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ABSTRACT This paper presents a comprehensive survey ofmachine learning, deep learning, and digital twin
technology methods for predicting and managing the battery state of health in electric vehicles. Battery state
of health estimation is essential for optimizing the battery usage, performance, safety, and cost-effectiveness
of electric vehicles. Estimating the state of health of a battery is a complex undertaking due to its dependency
on multiple factors. These factors include battery characteristics such as type, chemistry, size, temperature,
current, voltage, impedance, cycle number, and driving pattern. There are drawbacks to traditional methods,
such as experimental and model-based approaches, in terms of accuracy, complexity, expense, and viability
for real-time applications. By employing a variety of algorithms to discover the nonlinear and dynamic link
between the battery parameters and the state of health, data-driven techniques like machine learning, deep
learning, and data-driven digital twin technologies can get beyond these restrictions. Data-driven methods
can also incorporate physics and domain knowledge to improve the explainability and interpretability of the
results. This paper reviews the latest advancements and challenges of using data-driven techniques for battery
state of health estimation and management in electric vehicles. The paper also discusses the future directions
and opportunities for further research and development in this field. The survey scope spans publications
from the year 2021 to 2023.

INDEX TERMS Machine learningmodels, deep learningmodels, data-drivenmethods, lithium-ion batteries,
digital twin technology, battery health prediction, electric vehicles.

I. INTRODUCTION
Electric vehicles (EVs) are not only a promising solution
to the environmental and economic challenges posed by
conventional gasoline vehicles, but also a significant oppor-
tunity for innovation and growth in the automotive sector.
According to the International EnergyAgency (IEA), Electric
vehicles constituted 4.6% of worldwide automobile sales
and comprised 1% of the global automotive inventory in
the year 2020, despite the Covid-19 pandemic [1]. As per
IEA, global electric vehicle stock could reach 145 million
by 2030 in the current policies scenario, or 230 million under
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sustainable development. EVs provide several benefits,
including the potential to decrease Greenhouse Gas (GHG)
emissions, improve air quality, enhance energy security,
diversify energy sources, and reduce fuel and maintenance
costs for consumers [2]. EVs can also enable smart grid
integration, vehicle-to-grid services, and demand response
management, which can enhance the reliability and efficiency
of the power system [3].

However, the performance of electric vehicle batteries
degrades over time, which can lead to reduced driving range
and increased maintenance costs. To address this issue,
researchers have developed machine learning models to pre-
dict the State of Health (SOH) of electric vehicle batteries.
These models can help vehicle owners and manufacturers to
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optimize battery usage and reduce costs. Battery SOH is a
measure that evaluates the extent of deterioration and avail-
able capacity in a battery. It signifies the contrast between
the condition of a brand new battery and that of a previ-
ously used battery, typically presented as a percentage of
the battery’s original capacity [4]. Battery SOH estimation is
essential for battery health management and second-life uti-
lization. However, many of the current methods are developed
under ideal laboratory conditions and do not account for the
complex and dynamic operational environments of electric
vehicles. Therefore, researchers have proposed various meth-
ods to estimate the battery SOHunder realistic EV conditions,
such as data-drivenmodels, machine learning algorithms, and
regional capacity analysis [4], [5], [6].
Estimating the battery SOH is crucial for EVs as it can

affect the performance, safety, and cost-effectiveness of the
battery and the vehicle. It can help EV owners to know the
reliability, range, and performance of their vehicles, and buy-
ers and sellers of used EVs to accurately value the product and
have increased confidence in the EV’s worth, longevity, and
range. Additionally, it can help determine if the battery is suit-
able for reuse and repurposing or if it should be sent directly
to recycling when the EV is retired [4]. Predicting the SOH
under dynamic conditions is challenging due to the complex
and nonlinear interactions between the battery parameters
and the operating environment, which may vary signifi-
cantly depending on the driving patterns, charging strategies,
and ambient temperature. These factors can influence the
electrochemical and thermal processes within the battery,
resulting in different aging mechanisms and degradation
rates [33], [34].
Experimental methods rely on direct measurements of bat-

tery parameters, such as capacity, resistance, and impedance,
to evaluate the SOH. However, these methods are often time-
consuming, costly, and intrusive, and may not be suitable for
online and real-time applications. Model-based methods use
mathematical or physical models to describe the electrochem-
ical and thermal processes of battery degradation, and to infer
the SOH from themodel parameters. However, thesemethods
require accurate knowledge of the battery characteristics and
operating conditions, and may not capture the complex and
nonlinear dynamics of battery aging [35].

Data-driven models, a form of artificial intelligence, have
the ability to learn from data and experience without requir-
ing explicit programming. They can play a major role in
predicting the battery SOH in EVs, which is a measure of
the battery degradation and remaining capacity. Forecast-
ing SOH of batteries can assist maximize battery efficiency,
safety, and performance while lowering the cost and environ-
mental effect of electric vehicles. But estimating the SOH
of a battery can be difficult since it depends on a lot of
variables, including the battery type, chemistry, size, temper-
ature, current, voltage, impedance, cycle count, and driving
pattern. The accuracy, complexity, expense, and viability of
traditional methods such as experimental and model-based

approaches are all constrained when it comes to real-time
application. By employing data-driven methods like support
vector regression, neural networks, and deep learning to
understand the nonlinear and dynamic relationship between
the battery parameters and the SOH. Data-driven models can
also incorporate physics and domain knowledge to improve
the explainability and interpretability of the results.

However, data-driven models also face some challenges,
such as data quality, availability, and security, as well
as model validation, verification, and generalization [36].
Therefore, further research and development efforts are
necessary to enhance the performance, efficiency, and intel-
ligence of data-driven models for estimating battery SOH.

The survey in [42] investigates data-driven models for
battery SOH estimation, with a focus on their application in
Battery Management Systems (BMS). It covers key parame-
ters like SOH, Remaining Useful Life (RUL), and State of
Charge (SOC), offering contributions such as an overview
of feature extraction methods, a comprehensive survey of
state-of-the-art models from 2018 to 2022, and discussions
on challenges and future research directions. The work cate-
gorizes data-driven SOH models, including Neural Network
(NN) Models, Gaussian Process Regression (GPR) Models,
Ensemble Learning (EL) Models, Transfer Learning (TL)
Models, and Conventional Models (CM).

The work [43] examines data-driven techniques for assess-
ing health and predicting the lifespan of lithium-ion batteries,
crucial for electric vehicles and diverse applications. It cov-
ers battery ageing mechanisms, stress factors, and provides
a proxy for conditions accelerating ageing. Additionally,
it explores state-of-health estimation methods using various
parameters and surveys analytical models and machine learn-
ing for health prediction. The work highlights challenges and
future directions in data-driven battery health management,
including ageing mechanism identification, self-improving
models, and diagnosis and prognosis at module and pack
levels.

The authors in [44] review methods for assessing battery
SOH and SOC in electric vehicles, encompassing the history,
chemistries, challenges in battery management, and diverse
state estimation techniques. It also explores open-access
datasets, critiques existing works, notes limitations and
research gaps, and suggests future research directions. The
work categorizes SOH estimation into three types: Experi-
mental methods, providing accurate but time-consuming and
offline measurements; Model-Based methods, offering fast,
online estimation dependent on model accuracy and com-
plexity; and Machine learning methods, utilizing algorithms
for flexible SOH prediction, requiring large, high-quality
datasets for training and validation.

The methods for estimating Li-ion battery health in elec-
tric vehicles, encompassing battery operation, characteristics,
degradation factors, and various modeling techniques are dis-
cussed in [45]. It surveys state-of-the-art methods for estimat-
ing SOH and predicting RUL, comparing their performance
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and suggesting improvements. The paper discusses current
model limitations, proposes future research directions, and
categorizes SOH estimation techniques into experimental-
based, model-based, and data-driven methods, providing
examples such as empirical methods, neural networks, sup-
port vector machines, and gaussian process regression for
data-driven estimation.

The work [46] examines various data-driven approaches
for forecasting the state of health, state of charge, and remain-
ing useful life of lithium-ion batteries, extensively employed
in electric vehicles and diverse applications. It presents a
thorough overview of available battery-cycling test databases,
detailing characteristics like cell chemistry, capacity, voltage,
cycle, temperature, and file format. The review paper cate-
gorizes and elucidates studies utilizing data-driven methods,
classifying them based on the predictive models employed,
including deep learning, machine learning, and hybrid meth-
ods. Current challenges and future trends in battery health
estimation and prediction, such as data quality and quantity,
model accuracy and robustness, online adaptation and trans-
fer learning, and digital twins, are discussed.

The work [47] reviews the major data-driven methods for
SOH estimation, such as Extended Kalman Filter (EKF), Par-
ticle Filter (PF), Autoregressive Integrated Moving Average
(ARIMA), Extreme Learning Machine (ELM), Support Vec-
tor Machine (SVM), Relevance Vector Machine (RVM), and
Long Short-term Memory (LSTM).The study compares the
performance of these methods on a real-world electric vehicle
dataset, using three metrics: Mean Absolute Percentage Error
(MAPE), training time, and computation time. Additionally,
the work discusses the advantages and limitations of each
method in terms of accuracy, confidence interval, nonlinear-
ity, robustness, computation complexity, data sparsity, and
generalization. The work provides insights and recommen-
dations for future research on data-driven SOH estimation for
lithium-ion batteries in EVs.

Though there are works available in a similar domain, our
work differs from the above-mentioned survey works in the
following ways:

• The focus is on recent methods, challenges, and future
directions, including machine learning, deep learning,
and digital twin technology. Our work specifically
addresses a gap in the existing literature by focusing on
data-driven techniques within the digital twin domain
for electric vehicles.

• A comparative analysis of the performance, advantages,
and disadvantages of different models and algorithms,
using various datasets and metrics, is provided. This
emphasis on comparison may offer a more comprehen-
sive understanding of the strengths and weaknesses of
different approaches in battery health estimation.

• We discuss the importance of data quality, availabil-
ity, and security, as well as model validation, ver-
ification, and generalization, for developing reliable
and robust machine learning models for battery SOH
prediction.

The main contributions of the work are as follows:
• The paper presents a review of recent studies
(2021-2023) that employed data-driven methods for
estimating the SOH of lithium-ion batteries in electric
vehicles.

• The paper highlights the significance of various pre-
diction methods, analyses the advantages, drawbacks
and presents the results obtained using each of these
methods.

• The paper also discusses the challenges and future
directions of data-driven methods for battery health
assessment.

This paper is organized as follows: Section II provides a
review of predicting and managing battery health in EVs, cat-
egorizing approaches under machine learning, deep learning,
and data-driven digital twin. Section III discusses the charac-
teristics of public datasets. Future directions related to SOH
prediction are discussed in Section IV. Finally, Section V
concludes the paper.

II. REVIEW OF PREDICTING AND MANAGING THE
BATTERY HEALTH IN ELECTRIC VEHICLES
This section reviews the recent methods and challenges of
using data-driven techniques, such as machine learning, deep
learning and digital twin, to estimate and optimize the battery
SOH in EVs.

A. BATTERY HEALTH PREDICTION USING MACHINE
LEARNING
Battery health prediction through machine learning is a
research area dedicated to the creation and assessment of
data-centric models that can forecast the SOH, SOC, or RUL
of lithium-ion batteries. These predictions are made possi-
ble by employing diverse machine learning methodologies,
including neural networks, support vector machines, random
forests, and other relevant techniques.

In the operational framework [8], the Autoregressive (AR)
model utilizes battery voltage and current data to estimate
the SOH. Leveraging its capability to capture temporal
dependencies, the AR model analyzes historical information,
discerning trends indicative of the battery’s health. The Rele-
vance Vector Machine (RVM) complements the AR model,
crucially enhancing SOH estimation accuracy. The RVM’s
primary role is to address errors in the AR model’s output
compared to the actual SOH value, refining overall precision.
This compensation involves dynamic adjustments to weights
and relevance vectors, optimizing agreement between the
modeled and actual SOH through an adaptive learning pro-
cess, ultimately contributing to a more reliable battery health
estimation.

The methodology employed in [9] integrates the Two-Step
Noise Reduction Method, Domain-Specific Features, and
Stacking Ensemble Learning. The Two-StepNoise Reduction
Method employed in this study utilizes a moving average fil-
ter and a wavelet transform to effectively reduce noise present
in the battery data. This method aims to enhance the overall
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data quality by mitigating disturbances and inconsistencies.
Additionally, themethodology incorporates Domain-Specific
Features, a set of characteristics derived from domain knowl-
edge and battery physics. Examples of these features include
discharge time, discharge energy, and discharge capac-
ity, providing valuable insights into the battery’s behavior
and performance. Lastly, the approach integrates Stacking
Ensemble Learning such as linear regression, support vector
regression, and random forest regression into a meta-learner.
This ensemble learning strategy contributes to improved pre-
diction accuracy and generalization by leveraging the diverse
strengths of individual models. The combination of these
methods forms a comprehensive approach to battery data
analysis, addressing noise reduction, feature engineering, and
predictivemodeling within a unified framework. Careful con-
sideration is required in terms of model evaluation due to
complexity and computational resource requirements.

The approach in [10] integrates Empirical Mode Decom-
position (EMD) with the Particle Filter (PF) algorithm to
predict the SOH of lithium-ion batteries. It utilizes EMD to
decompose battery capacity data into Intrinsic Mode Func-
tions (IMFs), capturing trends and fluctuations. The Particle
Filter algorithm is then applied to estimate SOH based on
the extracted IMFs, providing robust SOH prediction with
uncertainty representation.

The work in [11] presents a method for predicting the
SOH of lithium-ion batteries using variational mode decom-
position (VMD) and dung beetle optimization-support vector
regression (DBO-SVR).The VMD decomposes the SOH data
into components, which are then individually modeled and
predicted using SVR. The DBO algorithm optimizes the SVR
parameters to enhance prediction accuracy. The predicted
values of the components are combined to obtain the final
SOH prediction. This methodology aims to improve predic-
tion accuracy, stability, and robustness compared to other
methods, as demonstrated through experiments on the NASA
dataset.

In [12] a data-driven method for SOC estimation of
lithium-ion batteries using optimized random forest regres-
sion algorithm is proposed. The method uses battery voltage
and current sensor data as input features and employs Prin-
cipal Component Analysis (PCA) to reduce dimensionality.
The method also uses a synthetic feature, SOCxI, to cap-
ture the relationship between current magnitude and state
of charge. The method achieves high accuracy with errors
typically within ±2% and not exceeding ±3% for cells with
more than 80% SOC. The drawbacks include challenges
related to data quality, a limited investigation of resistance
increase, dependency on specific datasets, and a trade-off
between model size and accuracy.

The work in [14] introduces an online battery health diag-
nosis method for electric vehicles using DTW-XGBoost,
focusing on predicting the SOH through real-time charging
data. The methodology comprises three key steps: feature
extraction using DTW-based clustering, XGBoost prediction

for SOH modeling, and the development of an online diag-
nosis platform. Feature extraction involves dynamic time
warping for aggregating voltage, current, and temperature
data, followed by dimensionality reduction and generation
of 24 features per charging process. XGBoost is employed
for training a predictive model, optimizing parameters for
minimal RMSE and MAE. The online diagnosis platform
integrates acquisition control, modeling analysis, and appli-
cation service modules to collect real-time BMS data, predict
SOH, and offer various services based on prediction results,
including health trend prediction and charging operation
analysis.

A model called the Modified Support Vector Machine (M-
SVM) [15] is suggested for precise assessment of the SOH
of lithium-ion batteries in electric cars. The M-SVM is a
regression-based method used for estimating the SOH of
lithium-ion batteries in electric vehicles. M-SVM is designed
to estimate and predict the SOH of batteries based on input
features, taking into account the continuous nature of the
health parameter.M-SVM modifies the SVM algorithm to
perform regression by fitting a curve that best represents the
relationship between input features and the continuous out-
put (SOH).The NASA Li-ion battery ageing dataset, which
consists of 34 cylindrical cells that were cycled between 70%
and 80% of their initial capacity while being exposed to
different temperatures and discharge rates, is used to assess
the model. The M-SVM model’s performance is contrasted
with that of various machine learning techniques, including
Neural Network (NN) and Linear Regression (LR).

The work in [16] presents an approach for estimating the
SOH of electric vehicle battery packs. The proposed method
uses Catboost, a machine learning algorithm that performs
regression or classification tasks by using gradient boost-
ing on decision trees. Catboost can automatically handle
categorical features without the need for manual encod-
ing or preprocessing. Additionally, Catboost uses ordered
boosting, a technique that reduces overfitting by introduc-
ing randomness into the gradient boosting process. The
proposed method is validated by using a year-long oper-
ation dataset of an electric taxi to develop and test the
method.

Reference [17] proposes a framework for accurate
SOH estimation in real-world EVs through parameters
optimization, addressing challenges in capturing com-
plex operating conditions and achieving precise predic-
tions. The work employs the PSO-ELM (Particle Swarm
Optimization-Extreme Learning Machine) model for SOH
estimation. Extreme Learning Machine (ELM) as the base
learner, employing a single-hidden layer feedforward neural
network. This type of network randomly assigns weights and
biases between the input and hidden layers while analyti-
cally determining weights to the output layer. Optimization
of ELM parameters, including the number of hidden nodes,
activation function, and learning rate, is achieved through
Particle Swarm Optimization (PSO).
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Reference [18] proposes a method for precisely estimat-
ing the state of charge and SOH of lithium-ion batteries
using dual filters and the Interacting Multiple Model (IMM)
algorithm. The IMM algorithm combines state hypotheses
from multiple filter models to enhance state estimates for
targets with dynamic changes. It involves four steps: Mix-
ing, where previous state estimates are combined based on
mode transition probabilities and model likelihoods; Fil-
tering, where each filter model is updated with current
measurements; Combination, where state estimates from
each model are combined based on model probabilities; and
Mode Probability Calculation, indicating the confidence of
each filter model. The paper introduces two strategies for
applying IMM with dual filters, dual-KF-IMM and dual-
SIF-IMM, comparing their performance and analyzing mode
probabilities to understand battery degradation modes on
NASA dataset.

A Feedforward Neural Network (FNN) with PCA for SOH
estimation in lithium-ion batteries [25]. The work also intro-
duces a synthetic feature, SOCxI, which is the product of
SOC and current (I). This feature captures the relationship
between current magnitude and state of charge, which can
affect battery degradation and capacity loss. The work com-
pares the proposed algorithm with other machine learning
models like ELM, SVM, and LSTM and shows that it out-
performs them in terms of accuracy.

The work in [37] proposes a method for estimating the
SOH of lithium-ion batteries using dynamic discharge con-
ditions over a wide temperature range. The method extracts
three aging features (discharge voltage integration, discharge
time, and net discharge energy) and two operating condition
features (mean current and discharge capacity ratio) from
the voltage and current data of the batteries. The method
fuses these features to obtain three health indicators that are
highly correlated with battery capacity and are not affected
by temperature or operating conditions. The method uses
a GPR model to establish a mapping between the health
indicators and battery capacity, achieving high accuracy and
low computational complexity. The method is validated using
experimental data from two types of lithium-ion batteries
(LFP and NMC) under various dynamic operating conditions
and temperatures. The results demonstrate the effectiveness
and universality of the proposed method.

In [38] using an equivalent circuit model with fixed param-
eters, the integral voltage error is extracted as an aging
feature. The average current is extracted as an operating
condition feature. The two features are fused to obtain a fused
feature that is input into a back propagation neural network
(BPNN) to estimate SOH. The method achieves accurate and
generalized SOH estimation under various dynamic operat-
ing conditions, with mean absolute errors around 1%. The
method also eliminates the dependence on state of charge
accuracy and has low computational requirements.

In [39] the authors propose an indirect SOH estimation
method for online EV lithium-ion batteries based on arct-
angent function adaptive genetic algorithm combined with

back propagation neural network (ATAGA-BP).The authors
use constant current drop time (CCDT), constant current drop
capacity (CCDC) and maximum constant current drop rate
(MCCDR) in the constant voltage charging stage as health
indicators to evaluate battery SOH and indirectly quantify
the degradation process of lithium-ion batteries. The work
optimizes and validates the health indicators using PauTa
criterion and Pearson Product-Moment Correlation Coeffi-
cient (PPMCC), and establish the relationship between health
indicators and available battery capacity using the ATAGA-
BP algorithm.

B. BATTERY HEALTH PREDICTION USING DEEP LEARNING
In [7], the study introduces a deep learning-based approach
for real-world electric vehicles to predict the SOH of bat-
tery systems. The method utilizes long short-term memory
(LSTM) networks and Pearson correlation analysis to identify
relevant features and model the battery degradation process.
Through the use of Pearson correlation analysis, the study
identifies four highly correlated features with the SOH: con-
stant current charging time, constant voltage charging time,
voltage change rate from 300s to 1000s, and voltage per cycle
at 200s intervals. The proposed method claims to achieve
high accuracy and low prediction error in SOH estimation by
leveraging actual battery data from electric buses.

The authors in [13] develop a predictive model using
LSTM neural networks to estimate the RUL of lithium-ion
batteries. The model uses a Variational Mode Decomposition
(VMD) technique to decompose the battery voltage signal
into IMFs and selects the most relevant IMFs as input fea-
tures. The model also uses a particle swarm optimization
(PSO) algorithm to optimize the hyperparameters of the
LSTM network. The model achieves high accuracy with a
RMSE of 4.32 cycles and a Mean Absolute Error (MAE) of
3.21 cycles. The drawbacks are interpretability challenges,
limited discussion on external factors and dependency on
maintenance data.

The work in [19] integrates Convolutional Autoencoders
(CAEs) and Bi-directional Long Short-Term Memory (BiL-
STM) neural networks.CAE is used to extract key fused
timing features like voltage, current, and temperature directly
from raw data.The extracted features are then used as input
for the BiLSTM, which includes dropout technology and
a fully connected layer to map to the battery’s SOH. The
method includes data interpolation and augmentation to
enhance the training process.An end-to-end model is pro-
posed that combines the CAE and BiLSTM for effective SOH
prediction, demonstrating high accuracy and robustness in
experiments.

A deep learning method that uses a Deep Neural Net-
work (DNN) and Convolutional Neural Network (CNN) to
estimate cell-level capacity in lithium-ion batteries based on
voltage, current, and state of charge is proposed in [20].
The approach involves a multi-physics battery model that
integrates electrical, thermal, and aging models to generate
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TABLE 1. Machine learning based methods.
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TABLE 1. (Continued.) Machine learning based methods.
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TABLE 1. (Continued.) Machine learning based methods.

input and output data for machine learning algorithms. The
machine learning process involves training and testing the
DNN and CNN models using data from the multi-physics
model, with performance evaluated using MAE and mean
squared error (MSE) metrics. The results show that the DNN
model has the lowest error and the best stability among the
compared capacity estimation methods.

In [21] raw battery data is processed using a 1D Con-
volutional Neural Network (1DCNN) to extract local and
global features. These features serve as inputs for subsequent
models. The study combines LSTM and transformer mod-
els. LSTM excels in sequence modeling by using a smaller
window of several consecutive cycles, the model does not
need to store or process large data sequences. LSTM captures
local dependencies and short-term patterns. Transformer cap-
tures global dependencies and long-term context. The hybrid
model combines these two architectures to improve predic-
tion accuracy.

The Deep Learning Feed-Forward Neural Network (DL-
FFNN) [22] employs a FFNN model featuring two hidden
layers, each comprising five neurons, to train a dataset
derived from actual driving trips of a BMW i3 EV. The input
parameters include voltage, current, battery temperature, and
ambient temperature, while the output is the SOC of the
battery. The optimization of weights and biases in the FFNN
model is accomplished through a metaheuristic algorithm
inspired by the mating process in organisms. This algorithm,
termed EMA, categorizes candidate solutions into males and
females, selects the best performers for mating based on
variance, and generates new offspring by combining their
features with a random factor. EMA also considers the effect
of environmental factors such as predators on the survival of
the offspring.

The approach in [23] utilizes equal voltage interval dis-
charge time, Incremental Capacity (IC), and Differential
Thermal Voltammetry (DTV) for feature extraction. The deep
learningmodel is structured around aBi-LSTMwith an incor-
porated Attention Mechanism (AM) to emphasize crucial
features. Bi-LSTM facilitates capturing context from both
past and future states, enhancing sequence prediction. The
attention mechanism focuses on significant portions of the
input sequence during predictions, assigning weights based
on importance to selectively attend to informative elements.

A data-driven prediction model, Nonlinear Autoregres-
sive with External Input (NARXRNN) recurrent neural
network, that focuses on forecasting the long-term health
and remaining lifespan of lithium-ion batteries in electric
vehicles [24]. The NARXRNN model uses battery voltage,
current, and temperature inputs to predict the SOH and
RUL of lithium-ion batteries. The model comprises three
layers with specific activation functions and employs a Back-
propagation Through Time (BPTT) algorithm for training,
minimizing MSE between predicted and actual values. Vali-
dation on NASA and CALCE datasets, encompassing diverse
lithium-ion batteries and operating conditions, demonstrates
the model’s accuracy for long horizons (up to 100 cycles).
Notably, the NARXRNN outperforms alternative methods
such as ARIMA, ELM, and LSTM, showcasing robustness
to noise and generalization across varying battery types and
conditions.

In [40] a method for predicting the SOH of lithium-ion bat-
teries using Gated Recurrent Unit (GRU) neural networks and
Hidden Markov Model (HMM) with considering uncertainty
quantification is proposed. The work decomposes the battery
capacity into the global downward trend and the local fluctu-
ations by using Empirical Mode Decomposition (EMD), and
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trains a GRU network to fit the global trend and an HMM
to fit the local fluctuations. The work conducts numerical
experiments on two public datasets with fixed and random
working conditions, and compares the proposed method with
other existing methods in terms of accuracy and reliability.
The result demonstrates that the proposedmethod can capture
the long-term and dynamic characteristics of battery degrada-
tion, and outperforms other methods on the SOH prediction
of lithium-ion batteries.

The developed model [41], named CNN-CBAM-LSTM,
combines convolution neural network, convolutional block
attention module, and long short-term memory neural net-
work to achieve reliable SOH estimation for lithium-ion
batteries. The model uses partial charging voltage fragments
as input to automatically extract features related to battery
degradation from the raw data. The developed method is
validated using two battery degradation datasets, Oxford and
NASA, and the results show that the model can achieve
high accuracy estimation even in the case of short charging
process. The SOH estimation can be achieved by fusing the
personality features of the target battery and the degradation
features of the source batteries through transfer learning with
fine-tuning strategy, so that only a small amount of the target
battery data is required.

Table 3 provides a comparative analysis of different
Machine Learning (ML) and Deep Learning (DL) approaches
based on their effectiveness in various contexts, highlighting
their relative advantages and limitations.

C. BATTERY HEALTH MANAGEMENT USING DIGITAL TWIN
DATA-DRIVEN TECHNOLOGY
Lithium-ion battery performance and longevity are optimized
through the use of digital twin technology in a variety of
applications, including smart grids and electric cars. With the
use of this technology, a physical system may be virtually
represented to mimic its behavior and offer decision-making
insights.

Within the context of the Digital Twin architecture, the
study [26] integrates an Extended Kalman Filter (EKF)
and an Extreme Gradient Boost (XGBoost) model to pro-
vide full battery status estimates, monitoring, and predic-
tion. The XGBoost model estimates the incremental SOH
and SOC of the battery, drawing insights from histori-
cal data. The EKF plays a crucial role in refining the
estimation by correcting errors and providing a robust rep-
resentation of uncertainties associated with the battery’s
state.

In [27] an accurate method for predicting the SOH of
electric vehicle battery packs, emphasizing real-world data
integration and temperature correction for practical imple-
mentation is proposed. The methodology employs a double
exponential function and PSO for SOH prediction, incor-
porating model migration to address limited data scenarios.
Additionally, ambient temperature correction is introduced to
enhance the accuracy of battery performance modeling. The

strengths of the work lie in its utilization of real-world electric
vehicle data, contributing to the practicality of SOH predic-
tion. The proposed modeling approach is robust, offering a
flexible solution for situations with limited data. However,
limitations include the absence of specific details on the
accuracy achieved by the method and a lack of consideration
for potential computational complexity or scalability issues,
particularly when applying the models to large datasets or
real-time applications.

Reference [28] introduces a digital twin model structured
in three phases: data acquisition, data processing, and regres-
sion modeling. During the data acquisition stage, a voltage
sensor measures the battery pack voltage, transmitting the
data to the digital twin server through wireless communi-
cations. In the data processing stage, the voltage data is
segregated into normal and charging subsets, eliminating and
organizing abnormal data. Finally, in the regression model
stage, a straightforward linear regression model is employed
to forecast the maximum and minimum cell voltage using the
pack voltage. Additionally, a multi-linear regression model is
utilized to predict other variables based on the pack voltage
and the forecasted cell voltages.

It is suggested to use a digital twin structure [29] for
managing the batteries in electric vehicles. This methodol-
ogy makes use of an on-vehicle system to assess the SOC
and a cloud-based model to anticipate the battery’s SOH.
The framework uses a data-driven methodology to analyze
time-frequency pictures of the voltage and current signals
from the battery in order to forecast SOH. To avoid catas-
trophic forgetting and overfitting, a selection of unimportant
parameters is used while updating the model incrementally
with fresh data from the vehicle. SOC estimation is performed
through a coulomb counting method, integrating current over
time, and is executed on the vehicle to provide real-time
feedback for driving range calculations. The proposed frame-
work is implemented on Microsoft Azure, incorporating a
deep learning model and a Raspberry-Pi board as the battery
management system.

Three components make up the framework in [30] for
determining the SOH of lithium-ion batteries. The first part
is the synchronization of variable cycling data, which is
achieved using energy discrepancy-aware temporal warping
to align data from several cycles. The second part includes
a time-attention SOH estimating model that regresses on the
Maximum Available Capacity (MAC) and captures the tem-
poral importance of different sampling times using a LSTM
with a time-attention mechanism. The third part focuses on
real-time SOH estimation through future data reconstruction,
utilizing data matching and reconstruction to supplement
unknown future data and estimate the MAC at any point
during the ongoing cycle.

In [31], a method is proposed for continuous learning in
predicting the SOH of electric vehicle batteries using data
from a digital twin. To preserve the data distribution, a mem-
ory buffer is created from the base data using a random
sampling technique. The base model is then fine-tuned by
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TABLE 2. Deep learning based methods.
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TABLE 2. (Continued.) Deep learning based methods.

training it with a mini-batch of data, which includes one
sample from the new data and k-1 samples from the memory
buffer. This approach helps prevent overfitting and catas-
trophic forgetting. The fine-tuned model is registered in the
cloud and utilized for making predictions. Additionally, the

new data sample is incorporated into the base data to generate
the subsequent reservoir sample.

A method for enhanced condition monitoring of
lithium-ion batteries in EVs using digital twin technol-
ogy is presented in [32]. This approach enables real-time
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TABLE 3. Comparative analysis of machine learning and deep learning approaches.

monitoring signals without requiring additional hardware
circuits or sensor calibration, due to its seamless integra-
tion with the embedded BMS. The method, consists of
two main parts physical modeling and digital modeling,
uses offline modeling in the physical modeling stage with
a LSTM algorithm to guarantee accurate SOC predictions
with different learning rates (LRs) and optimization by three
different kinds of optimizers. A digital twin is used in the
digital modelling component to forecast and monitor bat-
tery behavior in real time. Interestingly, the method uses a
Time-Series Generative Adversarial Network (TS-GAN) to
produce fake data, which makes the monitoring procedure
better.

III. PUBLIC DATASETS
In the realm of battery research and innovation, access to
comprehensive and diverse datasets is pivotal for advanc-
ing scientific understanding and fostering breakthroughs in
energy storage technologies. This section presents a selection
of public data collections that have played a key role in
shaping the discourse around lithium-ion batteries.

The ‘Oxford Battery Degradation Dataset 1’ [48] com-
prises long-term battery ageing tests involving eight Kokam
(SLPB533459H4) 740mAh lithium-ion pouch cells. The data
were collected in a thermal chamber at 40◦C, subjecting the
cells to a constant-current-constant-voltage charging profile
followed by a drive cycle discharging profile derived from the
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TABLE 4. Digital twin technology based methods.

urban Artemis profile, with characterization measurements
taken every 100 cycles.

The dataset originates from a custom-built battery prog-
nostics testbed at the NASA Ames Prognostics Center of
Excellence (PCoE) [49]. This dataset contains data from
lithium-ion batteries that underwent three operational profiles
(charge, discharge, and Electrochemical Impedance

Spectroscopy) across different temperatures. The dataset
includes repeated charge and discharge cycles, simulating
accelerated battery aging until meeting the end-of-life criteria
of a 30% fade in rated capacity. The testbed is equipped
with commercially available Li-ion 18650-sized rechargeable

batteries, a programmable 4-channel DC electronic load
and power supply, voltmeter, ammeter, thermocouple sen-
sors, custom EIS equipment, an environmental chamber,
PXI chassis-based DAQ, and MATLAB-based experiment
control, operating at an approximate data acquisition rate
of 10Hz.

The dataset by CALCE [50] includes experimental
lithium-ion battery test data for applications like state esti-
mation, life prediction, degradation modeling, and reliability
analysis. It covers various battery types (cylindrical, pouch,
prismatic) and chemistries (LCO, LFP, NMC). The tests
involveOCV tests, dynamic driving profiles, impedancemea-
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surements, and temperature cycling. The A123 cell (LFP)
underwent SOC estimation via low-current and incremental
OCV tests at 0◦C, 25◦C, and 45◦C, favoring the latter. The
CS2 cell (LCO) and CX2 cell (NMC) contributed to prognos-
tics and health management with different discharge profiles,
aiding in state estimation, remaining useful life prediction,
and reliability analysis. The PLN cell (NCA) was examined
for capacity and impedance degradation under varying SOC
levels and temperatures, contributing to battery degradation
modeling.

The dataset [51] presents experimental results for four
Lithium-ion batteries undergoing charge, discharge, and
impedance operations at room temperature. In charge cycles,
batteries were charged in constant current (CC) mode at 1.5A
until 4.2V, followed by constant voltage (CV) mode until
the current dropped to 20ma. Discharge cycles maintained a
Constant Current (CC) of 2A until specific voltage thresholds
were reached. Impedance measurements utilized Electro-
chemical Impedance Spectroscopy (EIS) frequency sweeps
from 0.1Hz to 5khz. Operation cycles involve specific mea-
surements. For charge, track ‘Voltage,’ ’Current,’ and ‘Tem-
perature’ alongside ‘Current_charge’ and ‘Voltage_charge.’
Dischargcycles incorporate ‘Capacity’ until a specific volt-
age. Impedance cycles encompass ‘Sense_current,’ ’Bat-
tery_current,’ ‘Current_ratio,’ ’Battery_impedance,’ ‘Recti-
fied_impedance,’ ’Re,’ and ‘Rct,’ giving a comprehensive
overview of the system’s behavior.

The dataset [52] comprises 124 lithium-ion phos-
phate/graphite cells (A123 Systems, APR18650M1A) cycled
to failure under fast-charging conditions. The cells, with a
nominal capacity of 1.1 Ah and a voltage of 3.3 V, were tested
in a forced convection temperature chamber at 30◦C using a
48-channel Arbin LBT potentiostat. The fast-charging policy
involves one or two steps denoted as ‘C1(Q1)-C2,’ where
C1 and C2 represent the first and second constant-current
steps, and Q1 is the state-of-charge (SOC) at which the
currents switch. The dataset is organized into three batches,
each representing around 48 cells, with unique irregularities
detailed for each batch.

IV. FUTURE DIRECTIONS
In this section, we explore the potential future directions for
forecasting the condition of battery health in electric vehicles,
drawing insights from the existing literature and referring to
Table 1, Table 2, and Table 4.

• Developing hybrid models that combine data-driven
and physics-basedmethods formore accurate and inter-
pretable SOH estimation and RUL prediction, taking
into account the complex electrochemical and thermal
dynamics of batteries. Hybrid models can combine the
advantages of both methods, and overcome their lim-
itations, by integrating data-driven and physics-based
sub-models, or by using different types of sub-models,
such as neural networks, equivalent circuit models,
and transfer learning. Hybrid models can improve the

accuracy, interpretability, and generalization of SOH
estimation and RUL prediction, by learning from data
and physics, and by adapting to different scenarios and
factors.

• SOH prediction is challenging due to the complex and
nonlinear dynamics of battery degradation, as well as
the uncertainties and noise in battery data. Therefore,
novel deep learning techniques, such as graph neu-
ral networks, transformers, and attention mechanisms,
have been explored to improve the accuracy and robust-
ness of SOH prediction models. These techniques can
capture the spatiotemporal dependencies and nonlinear
relationships in battery data, and enhance the gener-
alization and scalability of SOH prediction models.
For example, graph neural networks can model the
interactions among different battery cells or modules,
transformers can encode the sequential and contextual
information of battery data, and attention mechanisms
can focus on the important features or time steps for
SOH prediction.

• SOH prediction model is necessary to provide confi-
dence intervals and reliability measures for the pre-
dictions, and to handle the uncertainties and noise
in battery data. Uncertainty quantification can also
improve the robustness and safety of battery systems,
as it can help identify the worst-case scenarios and
avoid overconfidence or under confidence in the pre-
dictions. Some methods for uncertainty quantification
include Bayesian inference, Monte Carlo simulation,
or interval analysis, which can capture both aleatoric
and epistemic uncertainties in SOH prediction.

• SOH prediction is challenging due to the influence of
various external factors, such as environmental condi-
tions, driving patterns, charging strategies, and battery
aging mechanisms, which may affect the performance
and degradation of batteries in different ways. There-
fore, evaluating the impact of external factors on SOH
prediction performance is necessary to understand the
sources of uncertainties and variations in battery data,
and to identify the most relevant and sensitive factors
for SOH prediction. Moreover, developing adaptive
models that can adjust to different scenarios and opti-
mize battery management is essential to improve the
accuracy and robustness of SOH prediction, and to
enhance the efficiency and safety of battery systems.

• SOH prediction is challenging due to the diversity
and variability of batteries and applications, such as
smart grids, renewable energy systems, andmicrogrids,
which may have different types, sizes, configura-
tions, operating conditions, and degradation patterns
of batteries. Therefore, applying transfer learning and
domain adaptation techniques to enable SOH predic-
tion for different types of batteries and applications
is necessary to improve the accuracy and robustness
of SOH prediction models, and to reduce the data
and computational requirements. Transfer learning and
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domain adaptation techniques can leverage the knowl-
edge and information from existing or related tasks,
and adapt them to new or target tasks, by minimizing
the distribution discrepancy or maximizing the feature
similarity between the source and target domains.

• Accurate prediction of SOH is crucial for effective
battery management, aiding in estimating remaining
useful life and capacity. Battery aging is intricate,
influenced by factors like chemistry, operating con-
ditions, and environment. Diverse batteries exhibit
varied aging modes, such as power fade or capacity
fade. Addressing this diversity requires extensive data
and knowledge of the battery system and degradation
mechanisms. In lithium-ion batteries, common aging
mechanisms include structural disordering, phase tran-
sition, metal dissolution, and electrolyte decomposi-
tion, each impacting the ability of electrodes to store
and release lithium ions, causing capacity loss, and
affecting charge transfer and mass transport processes.

• Applying explainable artificial intelligence (XAI) tech-
niques to enhance the interpretability and transparency
of SOH prediction models, and to provide explanations
and justifications for the predictions, such as feature
importance, decision rules, and causal relationships.

• Exploring the trade-off between accuracy and complex-
ity of SOH prediction models, and developing efficient
and scalable models that can achieve high accuracy
with low computational cost and memory requirement,
such as sparse models, and compressed models.

V. CONCLUSION
This paper has presented a comprehensive survey of
data-driven models for predicting battery state of health in
electric vehicles. The paper has reviewed the main methods,
challenges, and future directions of data-driven techniques,
such as machine learning, deep learning, and digital twin
technology, for battery health estimation and management.
The survey has also provided a comparative analysis of
the performance, advantages, and disadvantages of different
models and algorithms, using various datasets and metrics.
The paper has highlighted the importance of data qual-
ity, availability, and security, as well as model validation,
verification, and generalization, for developing reliable and
robust machine learning models for battery SOH predic-
tion. The survey foster additional research and innovation in
this domain by offering a thorough overview of the current
advancements and the challenges they entail.

REFERENCES
[1] Inc42. (2018). Electric Vehicles Overview: The Evolution of

EVs In India. Accessed: Dec. 2, 2023. [Online]. Available:
https://inc42.com/features/electric-vehicles-overview-indiae-evs/

[2] Int. Energy Agency. (2021). Trends and Developments in Electric
Vehicle Markets. Accessed: Dec. 2, 2023. [Online]. Available:
https://www.iea.org/reports/global-ev-outlook-2021/trends-and-
developments-in-electric-vehicle-markets

[3] Int. Energy Agency. (2023). Electric Vehicles. Accessed: Dec. 2, 2023.
[Online]. Available: https://www.iea.org/energy-system/transport/electric-
vehicles

[4] S. Khaleghi Rahimian and Y. Tang, ‘‘A practical data-driven battery state-
of-health estimation for electric vehicles,’’ IEEE Trans. Ind. Electron.,
vol. 70, no. 2, pp. 1973–1982, Feb. 2023.

[5] Y. Zhi, H. Wang, and L. Wang, ‘‘A state of health estimation method
for electric vehicle Li-ion batteries using GA-PSO-SVR,’’ Complex Intell.
Syst., vol. 8, no. 3, pp. 2167–2182, Jun. 2022.

[6] J. Wu, L. Fang, G. Dong, and M. Lin, ‘‘State of health estimation for
lithium-ion batteries in real-world electric vehicles,’’ Sci. China Technol.
Sci., vol. 66, no. 1, pp. 47–56, Jan. 2023.

[7] H. Yang, J. Hong, F. Liang, and X. Xu, ‘‘Machine learning-based state
of health prediction for battery systems in real-world electric vehicles,’’
J. Energy Storage, vol. 66, Aug. 2023, Art. no. 107426.

[8] H. Feng and H. Yan, ‘‘State of health estimation of large-cycle lithium-ion
batteries based on error compensation of autoregressive model,’’ J. Energy
Storage, vol. 52, Aug. 2022, Art. no. 104869.

[9] J. Zhao, H. Ling, J. Liu, J.Wang, A. F. Burke, and Y. Lian, ‘‘Machine learn-
ing for predicting battery capacity for electric vehicles,’’ ETransportation,
vol. 15, Jan. 2023, Art. no. 100214.

[10] L. Cai, J. Lin, and X. Liao, ‘‘A data-driven method for state of health
prediction of lithium-ion batteries in a unified framework,’’ J. Energy
Storage, vol. 51, Jul. 2022, Art. no. 104371.

[11] C. Wu, J. Fu, X. Huang, X. Xu, and J. Meng, ‘‘Lithium-ion battery health
state prediction based on VMD and DBO-SVR,’’ Energies, vol. 16, no. 10,
p. 3993, May 2023.

[12] B. Zhang and G. Ren, ‘‘Li-ion battery state of charge prediction for electric
vehicles based on improved regularized extreme learning machine,’’World
Electr. Vehicle J., vol. 14, no. 8, p. 202, Jul. 2023.

[13] M. S. Hossain Lipu, M. A. Hannan, A. Hussain, S. Ansari, S. A. Rahman,
M.H.M. Saad, andK.M.Muttaqi, ‘‘Real-time state of charge estimation of
lithium-ion batteries using optimized random forest regression algorithm,’’
IEEE Trans. Intell. Vehicles, vol. 8, no. 1, pp. 639–648, Jan. 2023.

[14] N. Yan, Y.-B. Yao, Z.-D. Jia, L. Liu, C.-T. Dai, Z.-G. Li, Z.-H. Zhang,
W. Li, L. Wang, and P.-F. Wang, ‘‘Online battery health diagnosis for elec-
tric vehicles based on DTW-XGBoost,’’ Energy Rep., vol. 8, pp. 121–128,
Nov. 2022.

[15] R. Swarnkar, R. Harikrishnan, P. Thakur, and G. Singh, ‘‘Electric vehi-
cle lithium-ion battery ageing analysis under dynamic condition: A
machine learning approach,’’ SAIEE Afr. Res. J., vol. 114, no. 1, pp. 4–13,
Mar. 2023.

[16] R. Li, J. Hong, H. Zhang, and X. Chen, ‘‘Data-driven battery state of health
estimation based on interval capacity for real-world electric vehicles,’’
Energy, vol. 257, Oct. 2022, Art. no. 124771.

[17] X. Zhao, J. Hu, G. Hu, and H. Qiu, ‘‘A state of health estimation framework
based on real-world electric vehicles operating data,’’ J. Energy Storage,
vol. 63, Jul. 2023, Art. no. 107031.

[18] R. Bustos, S. A. Gadsden,M. Al-Shabi, and S.Mahmud, ‘‘Lithium-ion bat-
tery health estimation using an adaptive dual interacting model algorithm
for electric vehicles,’’ Appl. Sci., vol. 13, no. 2, p. 1132, Jan. 2023.

[19] C. Zhu, M. Gao, Z. He, H. Wu, C. Sun, Z. Zhang, and Z. Bao, ‘‘State
of health prediction for Li-ion batteries with end-to-end deep learning,’’
J. Energy Storage, vol. 65, Aug. 2023, Art. no. 107218.

[20] J. Hemdani, L. Degaa, N. Rizoug, and A. Chaari, ‘‘State of health predic-
tion of lithium-ion battery usingmachine learning algorithms,’’ inProc. 9th
Int. Conf. Control, Decis. Inf. Technol. (CoDIT), Jul. 2023, pp. 2729–2733.

[21] I. Jorge, T. Mesbahi, A. Samet, and R. Boné, ‘‘Time series feature extrac-
tion for lithium-ion batteries state-of-health prediction,’’ J. Energy Storage,
vol. 59, Mar. 2023, Art. no. 106436.

[22] M. H. Sulaiman, Z. Mustaffa, N. F. Zakaria, and M. M. Saari, ‘‘Using the
evolutionary mating algorithm for optimizing deep learning parameters for
battery state of charge estimation of electric vehicle,’’ Energy, vol. 279,
Sep. 2023, Art. no. 128094.

[23] H. Zhao, Z. Chen, X. Shu, J. Shen, Z. Lei, and Y. Zhang, ‘‘State of health
estimation for lithium-ion batteries based on hybrid attention and deep
learning,’’ Rel. Eng. Syst. Saf., vol. 232, Apr. 2023, Art. no. 109066.

[24] S. Bamati and H. Chaoui, ‘‘Lithium-ion batteries long horizon health
prognostic usingmachine learning,’’ IEEE Trans. Energy Convers., vol. 37,
no. 2, pp. 1176–1186, Jun. 2022.

[25] J. Chen, P. Kollmeyer, F. Chiang, andA. Emadi, ‘‘Lithium-ion battery state-
of-health estimation via histogram data, principal component analysis, and
machine learning,’’ in Proc. IEEE Transp. Electrific. Conf. Expo. (ITEC),
Jun. 2023, pp. 1–6.

43998 VOLUME 12, 2024



A. P. Renold, N. S. Kathayat: Comprehensive Review

[26] S. Jafari and Y.-C. Byun, ‘‘Prediction of the battery state using the digital
twin framework based on the battery management system,’’ IEEE Access,
vol. 10, pp. 124685–124696, 2022.

[27] X. Li, T. Wang, C. Wu, J. Tian, and Y. Tian, ‘‘Battery pack state of health
prediction based on the electric vehicle management platform data,’’World
Electr. Vehicle J., vol. 12, no. 4, p. 204, Oct. 2021.

[28] H. Li, M. Bin Kaleem, I.-J. Chiu, D. Gao, and J. Peng, ‘‘A digital twin
model for the battery management systems of electric vehicles,’’ in Proc.
IEEE 23rd Int. Conf. High Perform. Comput. Commun., Hainan, China,
Dec. 2021, pp. 1100–1107.

[29] N. D. K. M. Eaty and P. Bagade, ‘‘Electric vehicle battery management
using digital twin,’’ in Proc. IEEE Int. Conf. Omni-Layer Intell. Syst.
(COINS), Aug. 2022, pp. 1–5.

[30] Y. Qin, A. Arunan, and C. Yuen, ‘‘Digital twin for real-time Li-
ion battery state of health estimation with partially discharged cycling
data,’’ IEEE Trans. Ind. Informat., vol. 19, no. 5, pp. 7247–7257,
May 2023.

[31] N. D. K. M. Eaty and P. Bagade, ‘‘Digital twin for electric vehicle battery
management with incremental learning,’’ Expert Syst. Appl., vol. 229,
Nov. 2023, Art. no. 120444.

[32] M. Pooyandeh and I. Sohn, ‘‘Smart lithium-ion battery monitoring in
electric vehicles: An AI-empowered digital twin approach,’’Mathematics,
vol. 11, no. 23, p. 4865, Dec. 2023.

[33] Y. Zhang, X. Feng,M. Zhao, and R. Xiong, ‘‘In-situ battery life prognostics
amid mixed operation conditions using physics-driven machine learning,’’
J. Power Sources, vol. 577, Sep. 2023, Art. no. 233246.

[34] J. Yang, C. Du, W. Liu, T. Wang, L. Yan, Y. Gao, X. Cheng, P. Zuo,
Y. Ma, G. Yin, and J. Xie, ‘‘State-of-health estimation for satellite batteries
based on the actual operating parameters—Health indicator extraction
from the discharge curves and state estimation,’’ J. Energy Storage, vol. 31,
Oct. 2020, Art. no. 101490.

[35] Y. Liu, L. Wang, D. Li, and K. Wang, ‘‘State-of-health estimation of
lithium-ion batteries based on electrochemical impedance spectroscopy:
A review,’’ Protection Control Mod. Power Syst., vol. 8, no. 1, pp. 1–17,
Dec. 2023.

[36] X. Lai, Y. Yao, X. Tang, Y. Zheng, Y. Zhou, Y. Sun, and F. Gao, ‘‘Voltage
profile reconstruction and state of health estimation for lithium-ion bat-
teries under dynamic working conditions,’’ Energy, vol. 282, Nov. 2023,
Art. no. 128971.

[37] S. Liu, Y. Nie, A. Tang, J. Li, Q. Yu, and C. Wang, ‘‘Online health
prognosis for lithium-ion batteries under dynamic discharge conditions
over wide temperature range,’’ ETransportation, vol. 18, Oct. 2023,
Art. no. 100296.

[38] Q. Yu, Y. Nie, S. Liu, J. Li, and A. Tang, ‘‘State of health estimationmethod
for lithium-ion batteries based on multiple dynamic operating conditions,’’
J. Power Sources, vol. 582, Oct. 2023, Art. no. 233541.

[39] N. Li, F. He,W.Ma, R.Wang, L. Jiang, andX. Zhang, ‘‘An indirect state-of-
health estimation method based on improved genetic and back propagation
for online lithium-ion battery used in electric vehicles,’’ IEEE Trans. Veh.
Technol., vol. 71, no. 12, pp. 12682–12690, Dec. 2022.

[40] M. Lin, Y. You, W. Wang, and J. Wu, ‘‘Battery health prognosis with
gated recurrent unit neural networks and hiddenMarkovmodel considering
uncertainty quantification,’’ Rel. Eng. Syst. Saf., vol. 230, Feb. 2023,
Art. no. 108978.

[41] A. Tang, Y. Jiang, Q. Yu, and Z. Zhang, ‘‘A hybrid neural network model
with attention mechanism for state of health estimation of lithium-ion
batteries,’’ J. Energy Storage, vol. 68, Sep. 2023, Art. no. 107734.

[42] M. Chen, G.Ma,W. Liu, N. Zeng, andX. Luo, ‘‘An overview of data-driven
battery health estimation technology for battery management system,’’
Neurocomputing, vol. 532, pp. 152–169, May 2023.

[43] Y. Li, K. Liu, A. M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury,
J. Van Mierlo, and H. E. Hoster, ‘‘Data-driven health estimation and life-
time prediction of lithium-ion batteries: A review,’’ Renew. Sustain. Energy
Rev., vol. 113, Oct. 2019, Art. no. 109254.

[44] R. Swarnkar, H. Ramachandran, S. H.M. Ali, and R. Jabbar, ‘‘A systematic
literature review of state of health and state of charge estimation methods
for batteries used in electric vehicle applications,’’World Electr. Vehicle J.,
vol. 14, no. 9, p. 247, Sep. 2023.

[45] M. Elmahallawy, T. Elfouly, A. Alouani, and A. M. Massoud, ‘‘A
comprehensive review of lithium-ion batteries modeling, and state of
health and remaining useful lifetime prediction,’’ IEEE Access, vol. 10,
pp. 119040–119070, 2022.

[46] E. Kim, M. Kim, J. Kim, J. Kim, J.-H. Park, K.-T. Kim, J.-H. Park, T. Kim,
and K. Min, ‘‘Data-driven methods for predicting the state of health, state
of charge, and remaining useful life of Li-ion batteries: A comprehen-
sive review,’’ Int. J. Precis. Eng. Manuf., vol. 24, no. 7, pp. 1281–1304,
Jul. 2023.

[47] T. Oji, Y. Zhou, S. Ci, F. Kang, X. Chen, and X. Liu, ‘‘Data-driven methods
for battery SOH estimation: Survey and a critical analysis,’’ IEEE Access,
vol. 9, pp. 126903–126916, 2021.

[48] (2023). Ora.ox.ac.uk. [Online]. Available: https://ora.ox.
ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac

[49] (2023). Data.nasa.gov. [Online]. Available: https://data.nasa.
gov/browse?q=battery&sortBy=relevance

[50] (2023). Calce.Umd.Edu. [Online]. Available: https://calce.
umd.edu/battery-data

[51] C. Fei. (2022). Lithium-Ion Battery Data Set. Accessed: Dec. 30, 2023.
[Online]. Available: https://ieee-dataport.org/documents/lithium-ion-
battery-data-set

[52] K. A. Severson, P. M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang,
M. H. Chen, M. Aykol, P. K. Herring, D. Fraggedakis, M. Z. Bazant,
S. J. Harris, W. C. Chueh, and R. D. Braatz, ‘‘Data-driven prediction of
battery cycle life before capacity degradation,’’ Nature Energy, vol. 4,
no. 5, pp. 383–391, Mar. 2019.

A. PRAVIN RENOLD received the Ph.D. degree
from Anna University, Chennai. He is currently
an Assistant Professor (Sr.G) with the School of
Computer Science and Engineering, Vellore Insti-
tute of Technology Chennai. His current research
interests include the IoT, edge intelligence, electric
vehicles, and sustainable computing.

NEERAJ SINGH KATHAYAT was born in
Jasari, Khatima, Uttarakhand, India, in 2002.
He received the Bachelor of Computer Appli-
cations (B.C.A.) degree from Graphic Era Hill
University, Dehradun. He is currently pursuing the
Master of Computer Applications (M.C.A.) degree
with Vellore Institute of Technology. His aca-
demic interests revolve around machine learning
and electric vehicle (EV) battery health detection.
His current research interest includes leveraging

machine learning techniques to enhance the detection and monitoring of EV
battery health.

VOLUME 12, 2024 43999


