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ABSTRACT Utilizing Unmanned Aerial Vehicles (UAVs) plays a pivotal role in the localization of ground
construction personnel targets within the specialized operational environments of the energy industry.
To ensure the safety of personnel in these areas effectively, this study introduces an innovative dual UAV
cooperative positioning system designed to address the challenges of personnel localization in various
complex settings. In the first place, the research establishes a dual UAV collaborative remote sensing
platform, specifically tailored for executing dual UAV flight control and ground personnel identification
and localization tasks. Subsequently, this study proposes a high-precision ground personnel localization
solution. This solution integrates the flight data of two UAVs with the pixel coordinates of targets in natural
remote sensing imagery, enabling the precise localization of moving targets within complex environments.
Moreover, due to the irregularity of ground personnel shapes in imagery, this research introduces an improved
rotating target detection network based on the YOLOv7 architecture. This network is specifically optimized
for detecting ground targets in remote sensing imagery, significantly enhancing the accuracy of target
localization. Extensive experimental validation has demonstrated that this localization system can maintain
target localization errors within a 5-meter threshold, effectively enhancing the safety and efficiency of
personnel in specific operational areas of the energy industry.

INDEX TERMS Dual-UAV cooperative positioning, rotating target detection, remote sensing platform,
YOLOv7.

I. INTRODUCTION
With the development of remote sensing technology, UAVs
are used in an increasingly wide range of fields, such as
intelligence agriculture [1], [2], [3], [4], [5], power inspec-
tion [6], [7], [8], environmental monitoring [9], [10], [11], and
intrusion safety monitoring [12]. In these applications, target
positioning technology becomes one of the key functions of
UAVs, which helps to achieve accurate data collection and
monitoring tasks. UAV target positioning is highly flexible
and widely applicable, enabling high-precision, real-time
target position measurement in complex terrain and harsh
environments.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

Current UAV-based target positioning methods [13], [14],
[15], [16] are broadly divided into two categories, active
target positioning and passive target positioning methods.
Active target positioning methods usually require UAVs
to be equipped with professional sensors such as laser
range finders and radars. Through the sensor data, the
distance from the target to the UAV is directly obtained
to find out the target’s position information. Passive target
positioning methods usually use only optical sensors, such as
multispectral cameras or infrared cameras. These positioning
methods can usually be subdivided into methods based on
monocular and stereo vision. Monocular vision positioning
methods [17] use a monocular camera and can calculate
the target’s position relative to the UAV by methods such
as triangulation or depth estimation using neural networks.
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The stereo usually use binocular cameras or simulates
binocular cameras by using photos taken by monocular
cameras at different locations to form stereo vision [18], and
the position coordinates of the target can be found based on
parallax information.

However, each of these methods has its own limitations.
Active target positioning methods, as UAVs need to carry
professional high-precision sensors, not only substantially
increase the cost of UAVs, but also increase the power
consumption of UAVs and reduce the range of flight. It is
not suitable for target positioning work in large-scale areas.
Stereo vision localization method based on binocular camera,
the localization accuracy and maximum distance receive the
limitation of baseline length of binocular camera. A shorter
baseline cannot perform accurate depth calculation for distant
targets, while a longer baseline will affect the flight status
of the UAV and cannot be carried on the UAV. The stereo
vision localization method based on monocular camera
needs to realize stereo vision through the displacement
of the UAV, and this method usually performs poorly for
the localization of moving objects due to the large time
difference in the acquisition of stereo vision images. The
monocular camera-based triangulation localization method
requires the use of known reference scales to construct spatial
triangles, and the monocular depth estimation method [19]
usually requires that the predicted scene has a similar depth
distribution trend to the training scene, and that suitable scale
information can be found to convert the relative depth to
absolute depth. Therefore, both methods are not suitable for
target localization in complex scenes.

In order to solve these problems mentioned above,
we propose a new solution. This solution uses a cooperative
companion flight operation mode of two UAVs to re-identify
human targets in the remote sensing images of each of the
two UAVs. Based on the respective flight information of the
UAVs, a spatial localization model is constructed.

The main contributions of this paper are as follows:

1) A dual UAV collaborative remote sensing platform
is built. This platform is used for the deployment of
cooperative missions to dual UAVs.

2) A rotating target detection network for remote sensing
images is proposed. This network is based on the
YOLOv7 network structure and improves the rotating
targets. It effectively improves the performance of
target localization methods.

3) A high-precision spatial localization model based on
the Person Re-identification method is proposed. This
method uses the flight information of two UAVs and
the target pixel coordinates of remote sensing images
as parameters, and is able to precisely locate moving
targets in complex scenes.

II. RELATED WORK
We review several currently used monocular UAV-based
target positioning methods, as well as several target detection

models and person re-identification (ReID) models that are
useful for our approach.

A. TARGET POSITIONING METHODS BASED ON UAV
UAV-based target positioning methods typically involve the
fields of computer vision, remote sensing, and machine
learning. Depending on the flight altitude and camera
parameters of the UAV, target localization can be performed
by monocular or binocular vision systems. Monocular vision
positioning methods usually require ground control points,
terrain information, or known reference points. In contrast,
binocular vision localization methods use two cameras with
relative position relationships to capture images simulta-
neously and calculate the 3D coordinates of the target by
comparing images from different viewpoints.

Jianghong et al. [20], exploredmethods for obtaining target
motion information (e.g., position, velocity, and size) during
target tracking and emphasized the importance of target
detection and identification techniques. Huang et al. [21],
proposed a target localization method based on laser ranging
and solved the problem of photoelectric target consistency
by image tracking, making it applicable to ground and sea
surface target localization of UAVs. Qu et al. [22], calculated
the target position by solving nonlinear equations, addressed
the issue that the target height value could not be accurately
determined in the traditional method, and obtained the
optimal UAV formation shape through simulation analysis.

While all current methods possess their own advantages
in target localization, there are still limitations in localizing
moving objects in complex terrain.

B. TARGET DETECTION
Target detection was an important task in computer vision,
aiming to identify and localize pedestrians in images or
videos. Traditional target detection methods were mainly
based on hand-designed features (e.g., HOG and SIFT) and
sliding window search techniques. However, these methods
faced certain challenges when dealing with complex scenes.
In recent years, deep learning techniquesmade breakthroughs
in the field of target detection, bringing new possibilities
for pedestrian detection. Deep learning-based target detection
methods, such as Faster R-CNN [23], YOLO [24], [25],
and SSD [26], achieved good results in various scenarios.
These methods were able to automatically learn the feature
representation by training a large amount of labeled data, thus
achieving highly accurate target detection in complex scenes.

In this field, target detection for UAV remote sensing
images became an important research direction. Due to the
high mobility and flexibility of UAVs, they could monitor
large areas in complex terrains and environments, so they
showed greater potential in target detection tasks. However,
pedestrian detection from UAV remote sensing images
still faced many challenges, such as target size variation,
occlusion, and light variation. To address these problems,
researchers proposed various improvement strategies [27],
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[28], [29], [30], such as introducing multi-scale detection,
employing data enhancement techniques, and rotational tar-
get detection methods that incorporated angular information.
With these improvements, target detection algorithms for
UAV remote sensing images achieved better performance in
practical applications.

C. PERSON RE-IDENTIFICATION
The task of person re-identification (ReID) was to recognize
and match the same pedestrian under different camera
views, lighting conditions, and times of day. ReID involved
techniques in feature extraction, feature matching, and
similarity calculation. In recent years, with the development
of deep learning, ReID methods based on convolutional
neural networks (CNNs) achieved significant performance
improvements. These methods learned feature representa-
tions that could distinguish different pedestrians by training
a large amount of labeled data. In practical applications,
ReID techniques were widely used in scenarios such as video
surveillance, intelligent transportation, and security.

III. MATERIALS AND METHODS
The proposed system consists of three main components:
(1) dual-UAV collaborative remote sensing platform, (2) tar-
get detection method, and (3) person re-identification
method.

A. DUAL-UAV COLLABORATIVE REMOTE SENSING
PLATFORM
The dual-UAV collaborative remote sensing Platform we
construct consists of three main components, including the
UAV flight control terminals, cloud services, and deployment
and computing terminal.

1) UAV flight control terminal: responsible for receiving
and deploying flight missions, while collecting UAV
remote sensing images and its camera external param-
eters (such as latitude, longitude, altitude, pitch angle,
etc.) in real time, and uploading these information to
the cloud service.

2) Cloud service: mainly responsible for data forward-
ing, including information of UAV’s mission, remote
sensing images and camera’s external parameters, etc.,
to provide the required data support for other parts of
the platform.

3) Deployment and computing terminal: Visually arrange
the flight missions through the mapmodule and receive
the data forwarded by the cloud service. Users can
visually plan the flight route of the UAV on the map,
while monitoring the flight status of the UAV in real
time.

In order to ensure the safety of UAV flight, the mission
planning needs to be set with reference to Digital Elevation
Model (DEM), which can help us understand the terrain
features and thus determine the safe and suitable flight
altitude to ensure that the UAV obtains better remote sensing
data during the mission.

The flight routes of the two UAVs are kept parallel to
the mission route direction and located on the left and right
sides respectively. The separation distance of the two UAVs
is related to the flight altitude of the UAVs. If the lens pitch
angle of the two UAVs is about 45 degrees, the horizontal
distance between the twoUAVs and the mission route is equal
to the flight altitude of the UAVs. The lens pitch angle of
the UAV varies with the DEM to ensure that the observation
area of the two UAVs has the maximum overlap rate and the
observation centers overlap up as much as possible. If the
UAVs are flown too close together, the parallax will not be
significant enough to calculate accurate positioning results.

The remote sensing images are pushed and streamed
through the RTMP service and aligned by flight data
timestamps. To reduce the computational errors caused by the
delay, the two UAVs need to ensure that the timestamps are
aligned.

B. TARGET DETECTION
In the UAV remote sensing images, the angle and position
differences between the UAV and the target can cause the
target to present different angles and features from the ground
image. Especially when detecting the human body, due to
the distance and angle, it often leads to missed detection or
inaccurate bounding box due to too small target image or
angular tilt, resulting in less accurate target positioning.

In order to solve this problem, we adapt YOLOv7 [31]
for rotating target detection, so that the target can always be
surrounded by an accurate bounding box and the detection
of small targets is improved. The structure of the model
is shown in Figure 2. The model’s output is formatted
as (cls, x, y, long_side, short_side, θ,Conf , 180/2r), where
cls represents the categorical classification of the identified
object. The variables x and y denote the horizontal and
vertical coordinates of the top-left corner of the detection box.
Additionally, long_side and short_side specifically indicate
the lengths of the longer and shorter sides of the detection
box, respectively. θ indicates the angle by which the pixel
coordinate system’s u-axis is rotated clockwise to align with
the longest side. Conf is the probability that the detected
object actually exists. 180/2r represents the confidence level
in the rotation angle of the candidate bounding box for
the object. This method converts angle prediction into a
classification problem by dividing the range of angles into
2r classes, each representing a specific range of angles.
It effectively addresses the cyclical nature of angle prediction,
resulting in more stable output from the model.

In our study, angular information is learned using the
Circular Smooth Label (CSL) method [32]. CSL is a
scheme that implements the idea of angle regression with
classification. CSL is described as Equation 1. g(x) is a
window function, and the window radius is controlled by r .
Each detected target outputs (cls, ϖ, 180/2r) values, which
include cls confidence in the target category, ϖ parameters
for the bounding box (x, y,long_side,short_side, θ),Conf for
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FIGURE 1. Platform structure. Two UAVs independently transmit information to the terminal server, where ground target identification and
positioning are performed. The processed information is then sent back to the UAVs for subsequent operations. The real-time video feed from the
two UAVs is represented by blue boxes, the green boxes delineate the target areas searched by the UAVs based on mission deployment, and the
yellow box displays the UAV’s flight log along with the results of the positioning algorithm.

FIGURE 2. Architecture of the adapted YOLOv7 for rotating object detection. The output of the model is modified to (cls, ϖ, 180/2r ) × 3,
where ϖ represents the bounding box parameters (x, y, long_side, short_side, θ, Conf ), where x and y denote the horizontal and vertical
coordinates of the top-left corner of the detection box. longside and shortside indicate the lengths of the longer and shorter sides of the
detection box and 180/2r is the number of categories for angle classification. cat: Concatenation, Up: Image upsampling. This modification
allows the model to predict the angle of the object as a classification problem, effectively eliminating the boundary problem that often
occurs in regression-based methods.

the object’s existence, and 180/2r confidence in the rotation
angle.

CSL(x) =

{
g(x), θ−r < x < θ + r
0, otherwise

(1)

C. DUAL-UAV STEREOSCOPIC POSITIONING
The main idea of the method is to use Person Re-
identification (ReID) method to identify the same target in
the remote sensing images of UAV from two different views,
and then solve the position coordinates of the target by

establishing the spatial coordinate equation relationship to
achieve high precision stereo position localization.

ReID focuses on identifying and matching the same
pedestrian under different camera views, lighting conditions
and time. After obtaining the pedestrian detection results
from the remote sensing images of two UAVs, the pedestrian
bounding boxes of the two viewpoints are matched to
determine the correspondence of the same target in the two
viewpoints.

In our study, we utilized some existing ReID models,
such as CTL-Model [33], DLFOS [34]. These models were
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FIGURE 3. Dual UAV stereo positioning schematic. Where, F (in, ex, u, v ) represent the mapping relationship between pixel coordinates and
direction vectors in the geocentric space-rectangular coordinate system, with in being the internal reference of the camera and ex being
the external reference of the camera. G(L, B, H) denote the mapping relationship between latitude and longitude and the coordinates of
the geocentric spatial Cartesian coordinate system, L, B, H denote the latitude, longitude and altitude of the UAV, respectively.

FIGURE 4. The variation trend of precision(a) and recall(b) during training.

chosen because they have proven their effectiveness and
robustness in personnel re-identification tasks in previous
studies. Although we did not make any modifications to the
original ReID model, its application in the context of our
study is of significant value. The model plays a key role in
identifying the same target in the remote sensing images of
each of the two UAVs, which is a critical step in our proposed
spatial localization approach.

After determining the correspondence of the targets, the
targets are represented in the coordinate systems of the two
UAVs, respectively, and the spatial coordinate equation can
be constructed by the two representations and the conversion
relationship between the two coordinate systems.

The work use F(in, ex, u, v) to represent the mapping
relationship between pixel coordinates and direction vectors
in the geocentric space-rectangular coordinate system, with
in being the internal reference of the camera and ex being the
external reference of the camera. The work use G(L,B,H )
to denote the mapping relationship between latitude and
longitude and the coordinates of the geocentric spatial
Cartesian coordinate system, L, B, H denote the latitude,
longitude and altitude of the UAV respectively. The spatial

TABLE 1. Performance of different models on the RTX 2070 Super.

coordinate equation can be expressed as:

F(in1, ex1, u1, v1) × s1 − F(in2, ex2, u2, v2) × s2
+ UNITvoe × s3 = G(L2,B2,H2) − G(L1,B1,H1),

(2)

The parameters related to both UAVs are distinguished by the
subscripts 1, 2. s1, s2 represent the scaling of the distance
of the target relative to the UAV along the vector direction
with respect to the vector length, and s3 represents the
error distance, where a smaller error distance means a more
accurate result is obtained. Use [ai, bi, ci] to represent the
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FIGURE 5. Partial pictures of dataset.
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TABLE 2. Part of the UAV’s parameters.

FIGURE 6. Target detection is performed for targets in remote sensing images taken at different locations at the same moment,
and the correspondence between targets is established using the ReID method. The two images in the same column are images of
the same set of different locations taken at the same time, and we have marked the same targets with the same color for
identification. More obvious is the second set of images, where the red anchor box is the corresponding target after
re-identification, and the pink is the target not found in the corresponding figure.

direction vector of the UAV pointing to the target in the
geocentric space right-angle coordinate system, and [a, b, c]
to represent the vector of UAV 1 pointing to 2. Since the
UAV observation positions are different, using the three basis
vectors separately to represent the error direction ensures that
at least one of the three equations has a unique solution. The
equation can be expressed as follows: a1 a2 1

b1 b2 0
c1 c2 0

 ×

 s1
s2
s3

 =

 a
b
c

 , (3)

 a1 a2 0
b1 b2 1
c1 c2 0

 ×

 s1
s2
s3

 =

 a
b
c

 , (4)

 a1 a2 0
b1 b2 0
c1 c2 1

 ×

 s1
s2
s3

 =

 a
b
c

 , (5)

Taking the set of results with the smallest error distance, s3,
the final localization result of the target can be expressed
as:

GPStarget =
1
2
{F(in1, ex1, u1, v1) + G(L1,B1,H1)

+ F(in2, ex2, u2, v2) + G(L2,B2,H2)}, (6)

IV. EXPERIMENTS
According to the classification of flight mode, UAVs can be
divided into fixed-wing UAVs, helicopters, multi-rotor UAVs
and so on. Compared with UAVs of other flight methods,
multi-rotor UAVs can take off and land vertically without
a runway and hover in the air, and it has the best stability
and ease of use. Considering these advantages, we choose
to use a multi-rotor UAV as a remote sensing device for my
experiments.

Two models of UAVs are used in the experiment: the DJI
Mavic 2 Pro and the DJI Phantom 4. The use of different
UAVmodels aim to verify that accurate positioning tasks can
be accomplished using any UAV model that can provide the
necessary parameters for the calculations. The UAV models
are shown in Table 2.
In this section, we demonstrate the effectiveness of this

system in a practical application. The experiment is divided
into four parts: (1) target detection, and (2) target Positioning.

A. TARGET DETECTION
We train YOLOv7 using a remote sensing dataset we
constructed. The dataset has two sources, one part is from the
public dataset VisDrone2019 and the other part is from the
remote sensing images we collected with the UAV. Parts of
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FIGURE 7. Target positioning result display. The detected targets are selected by the target corresponding color box and
marked with the positioning result.

TABLE 3. Target positioning result.

the training and test sets are shown in Figure 5. To find a better
model approach, we also trained several model variants of
YOLOv5. The test results are shown in Table 5. The column S

in the table represents the time taken by the model to make
predictions for a single image. The trend of precision and
recall during training is shown in Figure 4.
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B. TARGET POSITIONING
In order to compare the effectiveness of the localization
platform in different scenarios, we selected different types of
scenarios for localization experiments. These scenes include
gentle areas (Yunnan Normal University, 24◦51′51′′ N
102◦50′49′′ E), forests (Gudian Wetland Park, 24◦46′34′′ N
102◦44′57′′ E), mountains and cliffs (Xishan Forest Park,
24◦57′6′′ N 102◦38′24′′ E). Each detected target and the
predicted position are labeled in Figure 7. The error results
of the target localization are shown in Table 3.
The positioning error distance is obtained by calculat-

ing the spatial distance between the actual and predicted
coordinates. The results shown in the table indicate that in
complex scenarios, 76.5% of the position accuracy errors
remain within 5m. Positioning accuracy in extremely steep
environments is generally lower than in other environments.
However, the error can still be kept within 8m. In conclusion,
this approach can meet the positioning requirements in
complex situations.

V. CONCLUSION
This paper presents a new method for targeting using dual
UAVs. The method improves the accuracy of target local-
ization in complex scenes. Our proposed method requires
establishing correspondence between targets in dual UAV
remote sensing images. The correspondence relationships
are predicted by a trained person re-identification model.
Using the internal and external parameters of the dual
UAV, we establish the equation of spatial three-dimensional
coordinate relations, which in turn enables us to find the exact
position of the target. This method accomplishes accurate
localization of moving targets in complex terrain. In our
futurework, wewill further explore ground target localization
methods in complex multi-view remote sensing scenes by
expanding datasets and incorporating semantic guidance.
We aim to apply these methods to subsequent tracking and
semantic analysis tasks. Additionally, we strive to enhance
the computational speed and detection accuracy of ground
target localization methods.
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