and
ρ2 are linearly related to |σ | and |e| and 8ϵ2γ kp + 4ϵ2 is a
constant, one can select κ1 as

κ1 := (κa|σ | + κb|e| + κc)2 + κd := κ2 + κd , (78)

with κ := (κa|σ | + κb|e| + κc) and positive constants
κa, κb, κc and κd designed to assure that (77) holds. One
possible design is as follows. Firstly, restrict γ (large enough)
to satisfy 4ϵkp(γ kp−4ϵ2) > 1, and restrict κc to satisfy κc >

(8ϵ2+2γ kp)
[4ϵkp(γ kp−4ϵ2)−1]

. Hence, one has that κ > (8ϵ2+2γ kp)
[4ϵkp(γ kp−4ϵ2)−1]

and, consequently, 4ϵkp(γ kp−4ϵ2)κ2 > κ2+(8ϵ2+2γ kp)κ .
Secondly, restrict κd to satisfies

κd >
(8ϵ2γ kp + 4ϵ2)
4ϵkp(γ kp − 4ϵ2)

,

one has 4ϵkp(γ kp − 4ϵ2)(κ2 + κd ) > κ2 + (8ϵ2 + 2γ kp)κ +

(8ϵ2γ kp + 4ϵ2). Thirdly, restricting κa, κb and κc to satisfy

κa >
(k̄d2φb + k̄pciσ )

φ2b
, κb >

(k̄d1φb + k̄pcie)

φ2b
,

and κc >
(k̄d3φb+kσ )

φ2b
, one has that κ = (κa|σ | + κb|e| + κc) >

ρ, leading to the conclusion that κ2 + (8ϵ2 + 2γ kp)κ > ρ2 +

(8ϵ2+2γ kp)ρ and, consequently, 4ϵkp(γ kp−4ϵ2)(κ2+κd ) >
ρ2 + (8ϵ2 + 2γ kp)ρ + (8ϵ2γ kp + 4ϵ2). Fourthly, restricting
κc to satisfy

κc > max

{
(8ϵ2 + 2γ kp)

[4ϵkp(γ kp − 4ϵ2) − 1]
,
(k̄d3φb + kσ )

φ2b

}
,

one has that (77) holds.

DSSC STATE-DEPENDENT FUNCTIONS
Now, we will provide some additional restrictions to the
parameters κa, κb and φb, so that the DSSC’s state-dependent
functions koτav > 0 and τm > 0 are well-defined for all finite
values of σ, e. Two sufficient conditions for that are[

κ ′

1φ̂1 + κ1φ̂
′

1

]
> 0 ,
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and [
∂κ1

∂e
[−l0e+ σ ] +

∂κ1

∂t
+ κ2φ̂

′

1

]
> 0 .

From (78), one has κ ′

1 =
∂κ1
∂σ

= 2(κa|σ |+κb|e|+κc)κasgn(σ ),
∂κ1
∂e = 2(κa|σ |+κb|e|+κc)κbsgn(e) and

∂κ1
∂t = 0. In addition,

recall that φ̂1 :=
φaσ

(|σ |1/2+δ)
+φbσ and φ̂′

1 = φa

[
(|σ |

1/2
+2δ)

2(|σ |1/2+δ)2

]
+

φb.
Hence, one can directly conclude that κ ′

1φ̂1 > 0,

leading to
[
κ ′

1φ̂1 + κ1φ̂
′

1

]
> 0. Moreover, since κ2 =

2ϵκ1 + γ , one has
[
∂κ1
∂e [−l0e+ σ ] +

∂κ1
∂t + κ2φ̂

′

1

]
=[

∂κ1
∂e [−l0e+ σ ] + (2ϵκ1 + γ )φ̂′

1

]
> 0, if the following

inequality is valid

(2ϵκ1 + γ )φ̂′

1 >

∣∣∣∣∂κ1∂e [−l0e+ σ ]

∣∣∣∣ . (79)

On the other hand,∣∣∣∣∂κ1∂e [−l0e+ σ ]

∣∣∣∣ ≤ 2(κa|σ | + κb|e| + κc)κb(l0|e| + |σ |) ,

and

(2ϵκ1 + γ )φ̂′

1 = (2ϵ[(κa|σ | + κb|e| + κc)2 + κd ] + γ )φ̂′

1 .

Now, if (2ϵ[(κa|σ | + κb|e| + κc)2 + κd ]+ γ )φ̂′

1 > 2(κa|σ | +

κb|e|+κc)κb(l0|e|+|σ |) then the DSSC’s dynamics functions
are well-defined.Moreover, note that the following inequality
is a sufficient condition

2ϵ(κa|σ | + κb|e| + κc)2φ̂′

1

> 2(κa|σ | + κb|e| + κc)κb(l0|e| + |σ |) ,

or, the following one

ϵ(κa|σ | + κb|e| + κc)φb > κb(l0|e| + |σ |) ,

where we use the fact that

φ̂′

1 =

[
φa

[
(|σ |

1/2
+ 2δ)

2(|σ |1/2 + δ)2

]
+ φb

]
> φb .

Finally, one can guarantee that the DSSC’s dynamics
functions are well-defined, by selecting φb >

l0
ϵ
and κa >

κb
l0
.

This is summarized in Table 1.

APPENDIX G STABILITY ANALYSIS VIA SMALL-GAIN
THEOREM
The equalities in (61)–(62) are given by

˙̄Wη = −kη1W̄η + kη2Wv + kη3|ẏm| , (80)
˙̄Wv = −kv1W̄v + kv2Wη + kv3β̄m , (81)

which can be rewritten as

Ẋ1 = −λ1X1 +
g1
φb
X2 + U1 , (82)

Ẋ2 = −λ2φbX2 + g2X1 + U2 , (83)

where X1 := W̄η, λ1 :=
1

λmax {Pη}
, U1 := g1(Wv − X2)/φb +

ḡ1|ẏm|, g1 =
∥PηBσ ∥

λmin{Pη}
, ḡ1 =

∥PηBm∥

λ
1/2
min{Pη}

, X2 := W̄v, λ2 :=

ϵ
λmax {P}

, U2 := g2(Wη − X1) + ḡ2β̄m, g2 :=
∥PB∥(κe+κη∥Cη∥)

λ
1/2
min{P}λ

1/2
min{Pη}

and ḡ2 :=
∥PB∥

λ
1/2
min{P}

. Thus, one can write

X1A ≤ e−λ1(t−ts)X1(ts) +
γ1

φb
∥X2∥∞ +

1
λ1

∥U1∥∞ , (84)

X2 ≤ e−λ2φb(t−ts)X2(ts) +
γ2

φb
∥X1∥∞ +

1
λ2φb

∥U2∥∞ ,

(85)

where γ1 :=
g1
λ1

and γ2 :=
g2
λ2
.

Now, one can apply [49, Theorem 2.1] and conclude that
the system (82) and (83) with inputs U1 and U2, outputs Y1 =

X1 and Y2 = X2 and states X1 and X2 is IOpS, satisfying

∥X (t)∥ ≤ βX (∥X (ts)∥, t − ts) + αX (∥U(t)∥∞) , (86)

for some class-KL function βX and some class-K function
αX , provided that there exist kl ≥ 0 and class-K∞ functions
F1(s) + s and F2(s) + s such that

F2(γ2(F1(γ1s) + γ1s)) + γ2(F1(γ1s) + γ1s) ≤ s , ∀s ≥ sl .

In particular, for F1(s) = F2(s) = s and kl = 0, one has the
following condition 4γ1γ2 ≤ φ2b .

Now, since Wv < W̄v = X2, one has [Wv(t) − X2(t)] < 0,
∀t ∈ [ts, tM ), from which one can, subsequently, conclude
that U1(t) := g1[Wv(t) − X2(t)] + ḡ1|ẏm(t)| < ḡ1|ẏm(t)|,
∀t ∈ [ts, tM ) and

∥U1∥∞ < ḡ1∥ẏm∥∞ .

Analogously, one has

∥U2∥∞ < ḡ2∥β̄m∥∞ ,

sinceWη < W̄η = X1. Thus, ∥U∥∞ < ḡ1∥ẏm∥∞ + ḡ2∥β̄m∥∞

is uniformly bounded by a φb-independent constant. Hence,
from (86), one has that X (t),X1(t),X2(t) converge to a
residual set independent of φb and the initial conditions. Now,
backing to (85), one can conclude that X2(t) converges to a
residual set of order O(1/φb). Finally, reminding that

|φ̂1|, |z| ≤ ∥ζ∥ ≤
V 1/2

λ
1/2
min{P}

=
Wv

λ
1/2
min{P}

≤
X2

λ
1/2
min{P}

,

and |φ̂1| ≥ φb|σ |, the one has that |z| converges to a residual
set of orderO(1/φb) and |σ | (and |e|) converges to a residual
set of order O(1/φ2b ).

ACRONYMS
DSSC Dynamic Smooth Sliding Control
PID Proportional-Integral-Derivative
SSC Smooth Sliding Control
STA Super-Twisting Algorithm
UAV Unmanned Aerial Vehicle
VGSTA Variable Gain Super-Twisting Algorithm
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