
Received 3 March 2024, accepted 19 March 2024, date of publication 21 March 2024, date of current version 27 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380198

Implementation of Grover’s Iterator for Quantum
Searching With an Arbitrary Number of Qubits
SIHYUNG LEE 1 AND SEUNG YEOB NAM 2, (Senior Member, IEEE)
1School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, South Korea
2Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea

Corresponding author: Sihyung Lee (sihyunglee@knu.ac.kr)

ABSTRACT Grover’s algorithm harnesses the power of quantum computing to swiftly locate specific
elements in an unstructured database, outperforming classical computers in tasks like database searching.
This algorithm capitalizes on the unique ability of qubits to be in both 0 and 1 states simultaneously
(superposition), allowing it to scan the entire search space at once. It then boosts the probability of the
target element, making it more prominent. While the foundational concepts of Grover’s algorithm are well-
documented, practical implementation using quantum operators, especially for large search spaces, remains
less explored beyond basic examples with a small number of qubits. Existing general synthesis techniques
often involve numerous operators or are time-consuming. Our proposed methods specifically address the
amplitude-amplification component of Grover’s algorithm for any size of search space. These methods
detail the required types and quantities of qubits and operators, emphasizing minimal usage and efficient
assembly. Developed and evaluated in Python, our methods consistently identified target elements with over
95% accuracy and achieved configurations comparably compact as those in the existing literature but at
a faster pace. We anticipate that these methods facilitate practical implementations of Grover’s algorithm
across various domains.

INDEX TERMS Grover’s algorithm, program synthesis, quantum algorithm, quantum computing, quantum
program.

I. INTRODUCTION
Quantum computers operate on a fundamentally different
basis than classical computers, with the potential to tackle
challenges that are currently tough for classical computers.
Their key distinction lies in using qubits for data processing.
Unlike classical bits that are either 0 or 1, qubits can exist
in a state of superposition, representing both 0 and 1 along
with their respective probabilities [1]. This unique feature
allows quantum computers to process multiple possibilities
at once, offering faster solutions for various problems than
classical computers. However, today’s quantummachines are
still in their early stages, handling a few hundred qubits
and facing higher error rates compared to classical comput-
ers [2]. Despite these limitations, advancements in quantum
technology are ongoing, and it is anticipated that quantum

The associate editor coordinating the review of this manuscript and
approving it for publication was Hamdi Abdi.

computers will eventually match or surpass the performance
and reliability of classical computers in the future [3].

As quantum computing technology progresses, researchers
have developed several algorithms that exploit the unique
properties of quantum computers. Grover’s algorithm [4]
is one notable example. It addresses the challenge of
search through unstructured data, offering a significant speed
advantage over classical computer solutions. The algorithm
achieves this by creating an equal superposition of states
across a group of qubits, allowing it to examine the entire
search space simultaneously. It then selectively enhances the
probability of the desired outcome, making it more easily
identifiable among other possibilities. With the advent of
faster and more dependable quantum hardware, Grover’s
algorithm is poised to accelerate a range of applications,
including database searches, cryptanalysis, pattern recogni-
tion, quantum simulations, and more [5].

While existing research explains themechanics of Grover’s
algorithm and its basic steps throughmathematical equations,

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 43027

https://orcid.org/0000-0001-7945-3763
https://orcid.org/0000-0001-8249-4742


S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

these studies primarily demonstrate its implementation using
quantum operators for small search spaces, limited to a few
qubits [5], [6], and do not detail how to scale it to larger
spaces. Extending these implementations to a larger search
space is not straightforward from these small-scale examples.
This complexity arises partly because the operators used on
quantum computers, such as Hadamard and phase shift [3],
manipulate qubits in line with quantum physics principles,
which are often perceived as counterintuitive. Therefore, it is
challenging to understand their roles and to predict the out-
comes whenmultiple operators are employed in sequence [7].
Furthermore, adding one qubit doubles the number of states
that a quantum program needs to consider and manipulate.
The number of such potential quantum programs also grows
exponentially with the addition of qubits. Consequently,
as more qubits are required, it becomes increasingly demand-
ing to both find the right combination of operators that
implement a desired function and to optimize the implemen-
tation [8], [9].
Alternatively, general methods for implementing any quan-

tum algorithm can be applied [8]. Some of these methods
progressively align operators to the required configuration
using set rules [10], [11], [12], [13], [14], [15], [16]. These
methods can quickly produce implementations, but they often
lead to an exponential increase in the number of operators as
the qubit count grows [17]. Other methods pursue a broader
exploration of potential implementations, which can result
in configurations with fewer operators [18,7,19,20,21,22].
However, this exploration is time-consuming, making it fea-
sible only for systemswith a relatively small number of qubits
in a practical timeframe. For example, recent synthesis frame-
works, such as QSyn [21] and QFAST [22], can synthesize
quantum programs with up to 5 qubits but fail to synthesize a
6-qubit program within an hour. The primary reason for this
limitation is the exponential growth of the search space and,
correspondingly, the exploration time as the number of qubits
increases [23]. This remains the case even after applying their
optimization techniques.

We introduce methods for implementing a crucial part of
Grover’s algorithm, applicable to any size of search space.
This key part, amplitude amplification, selectively boosts the
likelihood of achieving the desired result and is suitable for
various search objectives. We demonstrated that the imple-
mentations generated by our methods successfully identify
the intended outcomes in over 95% of cases. Additionally,
the proposed methods efficiently generate implementations
where the number of operators increases linearly with the
qubit count representing the search space.

In Table 1, we summarize the differences between previous
studies and our proposed methods. We also list our main
contributions as follows.

• We offer guidance on applying Grover’s algorithm to an
arbitrary size of search space, detailing the numbers and
types of qubits and operators needed, and instructions
for assembling these elements. This includes strategies
for optimizing the process, such as reducing the number

TABLE 1. Differences between previous studies and proposed methods.

of operators and stages through exploiting the global
phase difference and efficiently reusing ancilla qubits.

• We tested our methods across various search space sizes,
consistently achieving over 95% accuracy in identifying
desired outcomes. Compared to existing methods, our
approach requires moderate resources (with the number
of operators growing linearly with the qubit count),
slightly more than the minimum used by existing meth-
ods, yet our methods produce implementations more
quickly.

• We developed a synthesizer in Python, making the
code and Grover’s algorithm implementations available
online for other researchers to review and utilize.,1 we
have made available our synthesizer codes along with
sample results.

The paper is organized as follows. Section II covers quan-
tum programming fundamentals and Grover’s algorithm,
along with existing methods related to ours. Section III
details our proposed methods, including the representation
of target functions and the implementation with quan-
tum operators. Section IV assesses our methods against
current practices. Section V concludes the study and out-
lines future research directions. Additionally, we include
a glossary of terms used in the paper, as shown in
Table 2.

II. BACKGROUND AND RELATED WORK
In this section, we cover the fundamentals of quantum pro-
gramming (Section II-A), Grover’s algorithm (Section II-B),
and related work (Section II-C). Readers already acquainted
with quantum programming and Grover’s algorithmmay pre-
fer to begin directly with Section II-C.

1On our GitHub repository at https://github.com/sihyunglee26/Grover-
Amplitude-Amplification-23/tree/main

43028 VOLUME 12, 2024



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

TABLE 2. Summary of terms.

A. BACKGROUND ON QUANTUM PROGRAMS
In a classical computer, a bit serves as a fundamental unit of
data. A quantum computer employs a similar concept known
as a qubit. However, unlike classical bits, which can only be
0 or 1, a qubit can exist in a superposition of both 0 and
1 simultaneously [1]. This means that it can have a certain
probability of being 0 and another probability of being 1,
while also having specific phases associated with each state.
Upon measurement of the qubit, its value collapses to either
0 or 1, determined by the assigned probabilities.

To represent such a qubit’s state, we use a vector composed
of two complex numbers s0 and s1, as shown in Notation 1 in
Table 3. The squares of the absolute values of these complex
numbers, |s0|2 and |s1|2, respectively, represent the probabil-
ities of the qubit being 0 and 1, such that |s0|2 + |s1|2 =

1. Additionally, the angles they form with the positive real
axis correspond to the phases associated with each state. For
instance, (1/

√
2, 1/

√
2) indicates equal probabilities 1/2 of

the qubit being 0 and 1 with the same phase. On the other
hand, (1/

√
2, −1/

√
2) represents equal probabilities, but with

phases differing by π radians. These unique properties of
qubits allow quantum computers to perform complex com-
putations more efficiently in certain scenarios compared to
classical computers, and the Grover’s algorithm is one such
example.

When multiple qubits are present, their joint state is
expressed using the Kronecker product with symbol ⊗.
In Table 3, Notation 2 illustrates the combined state of two
qubits: (s0, s1) and (t0, t1). The Kronecker product results
in four terms: s0t0, s0t1, s1t0 and s1t1, which respectively
represent the probabilities and phases of the qubits being ‘00’,

TABLE 3. Notations for quantum programs.

‘01’, ‘10’ and ‘11’. For example, let us consider two qubits
represented as (1/

√
2, 1/

√
2) and (1/

√
2, −1/

√
2). Their joint

state using the Kronecker product becomes (1/2, −1/2, 1/2,
−1/2) indicating equal probabilities of 1/4 for the qubits to be
‘00’, ‘01’, ‘10’, and ‘11’, respectively. The phases associated
with these values are 0, π , 0, and π , respectively. In a similar
manner, when dealing with n qubits, their collective state is
represented by a vector comprising 2n complex numbers. This
vector captures the probabilities and phases associated with
the various quantum states of the combined qubit system.

We now delve into the operations on qubits. A quantum
operation on a single qubit manipulates the qubit’s state
by adjusting its probabilities and phases. This operation is
represented mathematically by the multiplication of a 2 × 2
unitary matrix [24], as illustrated in Notation 3 in Table 3.
Accordingly, the operation ensures that the probabilities of
the qubit’s states add up to 1 after manipulation. Also,
an inverse operation can be applied through the conjugate
transpose of the original matrix. Table 3 showcases three
fundamental quantum operations: Hadamard (H ), NOT (X )
and Pauli-Z (Z ). H evenly distributes the probabilities into
states 0 and 1, creating a superposition; X interchanges the
probabilities and phases of states 0 and 1; and Z reverses the
sign of state 1, while maintaining the state 0 as it is.

Operations on multiple qubits are expressed using the
Kronecker product of the corresponding matrices, following
a similar approach as how multiple qubits are represented.

VOLUME 12, 2024 43029



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

As such, operations on n qubits are represented by the mul-
tiplication of a 2n × 2n unitary matrix. In Table 3, Notation
4 illustrates operationsMi andMi+1 performed on two qubits
i and i+1, respectively. Their joint effect is expressed as
Mi ⊗ Mi+1. The first example on the right demonstrates
the application of H on qubit 1 and X on qubit 2, resulting
in the combined operation H ⊗ X . In the second example,
no operation is applied to qubit 1, andH is applied to qubit 2,
resulting in the combined operation I ⊗ H . I represents the
identity matrix, which is equivalent to no operation being
applied.

Finally, quantum programs (or algorithms) consist of a
sequence of operations applied to qubits, one after another.
When applying a single operation, its corresponding matrix
is multiplied with the qubits’ state. As a result, when multiple
operations are applied in series, their corresponding matrices
are multiplied in reverse order. In Table 3, Notation 5 illus-
trates the application of k consecutive operations,M1 through
Mk , on n qubits.M1 is applied first, whileMk is the last oper-
ation in the series. The operations performed simultaneously
on the qubits form individual stages, with each operation
Mi representing one stage. The total number of stages in
the program is thus k . The joint effect of applying these k
stages is the product of the corresponding matrices in reverse
order, represented asMk × . . .× M2 × M1. For example, the
program shown on the right demonstrates the application of
two stages: H ⊗ X followed by I ⊗ H , on 2 qubits. The
program, as a whole, performs the operation (I ⊗ H ) ×

(H⊗X ). In most cases, the final stage of the program involves
measurement, which observes the qubits and provides com-
putational results. While not explicitly shown in the example,
measurement is a typical step in quantum programs to extract
meaningful information from the quantum state.

B. GROVER’S ALGORITHM
Grover’s algorithm [4] harnesses quantum computers to solve
general search problems more efficiently than classical com-
puters. The algorithm is designed to locate a specific item that
meets a given condition among N items. It operates under the
assumption that the N items are randomly distributed, with
no known relationships regarding their relative positions.
In classical computing, on average, a search for the target item
would require exploring N /2 items, leading to a time com-
plexity proportional to N . However, Grover’s algorithm takes
advantage of quantum computing and reduces the search
time to be proportional to

√
N . This speedup is achieved by

exploiting quantum superposition.
Fig. 1 presents an overview of Grover’s algorithm. The

algorithm representsN items with n= ⌈log2(N )⌉ qubits, such
that each combination of the qubits’ values corresponds to
one distinct item. For examples,N = 4 items are encoded into
n = 2 qubits, where the qubits being ‘00’ through ‘11’ repre-
sent items 1 through 4, respectively. In Fig. 1, the n qubits are
termed as data qubits. Additionally, the algorithm employs
ancilla qubits, which, while not representing data, aid in
the algorithm’s execution. In step 1, the algorithm allocates

FIGURE 1. Overview of Grover’s algorithm.

identical probabilities to each of the N items by forming a
superposition withH . The subsequent steps, 2 and 3, increase
the likelihood of the target item and diminish those of the
rest. By consistently applying these steps proportional to

√
N

times (i.e., ⌊π
√
N /4⌋ times [25]), the probability of the target

item surpasses 90%. Finally, upon measuring the data qubits,
there is a more than 90% probability of selecting the target
item. Repeating the procedures and taking measurements
allows us to accurately identify the target item with a high
degree of certainty.

We now detail the functions of the three steps. In step 1, the
qubits undergo a one-time setup process. The data qubits are
placed into a superposition with equal probabilities. Fig. 2(a)
illustrates the condition of data qubits following the com-
pletion of step 1, with 4 items (N = 4) encoded using
2 qubits (n = 2). Each of the four items is in an equal
superposition with an amplitude of 1/2, giving them all an
identical probability of (1/2)2 = 1/4. The ancilla qubits also
undergo initialization procedures, and the specific configura-
tions depend on the implementations of steps 2 to 3.

FIGURE 2. State of data qubits following stages 1 to 3 for N = 4 items
encoded with n = 2 qubits, with ‘00’ as the target state.

In step 2, the target item undergoes a sign inversion. For
example, as in Fig. 2(b), if the target is represented by ‘00’
and has a state of 1/2, its state is transformed into −1/2,
equivalent to a phase shift of π radians. All other states are
unaffected. This inversion serves to highlight the target item
among the others, enabling step 3 to subsequently amplify its
probability. This second step is termed the ‘‘oracle’’ because
it designates whether an item is the target. One might ques-
tion: if we can already identify the target, why not directly
retrieve it? Verifying a potential solution is often simpler
than discovering it. Let us consider the prime factorization
of a positive integer, m. Given prime numbers p and q, it is

43030 VOLUME 12, 2024



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

straightforward to confirm that p× q=m, yet more challeng-
ing to identify these numbers initially. The oracle, leveraging
the superposed input states, examines all items at once and
signifies the target by inverting its sign.

In step 3, the amplitude of the item with the inverted
sign is enhanced, while the amplitudes of the others are
reduced. This is accomplished by reflecting the states about
their average value. Fig. 2(c) depicts the amplitudes after
applying step 3 to the conditions shown in Fig. 2(b). The
average amplitude across the four items is computed as
(−1/2 + 1/2 + 1/2 + 1/2) / 4 = 1/4. Since the target
item’s state is sign-inverted to −1/2, the average is far from
the target and slightly less than those of non-target items.
Consequently, flipping the states about the average amplifies
the target item’s amplitude (1/4 + (1/4 − (−1/2)) = 1),
and reduces the non-target items’ amplitudes closer to zero
(1/4 − (1/2 − 1/4) = 0).

This paper concentrates on the execution of step 3 for a
system comprising an arbitrary count of qubits, denoted as
n. Implementing step 1 is relatively simple: each qubit is
initially set to 0, followed by the application of an H to
each. The configuration of step 2 is contingent upon the spe-
cific search problem being addressed, as different problems
necessitate unique solution criteria and, consequently, dis-
tinct verification processes. Although step 3’s methodology
is consistent across a range of problems, devising a universal
implementation for an unspecified number of qubits is not
straightforward.

C. RELATED WORK
This paper focuses on the implementation of step 3 (ampli-
tude amplification) in Grover’s algorithm; consequently,
we review the literature related to this step. There are also
existing studies on the implementation of step 2 (the oracle)
for various applications, such as cryptanalysis [26].
Previous literature offers implementations for step 3 that

are tailored to specific numbers of qubits [5], [18], [27].
For instance, Fig. 3 illustrates two distinct approaches to
carrying out step 3 for n = 2 qubits. However, these exam-
ples lack a method for extending the implementations to
accommodate a variable number of qubits. The foundational
paper on Grover’s algorithm [4] suggests that step 3 can be
broken down into a sequence of operations: H⊗n

× D ×

H⊗n, with D representing a diagonal matrix. Yet, it does not
detail how to operationalize D. Building on this notion, our
research provides a method to implementD, regardless of the
qubit count n. This proposed approach requires operators and
stages that scale with n.

Other research offers techniques to implement a diagonal
matrix by employing controlled operators designed for 2 and
3 qubits [28]. Our approach, while similarly employing con-
trolled operators, is fine-tuned for the specific requirements
of Grover’s algorithm. We streamline the diagonal matrix,
such that it is easier to implement, while retaining full func-
tionality through repeated applications during step 3. We also

FIGURE 3. Sample implementations of stage 3 for n = 2 qubits.

identify controlled operators suitable for this matrix, specif-
ically CZ and CCNOT operators, and recommend strategies
for reducing the number of ancillary qubits needed by reusing
them wherever feasible. Furthermore, we demonstrate that
our implementation method leads Grover’s algorithm to
correctly locate the target itemwith a high probability, as con-
firmed by simulations across a range of qubit numbers.

Various studies propose universal strategies for construct-
ing any unitary matrix [10], [11], [12], [13], [14], [15], [16].
These approaches typically involve a consistent repertoire
of operators arranged by predefined rules. Each operator
placement incrementally closes the gap toward the desired
matrix. For example, in the process depicted in Fig. 4,
Shende et al. [13] break down an n-qubit unitary matrix
into a combination of (n-1)-qubit unitaries and controlled
operations. This breakdown persists until the unitaries are
simplified into 1 or 2 qubits in size, at which point they
are translated into the available operator set [14]. In general,
while these rule-based approaches can swiftly synthesize a
unitary matrix, they tend to require a number of operators
that grows exponentially with the number of qubits, n [17].
In contrast, our method is specifically tailored for Grover’s
algorithm, crafting its step 3 with operators that increases
linearly with n.

FIGURE 4. Example of rule-based synthesis of a unitary matrix.

To minimize operator counts in unitary-matrix synthe-
sis, certain strategies scout through a multitude of potential
implementations, favoring those that employ the fewest oper-
ators [18,7,19,20]. Given the vastness of the search area,
these methods prioritize efficient ways to narrow the possible
choices. For instance, some methods learn various potential
implementations and leverage this knowledge to isolate a sub-
set of operators that appears most efficient for constructing
the desired matrix [18]. Alternatively, other methods adopt
stochastic search techniques, such as ant colony optimiza-
tion [7] and genetic algorithms [19], [20], which refine an
initial program by randomly applying adjustments—adding,
replacing, or reordering operators. The efficacy of each

VOLUME 12, 2024 43031



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

FIGURE 5. Reflection of state s around the mean.

adjustment, in terms of how closely the refined program
conforms to the desired matrix, informs the likelihood of
its selection in subsequent iterations. This process continues
until the output aligns with the matrix.

Since search-based methods assess a wider array of imple-
mentations than rule-based counterparts, they can lead to
more succinct solutions (e.g., the manual construction in
Fig. 3(a) versus the search-derived result in Fig. 3(b)). How-
ever, the time required to traverse the possibilities increases,
and the search-based techniques yield practical outcomes
within a few hours for systems with fewer than 10 qubits [21],
[22]. Furthermore, scaling the findings for systems with
over 10 qubits is not straightforward. Our proposed method,
in contrast, expedites the development of implementations for
any large number of qubits, n, with the growth in operator
count proportional to n. This not only speeds up the process
but also ensures scalability for larger quantum systems.

III. SYNTHESIS METHODS FOR STEP 3
In this section, we delineate the process of executing step 3,
known as the amplification step, of Grover’s algorithm for
any given number of qubits, n. We start by portraying
step 3 as a unitary transformation (Section III-A) and pro-
ceed to demonstrate its realization using quantum operators
(Section III-B).

A. UNITARY MATRIX REPRESENTATION OF STEP 3
Step 2 inverts the sign of the target item, setting the stage for
its amplification in step 3. This amplification step involves
a reflection operation where the quantum states of the items
aremirrored about their collectivemean value. This reflection
operation affects the states differently, depending on their
magnitude relative to the mean. We consider two cases: one
where the state value, si, is greater than the mean, as illus-
trated in Fig. 5(a), and the other where si is less than or equal
to the mean, as shown in Fig. 5(b). Regardless of the case,
the reflection is described by the same transformation which
results in a new state value of 2 × mean − si.
The mean of N = 2n states is

∑N
k=1 sk / N , and thus

the transformed state for si is expressed as 2 × mean

− si = {2s1 + 2s2 + . . .+ 2si−1 + (2 − N )si + 2si+1 + . . .+
2sN−1 + 2sN} / N . This transformation is achieved through
multiplying the following unitary matrix RN across N states
(s1, s2, . . . , sN−1, sN ). The diagonal elements of this matrix
are (2 − N ) / N , while the remaining elements are 2 / N .

RN =


(2 − N )/N 2/N 2/N · · · 2/N

2/N (2 − N )/N 2/N · · · 2/N
...

...
...

. . .
...

2/N 2/N 2/N · · · (2 − N )/N


For instance, if there are N = 4 items represented by

n = 2 qubits, the corresponding reflection matrix and the
altered states are as follows. The matrix’s diagonal elements
are −2/4, and the other elements are 2/4. When this matrix
multiplies each state si, the state is modified to be 2 × mean
− si. As shown in Section II-B, this reflection amplifies the
amplitude of the target item with inverted sign, simultane-
ously decreasing the amplitudes of the other items.

R4 ×


s00
s01
s10
s11

 =


−2/4 2/4 2/4 2/4
2/4 −2/4 2/4 2/4
2/4 2/4 −2/4 2/4
2/4 2/4 2/4 −2/4

 ×


s00
s01
s10
s11



=


2 × (s00 + s01 + s10 + s11) /4 − s00
2 × (s00 + s01 + s10 + s11) /4 − s01
2 × (s00 + s01 + s10 + s11) /4 − s10
2 × (s00 + s01 + s10 + s11) /4 − s11


RN qualifies as a unitary matrix because when RN is mul-

tiplied by its conjugate transpose R∗
N , and vice versa, the

result is the identify matrix I (i.e., RN × R∗
N = R∗

N × RN =

I ). In fact, R∗
N is equal to RN , which means that applying

R∗
N following RN reverses each state back to its initial state.

Consequently, the overall impact of this sequence results in
the identity matrix I .

B. REALIZATION USING QUANTUM OPERATORS
The unitary transformation corresponding to step 3 of
Grover’s algorithm, denoted as RN , can be factored into a
product of three matrices. Mathematically, this is represented
as RN = H⊗n

× D × H⊗n [4]. Here, H⊗n signifies the
Kronecker product of n Hadamard matrices, expressed as
H ⊗ H ⊗ H⊗. . .⊗H , and D stands for a diagonal matrix.
Within matrix D, the leading diagonal element is 1, while all
other diagonal elements are set to−1. The following equation
illustrates the decomposition of the unitary matrix RN as
described.

RN =H⊗n
×D× H⊗n

= H⊗n
×


1 0 0 · · · 0
0 −1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

 × H⊗n

In the decomposition of the matrix RN , the term H⊗n

corresponds to the simultaneous application of n Hadamard
operators to the n qubits, as depicted in Fig. 6. Therefore,

43032 VOLUME 12, 2024



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

FIGURE 6. Realization of RN as H^(⊗n) × D × H^(⊗n).

the remaining task is to realize the implementation of the
diagonal matrix D.

We opt for −D instead of D because, despite being
functionally similar, −D can be implemented using fewer
operators. The functional equivalence of D and −D arises
from the fact that substituting −D for D still achieves
reflection about the mean of the states, albeit with an addi-
tional inversion of their signs. As a result, the target state’s
amplitude remains amplified relative to the non-target states.
Depending on the number of qubits, n, steps 2 and 3 can be
applied again. Each time, the oracle in step 2 will reinvert the
target state’s sign, ensuring it consistently opposes the signs
of the other states, which sets the stage for its amplification
in step 3.

This type of functional similarity is known as equivalence
under a global phase. When two matrices, M1 and M2, differ
by only a global phase factor (i.e., M1 = eiθ × M2), they
can be considered equivalent in quantum computing because
their physical effects on a quantum state are often indistin-
guishable [9], [22]. However, this equivalence does not hold
in every context and therefore needs to be verified before
applying it.

In the matrix −D, the first element on the main diagonal
is −1, while all other diagonal elements are 1. The effect
of this operation is that the quantum state that represents all
zeros across n data qubits (e.g., ‘00’ for when n = 2) is sign-
inverted, leaving all other states unaffected. For example,
withN = 4 items encoded by n= 2 qubits, the matrix−D and
the resulting statemodifications are as shown below. The state
denoted by ‘00’ undergoes a sign inversion, while the states
‘01’, ‘10’, and ‘11’ remain as they are. Thus, implementing
−D requires a mechanism to single out the all-zero state and
to exclusively invert its sign. We use the conditional operator
CCNOT to identify the all-zero state and CZ to invert its sign.

−D×


s00
s01
s10
s11

 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ×


s00
s01
s10
s11

 =


−s00
s01
s10
s11


In Table 4, we compile the methods for constructing the RN

matrix. The methods employ four quantum operators {H , X ,
CZ, CCNOT}, all of which are supported in many quantum
computing platforms [6], [27]. The operators H and X act on
single qubits, and they respectively generate a superposition
and toggle between state 0 and state 1. TheCZ operator works
on a pair of qubits, and it applies the Z operation to the
second qubit when the first qubit is in state 1. The Z operation
inverts the sign of state 1, as described in Section II-A. The

TABLE 4. Algorithm for implementing step 3 of grover’s algorithm.

CCNOT operator, also known as the Toffoli gate, is a three-
qubit operator that applies the X operation to the third qubit
onlywhen the first two qubits are both in state 1. Additionally,
the methods require n−1 ancilla qubits, which are initialized
to the zero state at the start of the algorithm.

The methods for synthesizing RN proceed in this man-
ner: line 14 executes H⊗n, lines 17−29 perform −D, and
line 32 applies H⊗n again, culminating in the formation
of −RN = H⊗n

× −D × H⊗n. Applying H⊗n involves
subjecting each of the n data qubits to an H operator
(lines 14 and 32).

To enact −D, which targets the all-zero state for a sign
inversion, we first transform this all-zero state to an all-one
state by employing n X operators on the data qubits (line 17).
This step facilitates the upcoming CCNOT operators, which
are designed to detect ones. Then, a series of n − 1 CCNOT
operators, aided by n− 1 ancilla qubits, are employed (lines
19−21) to flag the last ancilla qubit, a[n−1], with state 1 if all
data qubits are in state 1. This triggers the CZ operator to flip
the sign of the data qubits (line 23). The ancilla qubits are then
reset to zero by reversing the n− 1 CCNOT operations (lines
25−27), preparing them for reuse in future iterations of the
process. The final step involves reapplying n X operators to
the data qubits (line 29), reverting the all-one state to all-zero,
thus restoring the correct configuration for the next sequence
of steps 2−3.

Fig. 7 demonstrates the outcome of the procedure in
Table 4, when applied to a system with n = 4 qubits. The

VOLUME 12, 2024 43033



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

FIGURE 7. Realization of RN for n = 4 based on Table 4.

processes at the beginning (stage 1) and the end (stage 11)
represent the application of H⊗n, and the intermediate stages
(stages 2 through 10) implement the operation−D.Within the
−D segment, stage 2 transforms the all-zero state in the data
qubits into an all-one state. This sets off stages 3 to 5, which
utilize the ancilla qubits to mark the last ancilla qubit a [3].
Stage 6 then utilizes this marking to flip the sign of the data
qubits. Stages 7 to 9 reset the ancilla qubits to zero, preparing
them for reuse in the algorithm’s next iterations. Similarly,
stage 10 switches the data qubits from the all-one state back
to the all-zero state, ensuring that they are ready for further
iterations of the algorithm.

Our proposed approach presupposes that n is greater than 1
(line 05). We do not address scenarios where only a single
data qubit is present, corresponding to a case with N =

2 items. The rationale behind this exclusion is that Grover’s
algorithm loses its efficacy in such a minimal search space.
When N = 2, the oracle’s action of sign-inverting one of the
two possible states results in them having equal but oppositely
signed amplitudes. Consequently, the average amplitude of
these states becomes zero. As a result, step 3, reflection
around the mean, fails to alter the relative probabilities of the
states, merely leading to a sign inversion of both. This renders
Grover’s algorithm ineffectual for N = 2.
To assess the effectiveness of the synthesized outcomes,

we employ three metrics that align with those used in prior
research [9], [22]: (i) the number of stages, (ii) the number of
operators, and (iii) the number of ancilla qubits required. The
rationale behind these metrics is as follows: minimizing the
number of stages and operators can lead to reductions in both
computational time and potential errors, while the number of
qubits is a critical consideration given their status as a scarce
resource on many quantum platforms. For the second metric,
we count each n-qubit operator as contributing n towards
the total count. For example, a sequence containing a single-
qubit H operator, a two-qubit CZ operator, and a three-qubit
CCNOT operator would tally up to 1 + 2 + 3 = 6 operators,
reflecting the increased resource demand of larger n-qubit
operators.

Table 5 presents a summary of these metrics. The method
we propose requires two stages of H⊗n, two stages involv-
ing X operators, 2(n – 1) stages of CCNOT operators,
and one stage of a CZ operator, adding up to a total of

TABLE 5. Quality metrics of synthesis outcomes.

2n + 3 stages. Each stage involving H and X operators
consists of n operators, while each CCNOT stage includes
a single 3-qubit operator, and the CZ stage incorporates a
2-qubit operator, cumulating to 10n – 4 operators in total.
Additionally, n − 1 ancilla qubits are employed across the
CCNOT and CZ stages. In summary, all three of these evalua-
tive metrics scale linearly with the number of qubits, n. When
considering the number of items, N , these metrics scale with
the logarithm base 2 of N , given that n = ⌈log2(N )⌉.

IV. EVALUATION
We implemented and demonstrated the proposed methods,
as outlined in Section III. In Section IV-A, we confirmed that
our implementation effectively recognizes target items across
a range of qubit numbers, n. In Section IV-B, we assessed
the resource efficiency of our methods, relative to those in
previous studies.

A. FUNCTIONAL VERIFICATION OF THE PROPOSED
IMPLEMENTATION
Leveraging the techniques introduced in Section III,
we implemented and executed Grover’s algorithm for a
spectrum of qubit counts, n. Subsequently, we conducted
measurements on the data qubits to evaluate the frequency
with which they accurately identified the target items. Our
implementations were crafted using the Qiskit library [29]
and executed on IBM’s quantum computing platforms. In par-
ticular, we used the AerSimulator backend [30].

We implemented the three steps of Grover’s algorithm
(Fig. 1), in the following manner. Having already detailed
the implementation of step 3 in Section III-B, we now elu-
cidate the implementation of steps 1 and 2. For step 1, the
initialization, we assigned all data qubits the state zero and
then applied an H operator to each, generating an equal
superposition across the data qubits. This prepares the ground
for steps 2 and 3, which are responsible for amplifying the
target item’s probability. We also arranged n ancilla qubits
in state zero. Specifically for the final ancilla qubit, a[n],
we induced the state (1/

√
2, −1/

√
2) by first applying an X

operator and then an H operator. When step 2 identifies the

43034 VOLUME 12, 2024



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

FIGURE 8. Realization of step 1 and step 2 for n = 4.

target item, it alters the state to (−1/
√
2, 1/

√
2), effectively

sign-inverting the target item.
It might raise questions as to how the sign inversion of

an ancilla qubit, a[n], results in the sign inversion of the
target state among the data qubits. The data qubits, placed in
superposition, process multiple items simultaneously. Within
this set, the ancilla qubit a[n] undergoes sign inversion solely
for the target item, while its state remains unchanged for all
other items. This interaction forges a unique link between
the sign-inverted a[n] and the target item—a phenomenon
known as entanglement [1], [24]. Entanglement implies that
any operation affecting one part of an entangled pair impacts
the whole system. Therefore, flipping the sign of the ancilla
qubit a[n] is reflected across the entangled pair, effectively
flipping the sign of the target state within the data qubits.

We implemented step 2 of Grover’s algorithm under the
assumption that the target item is the all-one state. Should the
target contain any zeros in specific qubits q[i], we can initially
perform X operations on these q[i] to convert the target into
an all-one state, and then proceed as detailed next. We located
the target using a series ofCCNOT operators. These operators
enable us to discern the all-one target state and execute an
X operation on the last ancilla qubit, a[n]. Given the initial
state of a[n] set during step 1, the X operation transforms it to
(−1/

√
2, 1/

√
2), corresponding to a sign inversion. Following

this, a sequence of conditional operations is executed in
reverse, which resets the ancilla qubits a [1] through a[n− 1]
to their original zero state. This reset ensures that the ancilla
qubits are ready for reuse in the subsequent application of
step 3.

Fig. 8 illustrates the implementation of steps 1 and 2 for
n = 4. The initial stages 1 and 2 correspond to step 1 of
Grover’s algorithm, initializing both data and ancilla qubits.
Subsequent stages, 3 to 7, align with step 2, the oracle.
Among them, stages 3 to 5 detect the all-one state in data
qubits via CCNOT operators and invert the target item’s sign
by applying an X operation to the last ancilla qubit, a[n].
Stages 6 and 7 then reverse this sequence of conditional
operations, resetting the ancilla qubits a [1] to a[n − 1] to
their initial zero state. Finally, the stages precede the imple-
mentation of step 3, as depicted in Fig. 7.

TABLE 6. Results of functional verification for various qubit counts.

Since our paper primarily focuses on the implementation of
step 3 of Grover’s algorithm, we do not extensively explore
the specifics of configuring step 2, particularly in terms of
mapping a given search space of size N to n qubits. For
our purposes, we operated under the assumption that the
target is encoded as the state with all qubits set to one, and
accordingly, we tailored step 2 to invert the sign of this
specific target state. However, in practical applications, the
configuration of step 2 varies depending on the particular
search problem at hand. Each problem has its own set of
solution requirements and, therefore, requires different veri-
fication processes. In future research, we aim to delve into the
nuances of implementing step 2, with the goal of developing
and sharing guidelines that are broadly applicable to a variety
of search objectives.

We executed the implementations for a range of qubit
counts, n, and the results are compiled in Table 6. For each
value of n, we performed steps 2 and 3 ⌊π

√
N /4⌋ times [5]

followed by a measurement of the data qubits to capture a
single outcome. This process was repeated a thousand times
to calculate the success rate at which the implementations
accurately determined the target item. Our results indicate a
high success rate, with the target item being correctly identi-
fied in over 98.65%of the trials. This confirms the correctness
of the proposed implementation methods. While there was
a failure rate of 1.35%, additional replications and measure-
ments would likely yield the correct target identification.

The number of iterations for steps 2 and 3 (i.e., ⌊π
√
N /4⌋)

assumes the presence of a single target in the search space.
When multiple targets exist, adjusting the number of itera-
tions to ⌊π

√
N/M /4⌋ in the implementation can yield one

of the targets with a probability exceeding 90% [25]. In this
equation, M represents the number of targets, which can be
estimated using a quantum counting algorithm as demon-
strated in [31]. In this context, subsequent studies [32], [33]
propose algorithms that can identify one of multiple targets
without needing to pre-estimate the number of targets. In our
future work, we plan to integrate such algorithms into our
implementation.

VOLUME 12, 2024 43035



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

B. COMPARATIVE ANALYSIS OF RESOURCE EFFICIENCY
We evaluated the resource usage of our proposed implemen-
tations in comparison to those documented in prior research.
In particular, we assessed four metrics: the number of stages,
operators, ancilla qubits, and the synthesis time required for
the implementations. The criteria for the first threemetrics are
detailed in Section III-B. The synthesis time was determined
by tracking how long it took to synthesize step 3 of Grover’s
algorithm, with any synthesis exceeding three hours labeled
as unsuccessful.

Our methods were benchmarked against three existing
approaches: (i) rule-based techniques, (ii) search-based tech-
niques, and (iii) manual implementations found in the
literature. For each of the categories, we selected one or
two representative works, as the evaluation metrics exhib-
ited similar trends across approaches within the same
category.

In the first category, (i) rule-based techniques, we chose
Qiskit’s synthesis functionality [34], because it is fast,
actively under development, and the code is publicly acces-
sible. Qiskit breaks down a unitary matrix into smaller 1 or
2 qubit unitaries using a predefined set of rules [12]. Then it
implements the 1 to 2 qubit unitaries using a combination of
stochastic search and operator merging for efficient operator
use [35].

In the second category, (ii) search-based techniques,
we selected our previous work [18] that utilizes machine
learning, because it is recent and produces either more
compact implementations compared to other approaches or
comparably compact ones. For example, it implements the
2-qubit Grover’s iterator with six operators, as illustrated
in Fig. 3(b), which is fewer than other known implemen-
tations. In terms of synthesis time, we observed that most
approaches in this category encounter difficulties when pro-
ducing implementations for qubit counts greater than 5.
The chosen machine-learning-based approach [18] learns
from a variety of quantum implementations to identify
a compact set of operators for efficient unitary matrix
implementation. Consequently, it discovers compact imple-
mentations and reduces search time compared to using a full
operator set.

In addition to our previous work, we also compared our
proposed method with QSyn [21], one of the most recent
synthesis frameworks in the second category, where codes
are publicly available. QSyn enumerates various imple-
mentations by assembling modules of quantum operators,
rather than individual operators. Since a module represents
a frequently-reused arrangement of operators, synthesizing
at the module level can expedite the process compared to
assembly at the operator level.

In the third category, (iii) manual implementations,
we selected manually optimized implementations found in
the existing literatures [5] and [6]. For example, Fig. 3(a)
illustrates the implementation for n = 2 qubits. Most other
implementations in the literature do not significantly differ in
terms of stage numbers and operator counts.

For our experimentation, we developed our proposed
methods using Python and applied them to synthesize
step 3 of Grover’s algorithm across different qubit counts,
n. In particular, we built a synthesizer capable of generating
Python scripts that execute quantum searches via the Qiskit
library [29]. We conducted the tests on a system equipped
with a 3.4GHz Intel Core i7-6700 processor and 16GB of
RAM.

Table 7 presents a summary of our experimental findings.
The rule-based technique quickly produced implementations
for qubit counts from 2 to 6. However, we observed an expo-
nential increase in both the number of stages and operators
as the qubit count rose. On the other hand, the search-based
technique yielded implementations that required significantly
fewer stages and operators but took a considerably longer
time for synthesis. The rationale behind this is that the
rule-based technique consistently adds operators in a set pat-
tern to incrementally approach the desired unitary matrix,
whereas the search-based explores a more diverse space of
potential implementations to find a compact one. Regard-
ing manual implementations, we identified examples for
n = 2 and 3. In these cases, we observed that they utilized
marginally higher numbers of stages and operators com-
pared to the implementations derived from the search-based
techniques.

Our developed methods strike a balance between
rule-based and search-based approaches. While our imple-
mentations slightly exceed the search-based results and
manual implementations in terms of the number of stages,
operators, and the use of additional ancilla qubits, the rate at
which these numbers increase is significantly less than that
of the rule-based technique, showing a linear growth with the
increase in qubits. Furthermore, the synthesis time for our
proposed methods generally fell below that required by the
other techniques. The key differences observed stem largely
from the fact that rule-based and search-based techniques
are designed to handle a broad range of unitary matrices,
which might not always yield the most efficient results.
In contrast, our approach is specifically tailored to optimize
the implementation of Grover’s algorithm.

We conducted experiments up to a qubit count of 10.
This was due to the rule-based method exhibiting a steep
increase in the number of stages and operators as the qubit
count grows. Similarly, the search-based method displayed
a significant increase in synthesis time, failing to synthesize
implementations for systems with 5 or more qubits. However,
our proposed method is capable of producing implemen-
tations for a larger number of qubits, provided that the
underlying quantum hardware supports the required number
of qubits.

We now discuss the implications of using ancilla qubits in
our proposed method. Unlike other methods, our approach
requires n – 1 ancilla qubits (as shown in Table 5). While
current quantum hardware has a limited number of qubits,
we anticipate that the use of ancilla qubits will impose a
moderate burden in the long term for the following reasons.

43036 VOLUME 12, 2024



S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

TABLE 7. Resource usage of various synthesis techniques.

Firstly, n= ⌈log2(N )⌉, whereN is the size of the search space.
Hence, the number of required ancilla qubits grows logarith-
mically as the search space increases. Secondly, our proposed
implementation ensures that all ancilla qubits are reset to
their initial values after each application of step 3. As a
result, the same ancilla qubits can be reused for subsequent
applications of step 2 (the oracle) as needed. In summary, our
method utilizes a moderate number of ancilla qubits, but the
advantages of using them (i.e., savings in synthesis time and
the compactness of the resulting implementations) outweigh
the cost.

V. CONCLUSION
Our research introduces techniques for synthesizing a key
segment of Grover’s quantum search algorithm. This seg-
ment is crucial for amplifying the amplitude of the search
target while reducing those of non-target items, making the
target more distinguishable. This part of the algorithm is
universal and does not vary with different search objec-
tives. Our methods are designed to work for a range of
search space sizes, represented by the number of qubits in
the algorithm. We developed and evaluated these methods,
showing that they can efficiently produce implementations
with a moderate and linearly increasing number of stages
and operators as the qubit count grows. We anticipate that
the proposed methods facilitate large-scale implementations
of Grover’s algorithm across various domains, including
database searches, cryptanalysis, pattern recognition, quan-
tum simulations, and more [5].
Moving forward, our focus will shift to developing tech-

niques for another critical component of Grover’s algorithm,
known as the oracle. This element distinguishes the search
target from others by inverting its sign, setting the stage for
subsequent amplitude amplification. Since the oracle’s design
is inherently linked to specific search objectives, our aim
is to create a versatile oracle applicable to various goals,
establishing a set of broad guidelines for its implementation
across different search scenarios.

REFERENCES
[1] C. Bernhardt, Quantum Computing for Everyone. Cambridge, MA, USA:

MIT Press, 2020.
[2] H. Deng, Y. Peng, M. Hicks, and X. Wu, ‘‘Automating NISQ appli-

cation design with meta quantum circuits with constraints (MQCC),’’
ACM Trans. Quantum Comput., vol. 4, no. 3, pp. 1–29, Apr. 2023, doi:
10.1145/3579369.

[3] J. Vos,Quantum Computing in Action. Shelter Island, NY, USA: Manning,
2022.

[4] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database search,’’
in Proc. 28th Annu. ACM Symp. Theory Comput., Philadelphia, PA, USA,
1996, pp. 212–219, doi: 10.1145/237814.237866.

[5] A. J. et al., ‘‘Quantum algorithm implementations for beginners,’’ ACM
Trans. Quantum Comput., vol. 3, no. 4, pp. 1–92, Jul. 2022, doi:
10.1145/3517340.

[6] R. Loredo, Learn Quantum Computing With Python and IBM Quantum
Experience. Birmingham, U.K.: Packt, 2020.

[7] T. Atkinson, A. Karsa, J. Drake, and J. Swan, ‘‘Quantum program syn-
thesis: Swarm algorithms and benchmarks,’’ in Proc. Eur. Conf. Genetic
Program., Leipzig, Germany, 2019, pp. 19–34, doi: 10.1007/978-3-030-
16670-0_2.

[8] A. Zulehner and R. Wille, Introducing Design Automation for Quantum
Computing. Berlin, Germany: Springer, 2020.

[9] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, ‘‘A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 6,
pp. 818–830, Jun. 2013, doi: 10.1109/TCAD.2013.2244643.

[10] A. Rajaei, M. Houshmand, and S. A. Hosseini, ‘‘A dynamic programming
approach to multi-objective logic synthesis of quantum circuits,’’Quantum
Inf. Process., vol. 22, no. 10, p. 384, Oct. 2023, doi: 10.1007/s11128-023-
04112-z.

[11] A. M. Krol, A. Sarkar, I. Ashraf, Z. Al-Ars, and K. Bertels, ‘‘Efficient
decomposition of unitary matrices in quantum circuit compilers,’’ Appl.
Sci., vol. 12, no. 2, p. 759, Jan. 2022, doi: 10.3390/app12020759.

[12] R. Iten, O. Reardon-Smith, E. Malvetti, L. Mondada, G. Pauvert,
E. Redmond, R. S. Kohli, and R. Colbeck, ‘‘Introduction to UniversalQ-
Compiler,’’ 2019, arXiv:1904.01072.

VOLUME 12, 2024 43037

http://dx.doi.org/10.1145/3579369
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/3517340
http://dx.doi.org/10.1007/978-3-030-16670-0_2
http://dx.doi.org/10.1007/978-3-030-16670-0_2
http://dx.doi.org/10.1109/TCAD.2013.2244643
http://dx.doi.org/10.1007/s11128-023-04112-z
http://dx.doi.org/10.1007/s11128-023-04112-z
http://dx.doi.org/10.3390/app12020759


S. Lee, S. Y. Nam: Implementation of Grover’s Iterator for Quantum Searching

[13] V. V. Shende, S. S. Bullock, and I. L. Markov, ‘‘Synthesis of quantum-logic
circuits,’’ IEEE Trans. Comput.-AidedDesign Integr. Circuits Syst., vol. 25,
no. 6, pp. 1000–1010, Jun. 2006, doi: 10.1109/TCAD.2005.855930.

[14] M. Saeedi, M. Arabzadeh, M. S. Zamani, and M. Sedighi, ‘‘Block-
based quantum-logic synthesis,’’ Quantum Inf. Comput., vol. 11, no. 3,
pp. 262–277, Mar. 2011, doi: 10.26421/qic11.3-4-6.

[15] P. Niemann, R. Wille, and R. Drechsler, ‘‘Efficient synthesis of quantum
circuits implementing Clifford group operations,’’ in Proc. 19th Asia South
Pacific Design Autom. Conf. (ASP-DAC), Suntec, Singapore, Jan. 2014,
pp. 483–488, doi: 10.1109/ASPDAC.2014.6742938.

[16] P. Niemann, R. Willie, and R. Drechsler, ‘‘Improved synthesis of
Clifford+T quantum functionality,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Dresden, Germany, Mar. 2018, pp. 597–600, doi:
10.23919/DATE.2018.8342078.

[17] J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, ‘‘Efficient decom-
position of quantum gates,’’ Phys. Rev. Lett., vol. 92, no. 17, Apr. 2004,
Art. no. 177902, doi: 10.1103/physrevlett.92.177902.

[18] S. Lee and S. Y. Nam, ‘‘Quantum program synthesis through operator
learning and selection,’’ IEEE Access, vol. 11, pp. 25755–25767, 2023,
doi: 10.1109/ACCESS.2023.3257192.

[19] Y. Xiao, S. Nazarian, and P. Bogdan, ‘‘A stochastic quantum program
synthesis framework based on Bayesian optimization,’’ Sci. Rep., vol. 11,
no. 1, p. 13138, Jun. 2021, doi: 10.1038/s41598-021-91035-3.

[20] G. Alvarez, R. Bennink, S. Irle, and J. Jakowski, ‘‘Gene expression
programming for quantum computing,’’ ACM Trans. Quantum Comput.,
vol. 4, no. 4, pp. 1–14, Oct. 2023, doi: 10.1145/3617691.

[21] C. G. Kang and H. Oh, ‘‘Modular component-based quantum circuit
synthesis,’’ Proc. ACM Program. Lang., vol. 7, pp. 348–375, Apr. 2023,
doi: 10.1145/3586039.

[22] E. Younis, K. Sen, K. Yelick, and C. Iancu, ‘‘QFAST: Conflating search and
numerical optimization for scalable quantum circuit synthesis,’’ in Proc.
IEEE Int. Conf. Quantum Comput. Eng. (QCE), Broomfield, CO, USA,
Oct. 2021, pp. 232–243, doi: 10.1109/QCE52317.2021.00041.

[23] H. Deng, R. Tao, Y. Peng, and X. Wu, ‘‘A case for synthesis of recur-
sive quantum unitary programs,’’ Proc. ACM Program. Lang., vol. 8,
pp. 1759–1788, Jan. 2024, doi: 10.1145/3632901.

[24] W. Scherer, Mathematics of Quantum Computing. Berlin, Germany:
Springer, 2019.

[25] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, ‘‘Tight bounds on quan-
tum searching,’’ Fortschritte der Physik, vol. 46, nos. 4–5, pp. 493–505,
Jun. 1998, doi: 10.1002/3527603093.ch10.

[26] S. Paramasivam, J. Jenitha, S. Sanjana, and M. Haghparast, ‘‘Com-
pact quantum circuit design of PUFFIN and PRINT lightweight
ciphers for quantum key recovery attack,’’ IEEE Access, vol. 11,
pp. 66767–66776, 2023, doi: 10.1109/ACCESS.2023.3289764.

[27] E. Johnston and N. Harrigan, Programming Quantum Computers: Essen-
tial Algorithms and Code Samples. Sebastopol, CA, USA: O’Reilly, 2019.

[28] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[29] Qiskit: Open-Source Toolkit for Quantum Development. Accessed:
Nov. 20, 2023. [Online]. Available: https://qiskit.org

[30] AerSimulator. Accessed: Nov. 20, 2023. [Online]. Available: https:
//qiskit.org/ecosystem/aer/stubs/qiskit_aer.AerSimulator.html

[31] G. Brassard, P. Hoyer, and A. Tapp, ‘‘Quantum counting,’’ in Proc. Int.
Colloq. Automata, Lang., Program., in LectureNotes in Computer Science,
vol. 1443, Jan. 2006, pp. 820–831, doi: 10.1007/BFb0055105.

[32] B. Yan, S. Wei, H. Jiang, H. Wang, Q. Duan, Z. Ma, and G.-L. Long,
‘‘Fixed-point oblivious quantum amplitude-amplification algorithm,’’ Sci.
Rep., vol. 12, no. 1, p. 14339, Aug. 2022, doi: 10.1038/s41598-022-
15093-x.

[33] L. K. Grover, ‘‘Fixed-point quantum search,’’ Phys. Rev. Lett., vol. 95,
no. 15, pp. 150501–150504, Oct. 2005, doi: 10.1103/physrevlett.
95.150501.

[34] Qiskit Transpiler. Accessed: Nov. 20, 2023. [Online]. Available: https:
//qiskit.org/documentation/apidoc/transpiler.html

[35] S. Bravyi, R. Shaydulin, S. Hu, and D. Maslov, ‘‘Clifford circuit optimiza-
tion with templates and symbolic Pauli gates,’’ Quantum, vol. 5, no. 1,
p. 580, Nov. 2021, doi: 10.22331/q-2021-11-16-580.

SIHYUNG LEE received the B.S. (summa cum
laude) and M.S. degrees in electrical engi-
neering from Korea Advanced Institute of Sci-
ence and Technology (KAIST), South Korea,
in 2000 and 2004, respectively, and the Ph.D.
degree in electrical and computer engineering
from Carnegie Mellon University (CMU), USA,
in 2010. From 2010 to 2011, he was a Postdoctoral
Researcher with the NetworkManagement Group,
IBM Thomas J. Watson Research Center, USA.

From 2011 to 2019, he was a Professor with the Department of Information
Security, Seoul Women’s University, South Korea. Since 2019, he has been
a Professor with the School of Computer Science and Engineering, Kyung-
pook National University. His research interests include pattern mining from
social network traffic and program synthesis for classical and quantum
computers.

SEUNG YEOB NAM (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in elec-
trical engineering from Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
South Korea, in 1997, 1999, and 2004, respec-
tively. From 2004 to 2006, he was a Postdoctoral
Research Fellow with the CyLab, Carnegie Mel-
lon University. In 2007, he joined the Department
of Information and Communication Engineering,
Yeungnam University, Gyeongsan, South Korea,

where he is currently a Professor. From January 2012 to January 2013,
he was a Visiting Professor with the Department of Electrical and Computer
Engineering, Carnegie Mellon University. His research interests include
network security, blockchain, network management, and wireless networks.
He received the 2022 Best Paper Award from Digital Communications and
Networks (DCN).

43038 VOLUME 12, 2024

http://dx.doi.org/10.1109/TCAD.2005.855930
http://dx.doi.org/10.26421/qic11.3-4-6
http://dx.doi.org/10.1109/ASPDAC.2014.6742938
http://dx.doi.org/10.23919/DATE.2018.8342078
http://dx.doi.org/10.1103/physrevlett.92.177902
http://dx.doi.org/10.1109/ACCESS.2023.3257192
http://dx.doi.org/10.1038/s41598-021-91035-3
http://dx.doi.org/10.1145/3617691
http://dx.doi.org/10.1145/3586039
http://dx.doi.org/10.1109/QCE52317.2021.00041
http://dx.doi.org/10.1145/3632901
http://dx.doi.org/10.1002/3527603093.ch10
http://dx.doi.org/10.1109/ACCESS.2023.3289764
http://dx.doi.org/10.1007/BFb0055105
http://dx.doi.org/10.1038/s41598-022-15093-x
http://dx.doi.org/10.1038/s41598-022-15093-x
http://dx.doi.org/10.1103/physrevlett.95.150501
http://dx.doi.org/10.1103/physrevlett.95.150501
http://dx.doi.org/10.22331/q-2021-11-16-580

