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ABSTRACT The Master Surgery Scheduling Problem (MSSP) can be described as a timetabling problem
involving assigning surgery groups to operating theatre (OT) time slots. Previous MSSP optimization
models considered throughput, waiting measures, resource utilization, costs, and schedule assignment
objectives, but have overlooked consecutive days assignment preferences and surgical equipment-sharing
limitations. Furthermore, previous works utilize greedy constructive heuristics to produce solutions, which
increases quality but decreases feasibility. Our prior study demonstrated that the saturation degree heuristic
enhances feasibility by considering assignment difficulty during event selection. However, its impact on
solution quality remained unexplored. Therefore, this study proposes an improved saturation degree-based
constructive heuristic that integrates objective function value for event selection to increase both quality
and feasibility. The algorithm sorts surgery groups by unit scores, prioritizing higher assignment difficulty
and objective value. The highest-scoring group is assigned to its feasible slot with the highest slot score.
If no feasible slots exist, the repair mechanism vacates the slot with the highest swap score, which
prioritizes lower assignment difficulty and objective value. A new mathematical model is also formulated,
incorporating novel objectives regarding consecutive days assignment preference and surgical equipment-
sharing limitations. Using real-world data from Hospital Canselor Tuanku Muhriz, the proposed algorithm
is evaluated considering repair mechanism usage for feasibility and objective function value for quality. The
algorithm is benchmarked against greedy, random, regret-based, and saturation degree-based constructive
heuristics. Our algorithm achieved a 14.63% improvement in feasibility compared to the original variant.
Its objective function value is over two times better than the closest competitor and 2.6 times superior to
the original variant. Comparison with the hospital’s actual plan demonstrates competitive objective function
value and a more balanced waiting time distribution among surgical groups. Our study showcases that a
saturation degree-based constructive heuristic considering objective function value has increased solution
quality while maintaining feasibility.

INDEX TERMS Constructive heuristic, graph colouring heuristic, healthcare management, master surgery
scheduling, operating theatre planning, solution feasibility.
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I. INTRODUCTION
The surgery scheduling problem involves selecting and
sequencing surgeries and allocating resources for those
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surgeries [1]. The problem can be divided into three lev-
els: strategic, tactical, and operational [2], [3]. The capacity
allocation problem (strategic) involves the decisions on the
number of operating theatres (OT) to be made available and
their allocation to surgery groups such as medical specialties
or surgeons [4]. Meanwhile, the Master Surgery Scheduling
Problem (MSSP) is a tactical problem that produces a master
surgery schedule, also called a master plan, which defines the
assignment of surgery groups to OT time slots [2]. Finally, the
operational level determines individual surgeries’ time slots
and sequence. GoodOT planning leads to an efficient hospital
in terms of operation management and financial manage-
ment [5], [6]. Hence, it is important to have an effective
master plan.

One of the main issues in MSSP is the involvement of
numerous stakeholders, each with different and perhaps con-
flicting objectives [7]. The surgery scheduling problem can be
represented mathematically as a combinatorial optimization
model for distributing hospital resources based on specific
objectives [3]. Among the common objectives are maximiz-
ing the number of surgeries [8], [9], [10], minimizing OT
idleness [11], [12], [13] and the number of patients in down-
stream resources [11], [14], [15]. However, no previousworks
have considered the objectives for the case study hospital,
Hospital Canselor Tuanku Muhriz (HCTM), which includes
assignment preference and resource-sharing limitations.

Assignment preference refers to the specific preferences
of surgery groups for certain OT slots or having repeat-
ing patterns in the schedule for high predictability. The
model proposed by Penn et al. [16] minimizes surgeons
in non-preferred slots and maximizes surgeons in the same
slot each week or consecutive slots. Other works, such as
Oliveira et al. [17] and Britt et al. [11], address similar objec-
tives. However, these models do not consider preferences
for scheduling a surgery group on two consecutive days.
In addition, while existing models have included objectives
related to various resources such as OTs and upstream and
downstream resources [18], limitations in resource sharing
that constrain the daily assignment of surgery groups based on
equipment availability have not been incorporated as objec-
tives in any MSSP model.

Solution robustness has been linked to a decline in solution
quality [19], prompting an exploration into whether increased
solution feasibility has a similar adverse impact. Most prior
constructive heuristics that address the MSSP employ the
greedy approach [5], [20], [21], [22], which can maximize
solution quality at the cost of other variables [23]. Although
alternative approaches such as stochastic methods [24] and
regret-based strategies [9] have mitigated this trade-off, they
still overlook solution feasibility during generation. To over-
come this issue, Razali et al. [25] introduced a saturation
degree-based constructive heuristic that enhances feasibil-
ity but neglects solution quality. This trend emphasizes the
tendency of prior heuristics to prioritize either feasibility or
quality, calling for methods to improve both aspects.

The main motivation of this paper is to examine the rela-
tionship between solution feasibility and solution quality
within the framework of a constructive heuristic to generate
high-quality, feasible initial solutions for the MSSP. This
study focuses on using constructive heuristics to generate
initial solutions for the MSSP. Constructive heuristics can
produce high-quality initial solutions, which may reduce
the computational effort required to find the optimal solu-
tion [26]. The objectives of the study can be summarized as
follows:
• To formulate a new mathematical model tailored for
the case study hospital by incorporating variables not
previously considered.

• To develop a novel constructive heuristic based on satu-
ration degree, considering both solution feasibility and
quality, and investigate the interaction between these
factors.

This study formulated a new variation of the MSSP
mathematical model with a novel objective function that
includes assignment preference and resource-sharing lim-
itations. Besides, an improved version of the saturation
degree-based constructive heuristic from Razali et al. [25]
is proposed to consider both solution feasibility and quality.
A constructive heuristic for the MSSP involves an iterative
process of selecting a surgery group and an OT slot for the
group. The algorithm proposed by Razali et al. [25] selects
the surgery group with the fewest feasible OT slots and
assigns it to the OT slot with the fewest possible assignments
to enhance solution feasibility. In contrast, our proposed
algorithm considers a composite value, incorporating the
number of feasible slots or surgery groups and potential
objective function value for selection, aiming for higher qual-
ity solutions while maintaining feasibility.

We hypothesize that if consideration of objective func-
tion value in event sorting can affect the solution quality,
then a constructive heuristic incorporating saturation degree
heuristic based on the objective function value can increase
both solution feasibility and quality. The hypothesis is
tested by comparing the feasibility and quality of master
plans generated using the proposed approach to greedy, ran-
dom, regret-based, and the original saturation degree-based
constructive heuristics. Solution feasibility and quality are
measured by repair mechanism usage and objective function
value, respectively. Furthermore, a simulation is carried out
to assess the operational performance of each master plan.

The remaining sections of this work are structured as
follows: Section II provides knowledge about the related
works in the problem domain. Next, the mathematical model
for the combined capacity allocation and MSSP based on
the case study hospital, HCTM, is presented in Section III.
Section IV describes our proposed improved saturation
degree-based constructive heuristic. Sections V, VI, and VII
provide an in-depth discussion of the evaluation results
and statistical analysis, focusing on comparing construc-
tive heuristics, improvement algorithms, and performance as
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initial solutions. Finally, the conclusion and future works are
described in Section VIII.

II. RELATED WORKS
When constructing solutions for the MSSP, the key com-
ponent of optimization is the objectives. The objectives
can be classified into eight categories: throughput, waiting
measure, patient score, OT utilization, emergency capacity,
costs, schedule assignment, and upstream and downstream
resources [18]. Throughput objectives include maximizing
the number of surgeries performed [8], [9], [10], [27], min-
imizing surgical cancellations [8], [28], and minimizing
surgical postponements [29]. The waiting measure objectives
include minimizing waiting time [29], [30] and associ-
ated costs [22]. Patient score objectives involve maximizing
scheduled patient scores [14], [31], [32]. Each surgery or
patient is assigned a score, which varies between models.
In [31], the score for each surgery is determined based on
its proximity to the due date, where a higher score indicates
greater urgency. Aringhieri et al. [14] calculate scores by
multiplying the surgery priority level by the time between
diagnosis and surgery. Objectives related to OT utiliza-
tion include maximizing utilization [28], [33], minimizing
overtime [22], [24], and minimizing idleness [11], [12],
[13], [22], [24], [34]. Emergency capacity objectives, a less
common category, involve minimizing OT time reserved
for emergency surgeries [9]. Cost-related objectives include
minimizing hospitalization [35], machine [11], and over-
time costs [35], [36], as well as minimizing losses [29]
and maximizing profit [36]. Schedule assignment objectives
focus on the master plan, aiming to maximize staff pref-
erences [16], [37] or minimize assignment variation [11].
The upstream and downstream resources category includes
objectives related to the utilization of wards and ICU beds.
Previous models aimed at maximizing patients in beds [11],
[13], [38], minimizing bed shortages [39], and minimizing
variation in bed usage [13], [33], [38].
The MSSP is a combinatorial optimization problem that

can be solved using exact or approximate methods. Exact
methods guarantee optimal solutions within a finite time [40],
but they have scaling limitations, making them unsuitable
for more complex problems [41]. Approximate methods,
including heuristic and approximation algorithms, can find
good solutions to more complex problems within a reason-
able timeframe [42]. Heuristic algorithms are categorized
into low-level heuristics (commonly referred to as heuris-
tics), metaheuristics, and hyper-heuristics [43]. Low-level
heuristics modify the solution directly, whereas metaheuris-
tics utilize one ormore low-level heuristics to guide the search
of the solution space [41]. A higher-level technique known as
hyper-heuristics integrates multiple low-level heuristics into
a framework that searches the heuristic space [44]. These
heuristics can be divided into constructive and local search (or
improvement) heuristics [45]. Constructive heuristics build a
complete solution incrementally, whereas local search heuris-

tics start with a complete solution and make small changes to
find improvement.

Within the MSSP domain, constructive heuristics have
been employed to obtain initial solutions for theMSSP before
being improved by more sophisticated methods. Spratt and
Kozan [9] introduced a regret-based constructive heuristic
to generate an initial solution for the Simulated Anneal-
ing (SA) and Tabu Search hyper-heuristic algorithms. The
regret-based approach is applied to select an OT for a chosen
surgeon-specialty set in their algorithm. For each feasible
OT, the regret value is calculated as the difference between
the highest and the second-highest number of patients that
could be scheduled. The OT with the largest regret is then
chosen. Their approach can produce a master plan with the
most scheduled patients. However, solution feasibility cannot
be guaranteed, particularly during the OT selection for the
next surgeon-specialty set, given that the greedy-based set
selection is employed. Mashkani et al. [5] developed two
dynamic programming-based heuristic algorithms that priori-
tize patients and specialties with the highest total profit. Their
approach is characterized by its greedy nature, and solution
feasibility is not considered during solution construction.
Dellaert and Jeunet [24] utilize a constructive heuristic to
generate an initial solution for their VNS algorithm. In their
constructive heuristic, a day is chosen randomly with a higher
probability of selecting days with high under-utilization of
OT resources. Then, a patient category with a lower OT
resource target deviation on the selected day has a higher
chance of being chosen. Their approach introduces stochas-
ticity, departing from the reliance on a purely greedy method.
However, like the previous methods, it does not guarantee
solution feasibility. Razali et al. [25] implemented a sat-
uration degree-based constructive heuristic that prioritizes
surgical units and OTs based on constraint violation to
enhance solution feasibility. However, the construction of
the solution did not consider solution quality, leading to a
suboptimal outcome in terms of solution quality. Similar
trends in the popularity of adopting a greedy approach and
overlooking solution feasibility have been observed in other
works that schedule individual patients through constructive
heuristics [20], [21], [22]. This trend highlights that prior con-
structive heuristics typically focus on either solution quality
or feasibility.

Various metaheuristic algorithms were employed to solve
the MSSP. Schneider et al. [33] utilized SA and conducted
a performance comparison with an exact method, Mixed
Integer Linear Programming (MILP). Their findings indi-
cated that MILP surpassed SA, and incorporating SA after
MILP led to further improvements. Lu et al. [36] addressed a
multi-objective problem using an improved Non-dominated
Sorting Genetic Algorithm. Their algorithm introduced a
novel population initialization process, where constraints are
imposed to ensure chromosome feasibility. When solving
their three-objective problem, the proposed algorithm out-
performed a goal programming approach in two objectives.
Marchesi & Pacheco [46] applied the Genetic Algorithm
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(GA), whereas Britt et al. [11] employed a hybrid VNS-GA to
solve theMSSP. Almaneea and Hosny [21] proposed a hybrid
Bees Algorithm and SA that demonstrated superiority over
the algorithm introduced by Aringhieri et al. [20]. Dellaert
and Jeunet [24] tested the applicability of the VNS algorithm
in solving the MSSP, comparing random VNS (R-VNS) and
first descent VNS (FD-VNS) to an exact solver, IBM ILOG
CPLEX. Results indicated that R-VNS performed compara-
bly to the exact solver across instances with varying difficulty,
whereas FD-VNS performed worse. R-VNS outperformed
CPLEX, especially when using random initial solutions for
hard-to-solve problems. Spratt and Kozan [10] hybridized
SA and VNS to obtain better solutions for the combined
MSSP and SCAP, surpassing a decomposition approach in
a case study for an Australian public hospital. Zhu et al. [35]
proposed a hybrid GWO-VNS to address all three decision
levels of the surgical scheduling problem. The proposed
algorithm outperformed non-hybrid GWO, VNS, and another
swarm intelligence approach, Particle Swarm Optimization
(PSO). On the other hand, only one study has employed
hyper-heuristics for solving the MSSP, as demonstrated by
Spratt and Kozan [9], who employed a hybridized SA and
Tabu Search hyper-heuristic algorithm.

The MSSP shares similarities with the timetabling prob-
lem [25], which involves allocating events and resources in
space and time [47]. Algorithms designed for addressing
timetabling or scheduling problems are considered applicable
to solving theMSSP, and a review of such algorithms follows.
In addressing the educational timetabling problem, a widely
studied timetabling scenario, researchers have extensively
employed graph colouring heuristics. These heuristics are
utilized to order the events, facilitating the construction of
a valid solution [48], [49]. These heuristics include largest
enrolment, largest degree [50], largest weighted degree [51],
largest colour degree, and saturation degree [52], [53], [54],
[55]. Various studies have also explored combinations of
these heuristics [56], [57], [58], [59], [60]. Additionally, these
heuristics have been integrated into various metaheuristic
algorithms [61], [62], [63], [64] and hyper-heuristic frame-
works [65], [66], [67]. Constructive heuristics are also widely
applied to solve diverse optimization problems, such as the
Travelling Salesman Problem [68], flowshop scheduling [69],
personnel scheduling [70], staff scheduling [71], andmachine
assembly scheduling [72].

Additionally, metaheuristics play a crucial role in solv-
ing timetabling and scheduling problems. Li et al. [73]
hybridized the Artificial Bee Colony (ABC) algorithm with
Q-learning to address the permutation flow-shop problem
(PFSP). The Q-learning component rewards effective neigh-
bourhood structures and selects the appropriate action for
the current state. Compared to state-of-the-art ABC, a Whale
Optimization Algorithm, and ABC with random neighbour-
hood selection, the hybrid approach demonstrated superior
performance across all benchmark instances, with a notable
advantage in large-scale ones. Zheng and Wang [74] pro-
posed a hybrid Bat Algorithm and 5NS to solve a variant

FIGURE 1. Overview of the methodology.

of the PFSP. The algorithm ensures population diversity by
classifying it into two types: search-type population and
captive population. Each population exhibits different points
of the search space and utilizes a different update method.
Comparative evaluations against othermetaheuristics, includ-
ing memetic algorithms, GA, and PSO, demonstrated the
superior performance of the proposed method. Other meta-
heuristic algorithms utilized in this domain include GA [75],
Harmony Search [76], Anarchic Society Optimization [77],
and Intelligent Water Drops algorithm [78].
In summary, our study is motivated by two research gaps.

Firstly, no existing optimization model considers all objec-
tives of the case study hospital, particularly in terms of con-
secutive days assignment preference and equipment-sharing
limitations. Hence, this study will introduce a newmathemat-
ical model that combines existing and new objectives. Sec-
ondly, we focus on constructive low-level heuristics among
the solution approaches to the MSSP optimization model.
Despite the acknowledged effectiveness of metaheuristics
and hyper-heuristics in tackling the problem, we focus on
constructive heuristics because they generate high-quality
solutions more rapidly than the other approaches [79].
We observed a lack of simultaneous consideration of solution
quality and feasibility during solution construction. Our study
proposes an improved saturation degree-based constructive
heuristic that concurrently addresses both factors.

III. PROBLEM DESCRIPTION
The MSSP at the case study hospital, HCTM, is presented
in an integrated capacity allocation and MSSP optimization
model. The objective function and constraints of the problem
are expressed.Master plans are generated using a constructive
heuristic inspired by the saturation degree heuristic, later
introduced in Section IV. Fig. 1 provides an overview of the
study’s methodology.

A. PROBLEM AND DEFINITIONS
This study covers the strategic and tactical levels of surgical
scheduling, and the optimization is divided into two parts.
The first part, called capacity allocation, distributes OT time
to medical subspecialties (j ∈ J ) and their surgical units (g ∈
G). Afterwards, the surgical units are assigned to suitable OTs
and days, forming a master plan. The relationship between
medical subspecialties and surgical units can be described
as one-to-many. Correspondingly, the surgery personnel
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(surgeons, anaesthetists and nurses) responsible for subspe-
cialty j is responsible for all its units (g ∈ Gj).
OT time is divided into full-day slots identified by the

indices of the week (w ∈ W ), weekly working days (p ∈ P),
and OT (o ∈ O). A planning horizon has a slottotal number of
slots calculated by multiplying the number of weeks, weekly
working days, and OTs. Each slot is hereafter denoted as
(w, p, o) ∈ SL, where SL is the set of slots in the planning
horizon. Each slot is assigned to only one surgical unit, and
only a limited amount of OT time is available for scheduling
surgeries from the chosen unit (s ∈ Sg). All slots have equal
length µ.
The number of slots assigned to each unit in themaster plan

is limited by the number allocated in the capacity allocation
(slotg). OT time allocation is determined based on the surgery
demand and waiting time. Surgery demand is represented by
the cumulative expected duration of surgeries on the waiting
list, where the expected duration durs were given by sur-
geons. Additionally, the surgery waiting time WTs can be
calculated as the difference between the first planning day
and the surgery booking date. The assignment of surgical
units to OT time slots is subject to OT suitability and surgeon
availability, referred to as feasible slots. Contrarily, slots that
are not suitable are called blocked slots. The OTs can only be
assigned to surgical units that are suitable for them (g ∈ GO)
according to the OT and surgical unit types. The OTs are
classified into three types: fixed, ultra-clean and general.
Fixed OTs are reserved for specific units, whereas ultra-clean
OTs can be used by any unit without dirty surgeries. Surgical
units with ultra-clean surgeries must be assigned to ultra-
clean OTs. General OTs can be used by any unit.

Moreover, some units prefer to be assigned to specific
OTs (o ∈ Opreferred

g ). This preference could be due to the
equipment required for their surgeries being stored near or
at the OTs. These slots are hereafter called preferred slots.
Meanwhile, a surgical unit can only be assigned on days when
its surgery team is available (p ∈ Pfeasiblej ). Surgical units
from the same subspecialty can be assigned on day p up to
the maximum parallel slots (slotparallelj ) due to shortages in
surgery personnel.

Besides, the master plan assignments consider the avail-
ability of movable equipment (e ∈ E). Each equipment has
a limited quantity available for usage on each planning day
(qtyewp), as it is not practical to equip all OTs due to the
high cost [17]. Despite this, the number of surgical units
using equipment e assigned on day p is not limited by the
available quantity. The equipment can be shared between
several OTs since not all surgeries scheduled in a slot use the
same equipment. The movement of the equipment should be
limited to avoid time loss and surgery blockings. Therefore,
the model aims to assign as few surgical units that use the
same equipment on the same day.

Furthermore, there is high variability in the availability of
the equipment, such as equipment breakdown. Therefore, it is
preferred that an extra quantity of each piece of equipment
(qtyextrae ) is made available on all days to ensure uninterrupted

services. Less expensive equipment may have a lot of extra
quantities, whereas costly equipment may not be possible to
have any extras.

Schedule stability is a desirable feature of a master plan
and can reduce operational planning complexity [28]. It could
be achieved by minimizing the differences in the assign-
ments. Surgeons from a surgical unit prefer to be assigned
to the same OT throughout the planning horizon. Besides,
the surgery team will also benefit by reducing the complexity
of their schedule. Surgical units should also be assigned on
consecutive days so that cancelled surgeries can be moved
to the following day if there is available time. Meanwhile,
in a multiple-week master plan, assigning the same unit to
the same day and OT each week is desirable.

Multiple subspecialties may have clashing resource
requirements and should not be assigned on the same day.
The clashing units for unit g are defined as Cg ⊆ G.
Furthermore, the surgical units can be divided into two
types based on their resource consumption: heavy and light.
Heavy units (g ∈ Gheavy,Gheavy ⊂ G) are characterized
as having many resource requirements, including requiring
anaesthesia. Light units (g ∈ Glight,Glight ⊂ G) do not
require anaesthesia, and hospital stays for their patients are
discretional.

On each day, it is preferred that only one OT is assigned to
any unit of a subspecialty. However, subspecialties with many
surgeries may require more OT time to operate them timely.
In this case, having one heavy and one light unit is preferable
to two heavy unit slots for the same subspecialty on the same
day. Coordinating operations between heavy unit slots will be
more difficult.

The case study hospital handles both elective and emer-
gency surgeries. Ultra-clean emergency surgeries had to use
elective ultra-clean OTs since the emergency OTs are not
suitable for this surgery type. Therefore, one ultra-clean OT
should be assigned to a unit with light resource requirements
or left unassigned daily to minimize the interruption to the
planned elective surgeries. Interruptions to light surgeries
are more tolerable as the patients do not require anaes-
thesia. Table 1 presents the parameters, whereas Table 2
shows the decision variables available in the mathematical
model.

B. PROPOSED OPTIMIZATION MODEL FOR CAPACITY
ALLOCATION AND MASTER SURGERY SCHEDULING
PROBLEM
Based on the problem at the case study hospital, a math-
ematical model including a novel objective function and
general constraints is formulated. The objective function
minimizes violations of soft constraints (SC). It com-
prises eight assignment preference objectives (SC1, 4 −
10) and two resource-sharing limitation objectives (SC2 −
3). The constraints are extracted from various mathe-
matical models, with minor modifications to suit the
problem.
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TABLE 1. Parameters for the mathematical model.

TABLE 2. Decision variables for the mathematical model.

1) OBJECTIVE FUNCTION
The objective function (1) minimizes violations of ten soft
constraints. The soft constraints can be divided into two
types: penalties and rewards. Penalties are given to undesir-
able violations that do not affect solution feasibility, whereas
rewards are awarded when preferred constraints are satisfied.
Since the objective function minimizes, penalties increase the
objective value, whereas rewards reduce it.

SC1, described in (2), rewards a unit each time it is
assigned to its preferred slots (preferred OT or preferred
days). Meanwhile, SC2, expressed in (3), penalizes the objec-
tive value for each unit assigned to a day exceeding the
available quantity of movable equipment [14], [80]. SC3 pre-
sented in (4) rewards the objective value for not using all
quantities of equipment on each day [14], [80].
Equations (5)-(7) promote schedule stability by rewarding

each time a unit is assigned to the sameOT in two consecutive
days (SC4), or to any OT in two consecutive days (SC5), or to

the same slot in two consecutive weeks (SC6) [16]. However,
SC4 − 6 do not incentivize assignments to consecutive days
or weeks of more than two. Furthermore, SC4 and SC5 do not
consider the blocked days of a surgical unit.

SC7, described in (8), gives out a penalty if a unit is
assigned to a day when its clashing unit has been assigned.
SC8 and SC9 are concerned with the parallel slots of a unit.
Equation (9) sums the penalties handed out each time a unit
is assigned to more than one slot a day. Meanwhile, (10)
penalizes each time heavy units from the same subspecialty
are assigned to multiple slots on a day.

Finally, SC10, expressed in (11), gives a reward for each
day an ultra-clean OT is assigned to a unit with a light
resource requirement or not assigned [80].

Min− θpreferred SC1+ θe SC2− θextra SC3− θsame SC4

− θconsecutive SC5− θweekly SC6+ θclashing SC7

+ θparallelSC8+ θheavySC9− θreserveSC10 (1)

SC1 :
∑
g∈G

∑
(w,p.o)∈SL

xgwpo×min(ygo + zgp; 1) (2)

SC2 :
∑
w∈W

∑
p∈P

∑
e∈E

min((qtyewp −
∑
o∈O

∑
g∈G

xgwpoζge); 0) (3)

SC3 :
∑
w∈W

∑
p∈P

∑
e∈E

max(0; (qtyewp − qtyextrae

−

∑
o∈O

∑
g∈G

xgwpoζge + 1)) (4)

SC4 :
∑
g∈G

∑
(w,p,o)∈SL

cgwpo (5)

SC5 :
∑
g∈G

∑
(w,p,o)∈SL

bgwpo (6)

SC6 :
∑
g∈G

∑
(w,p,o)∈SL

αgwpo (7)

SC7 :
∑
g∈G

∑
i∈Cg

∑
(w,p,o)∈SL

xgwpoβiwp (8)

SC8 :
∑
j∈J

∑
w∈W

∑
p∈P

qjwp (9)

SC9 :
∑
j∈J

∑
w∈W

∑
p∈P

hjwp (10)

SC10 :
∑
w∈W

∑
p∈P

max(
∑
o∈O

(
∑
g∈G

(
xgwpoιgπo

)
+ δwpoπo); 1)

(11)

2) NORMALIZED VALUES
The objectives have different granularity and levels of impor-
tance. To address the former, we normalized the values from
each objective. The normalized value is obtained using N =

y−Ominvalue
Omaxvalue−Ominvalue

, where N is the normalized value, y is the
non-normalized value, Omaxvalue is the extreme best value if
the objective is satisfied, Ominvalue is the extreme worst value
for the objective (ignoring other objectives) [56], [81], [82].
All soft constraints haveminimum values of 0. Themaximum
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values for each objective are given in Appendix A. After-
wards, the normalized objective is multiplied by a weight
assigned based on the importance of the objective.

3) CONSTRAINTS
The constraints can be divided into capacity allocation (12)-
(15) and MSSP (16)-(20). Constraint (12) states that each
surgical unit must be allocated at least one slot in the plan-
ning horizon. Constraint (13) maintains that the total slots
allocated to all units of a subspecialty must not exceed the
number of slots allocated to the subspecialty. Constraint (14)
guarantees that the total slots allocated to all subspecialties
must not exceed the number of slots in the planning hori-
zon [36]. The number of slots for subspecialty j must not
exceed its total feasible slots in the planning horizon, as stated
in constraint (15).

For the MSSP, constraint (16) requires each slot to be
assigned to only one unit [9], [14], [17]. Constraint (17) forces
unit g to be assigned to a slot with an available surgery team
on day p of theweekw [9], [31]. Constraint (18) ensures unit g
is only assigned to suitable or predefined OTs [17]. For each
day, the number of slots assigned to units of subspecialty j
must not exceed its maximum parallel slots, as expressed in
constraint (19) [31]. Finally, constraint (20) ensures that the
number of slots assigned to unit g equals the number allocated
to the unit [21], [31].

slotg ≥ 1, ∀g ∈ G (12)∑
g∈Gj

slotg = slotj, ∀j ∈ J (13)

∑
j∈J

slotj = slottotal (14)

slotj ≤ |W | ×
∣∣∣Pfeasiblej

∣∣∣× slotparallelj , ∀j ∈ J (15)∑
g∈G

xgwpo ≤ 1, ∀w ∈ W , p ∈ P, o ∈ O (16)

xgwpo ≤ dspgp, ∀g ∈ G,w ∈ W , p ∈ P, o ∈ O (17)∑
g∈G\Go

xgwpo = 0, ∀w ∈ W , p ∈ P, o ∈ O (18)

∑
o∈O

∑
g∈Gj

xgwpo ≤ slotparallelj , ∀w ∈ W , p ∈ P, j ∈ J (19)

∑
w∈W

∑
p∈P

∑
o∈O

xgwpo = slotg ∀g ∈ G (20)

C. NUMERICAL EXAMPLE
The solution for theMSSP is represented in a two-dimensional
array (n×m), where n denotes the number of planning days,
and m is the number of OTs. This array is populated by
surgical units, signifying that the unit assigned to a particular
slot can utilize the designated OT on the specified day. Empty
positions within the array indicate unassigned slots.

We present a numerical example demonstrating the assign-
ment of 15 surgical units from 11 subspecialties to a master
plan, as in Fig. 2. The list of subspecialties and their surgical

FIGURE 2. Example of a complete master plan generated based on the
optimization model.

TABLE 3. Example of capacity allocation.

units can be found in Table 3. Each surgical unit is allocated a
suitable number of slots based on surgery demand andwaiting
time. During master plan construction, the list of all booked
surgeries for each surgical unit is retrieved. Each surgery
contains two crucial pieces of information for OT capac-
ity allocation, including the booking date and the estimated
surgery duration provided by the medical team. Each surgical
unit’s cumulative estimated surgery duration is computed,
and OT slots are allocated proportionally to the total duration.
Surgical units with higher cumulative durations receive more
slots in the master plan. The surgery booking date is utilized
to calculate the waiting time for each surgery, and surgical
units with longer average waiting times receive additional
slots in the master plan. The resulting slot allocations are
summarized in Table 3.

Subsequently, each surgical unit is assigned to specific
OTs and days within the master plan based on the desig-
nated slot quantities. The slot assignment process adheres
to constraints related to slot suitability and preferability for
each surgical unit. For example, consider the unit VAS, which
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can only be scheduled for surgeries on Mondays, Tuesdays,
or Wednesdays due to the availability of surgical person-
nel. However, there are no restrictions on which OT can
be assigned. Consequently, the feasible slots for unit VAS
encompass all OTs from Monday to Wednesday, whereas
the blocked slots include all OTs on Thursday and Friday.
In the overall slot assignment process, each surgical unit is
accommodated in the master plan within their feasible slots.
Fig. 2 provides a visual representation of a complete master
plan, showcasing the assignment of each surgical unit to its
allocated slots across specific OTs and days.

We provide examples illustrating the application of soft
constraints within the given master plan. The assignment of
unit VAS to OT1 on Monday in Week 1 (W1, Mon, OT1)
satisfies SC1, as OT1 is the preferred choice for unit VAS.
This adherence to the preference results in a reward being
added to the objective value. SC4 is fulfilled when unit VAS
is consecutively assigned on (W1, Mon, OT1) and (W1, Tue,
OT1), earning the associated reward. In the case of SC5, unit
PAE (LT) is assigned to different OTs on consecutive days
(W1,Wed, OT4) and (W1, Thu, OT5), meeting the conditions
and receiving a reward for the objective value. Similarly, for
SC6, unit VAS is assigned to the same days and OTs for both
(W1, Mon, OT1) and (W2, Mon, OT1), meeting the specified
criteria.

For SC7, note that both units, CTC and HEP, utilize the
same nursing team. Thus, they should not be assigned on the
same day. In the example presented, however, both units are
assigned on Monday in Week 1, resulting in a penalty to the
objective value. The assignment of unit HEP also violates
SC8 on Monday in Week 1, as it prefers to have only one
slot per day but is given two slots. On the other hand, OPH
assignments on Monday in Week 1 violate SC9 since two
heavy units are assigned on the same day, which is avoided on
other days. SC10 is fulfilled for assignments on all planning
days except Monday in Week 1, when no slots are assigned
to a unit with light resource requirements or are left empty.

For equipment sharing constraints, we present an exam-
ple involving the equipment II machine used by VAS and
ART units, where the hospital has only two units available.
To avoid equipment sharing, SC2 requires that these units be
assigned in just two slots on the same day. The example, how-
ever, reveals that the units have been assigned to three slots on
Tuesday in Week 1 at OT1, OT4, and OT5, thereby violating
the soft constraint. Conversely, SC3 requires that just one slot
be assigned to any unit employing the equipment daily. This
soft constraint is fulfilled on Monday in Week 1 since only
OT1 is assigned to VAS and none to ART, satisfying the soft
constraint and rewarding the objective value.

IV. PROPOSED IMPROVED SATURATION DEGREE-BASED
CONSTRUCTIVE HEURISTIC
TheMSSP constructive heuristic consists of three main tasks.
The first task is selecting a surgical unit to assign. Then,
a slot is selected among the feasible slots for the unit. Finally,

if a suitable slot is not found, a unit already assigned in the
incomplete master plan is selected to be swapped out.

This section first provides an overview of the main
procedure involved in the proposed improved saturation
degree-based constructive heuristic. This procedure com-
prises two key tasks: slot allocation and slot assignment,
which are subsequently detailed in separate subsections. The
proposed constructive heuristic, encompassing both tasks,
is presented as Algorithm 1. Additionally, the algorithm gov-
erning the allocation of OT slots to surgery groups is extracted
as Algorithm 2 and discussed in its corresponding subsection.
The intentional separation of Algorithm 2 from Algorithm 1
aims to enhance clarity and facilitate a better understanding
of the distinct tasks involved.

A. MAIN ALGORITHM
The algorithm requires the number of planning days and OTs
to define the dimension of the master plan. Multiplying the
number of weeks by the number of weekly working days
yields the number of planning days. Besides, the list of medi-
cal subspecialties and their surgical units with information on
constraints is also required. Information on the types of mov-
able equipment and their quantities is also required. Finally,
the algorithm requires a list of surgeries with their book-
ing date, estimated duration and associated surgical unit for
slot allocation. The pseudocode for the proposed improved
saturation degree-based constructive heuristic is provided in
Algorithm 1. The detailed pseudocode using programming
syntax is given in Appendix B.

The algorithm is divided into two tasks: determining the
number of slots allocated to each surgical unit (slot allocation)
and assigning them to the master plan (slot assignment). The
slot allocation is determined for each medical subspecialty
j ∈ J and then their surgical units g ∈ Gj,∀j ∈ J (line 1).
The pseudocode for the slot allocation process is presented in
Algorithm 2 and discussed in Section IV-B.

Afterwards, the surgical units are assigned to slots in the
master plan. During slot assignment, conflicts may arise
when a unit cannot be assigned due to its feasible slots having
been taken by other units. The saturation degree heuristic is
employed in sorting the surgical units to minimize conflicts
(line 2). In addition to the number of feasible slots, two
other factors were considered in the basic saturation degree
heuristic. They are the number of preferred slots and the ratio
between the slots allocated to themaximum possible slot allo-
cation of each surgical unit. The former is added to increase
the reward for assigning preferred slots. The saturation degree
surgical unit sorting is explained in Section IV-C.

The algorithm then assigns surgical units with predefined
OTs to their respective slots (line 3). In the slot assignment,
units assigned to their allocated slots are removed from the
unassigned list. Besides, the saturation degree’s heuristic
value, such as the number of feasible slots, changes with each
assignment in the partial solution [66]. The list is re-sorted
after each assignment.
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Algorithm 1 Proposed Improved Saturation
Degree-Based Constructive Heuristic
Input: Number of planning days and OTs, subspecialties
(J ) and surgical units (G) with their constraints information,
movable equipment (E) type and quantity, surgeries list (S)
with booking date and estimated duration.
Output: OT slot allocation and assignment of each surgical
unit to a master plan.

1 Determine the suitable slot allocation for each surgical unit
(slotg) [see Algorithm 2].

2 Sort the surgical units using the saturation degree heuristic
considering assignment difficulty and potential objective
value [see Section IV-C.1].

3 Assign surgical units with predefined OTs. Re-sort the
unassigned list.

4 Assign surgical units with preferred slots, where possible.
Re-sort the unassigned list.

5 Iterate the unassigned list and assign the first unit (g).
Stop when all units are assigned.

6 If unit g has feasible slots in the partial master plan.
7 Assign unit g to the slot with the fewest feasible

unassigned units and highest potential objective
value [see Section IV-C.2]. Re-sort the unassigned
list.

8 Otherwise
9

If the repair mechanism has not reached its usage limit.
10 Swap unit g with unit g′ from the partial master

plan selected using the saturation degree
heuristic [see Section IV-C.3]. Re-sort the
unassigned list.

11 Otherwise
12 Mark the solution as infeasible.
13 End (return a complete master plan)

Subsequently, the algorithm assigns surgical units to their
preferred slots if available (line 4). Then, the remaining units
are iterated and assigned to a feasible slot at each iteration
(lines 5-12). If feasible slots are available for the unit, the
slot with the fewest feasible unassigned units and the high-
est potential objective value is chosen (lines 6-7). The slot
selection process based on saturation degree is described in
Section IV-C.

If no feasible slot can be found for the unit, the algorithm
will execute a repair mechanism in which a unit is unassigned
from the partial solution (lines 8-12). The saturation degree
repair mechanism is discussed in Section IV-C. A maximum
number of repair mechanism invocations is set to prevent
cycling between two surgical units. The solution will be
deemed infeasible if this limit is reached during the slot
assignment (lines 11-12).

The algorithm stops when all slots have been assigned
to the master plan. The algorithm’s output includes a com-
plete master plan satisfying all hard constraints, provided
the repair mechanism does not exceed its allowed usage.
Fig. 3 summarizes the proposed constructive heuristic in a
flowchart. The green-shaded boxes represent the slot alloca-
tion (Algorithm 2), whereas the blue-shaded boxes represent
the repair mechanism.

FIGURE 3. Flowchart of the improved saturation degree-based
constructive heuristic.

The computational complexity of the proposed improved
saturation degree-based constructive heuristic can be derived
as O(n log n), where n depends on the number of surgical
units. The algorithm sorts all surgical units in line 2, which
takes O(n log n) computation. Assigning surgical units with
predefined OTs and preferred slots involves nested loops
iterating through surgical units, weeks, fixed OTs or preferred
slots, and weekly days. The time complexity is influenced by
the number of surgical units with fixed OTs or preferred slots.
The main loop (lines 5-12) has a complexity that depends on
the number of surgical units and the execution of assigning
and swapping units. In both cases, score calculation involves
operations dependent on the number of feasible slots and
sorting that involves O(m logm), where m is the number
of feasible slots. The overall time complexity of the entire
algorithm is dominated by the main loop and the operations
within each loop, which depend on the number of surgical
units and slots. The exact complexity may vary based on
specific conditions and the input data size.

B. SLOTS ALLOCATION
The slot allocation is determined based on the surgery
demand represented by the estimated surgery duration. The
number of surgeries was not considered to eliminate bias,
such as surgical units with many short surgeries would be pri-
oritized over units with fewer long surgeries. Slot allocation
occurs in two phases, as described in Algorithm 2.

In the first phase, all slots in the planning horizon (slottotal)
are distributed to the medical subspecialties (lines 1-5). The
second phase involves distributing each subspecialty’s allot-
ted slots (slotj) to their respective surgical units, following
the same procedure as the first, where slottotal is substituted
to slotj, durj to durg and durtotal to durj (line 6). Firstly,
the suggested slots are calculated from the ratio of the total
estimated surgical times of the subspecialty/unit over the total
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Algorithm 2 Algorithm to Allocate the Number of
Slots for the Master Plan
Input: Subspecialties (J ), Surgical units (G), Surgeries list
with estimated duration and waiting time for each unit (Sj),
number of slots in the planning horizon (slottotal)
Output: Slots allocation to each surgical unit (slotg)

1 For each subspecialty j, calculate the suggested number of
slots (slotj) based on the total estimated surgery duration

using slotj = ⌊slottotal ∗
durj

durtotal
⌋, where slotj is rounded to

the lower integer value, durj =
∑
g∈Gj

∑
s∈Sg

durs and

durtotal =
∑
j∈J

durj.

2 Repair slotj for each subspecialty to avoid invalid values.
3 Calculate total residual slots (slotresidual) where

slotresidual = slottotal −
∑
j∈J

slotj.

4 Sort the subspecialties by the average waiting time in
decreasing order.

5 Iterate the subspecialties list and redistribute slotresidual
where slotj = slotj + 1 at each valid iteration until
slotresidual is exhausted

6 Allocate slotj to the surgical units of subspecialty j using the
same method as in lines 1-5, ensuring slotj =

∑
g∈Gj

slotg

7 End (return number of slots allocated to all surgical units)

estimated surgical times of all subspecialties/units (line 1).
The calculation will produce a decimal value. As the OT
slots are non-shareable, the decimal number is converted to
discrete values by rounding the values to the lowest integer.
Then, the algorithm fixes invalid slot allocation (line 2). Next,
the number of residual slots is then calculated (line 3).

A redistribution mechanism is introduced to allocate the
residual slots based on waiting time (lines 4-5). Subspecial-
ties/surgical units are sorted by average waiting time (line 4).
The algorithm iterates through the sorted list, adding one slot
to each subspecialty/unit subject to the hard constraints until
there are no more residual slots (line 5). At the end of the
algorithm, each surgical unit has been allocated a fair number
of slots in the master plan based on surgery demand and
waiting time.

C. SLOTS ASSIGNMENT
This section describes the saturation degree-based sorting
for the surgical unit selection, slot selection and repair
mechanism. The MSSP can be described as a timetabling
problem involving allocating events and resources to space
and time [47]. In the MSSP, surgery groups (events) and their
resources, such as surgical equipment, are assigned to a set of
OTs (space) and days (time). The saturation degree heuristic
prioritizes events with fewer remaining feasible space and
time, and the order dynamically changes after every assign-
ment [66].

1) SURGICAL UNIT SORTING USING SATURATION DEGREE
Drawing inspiration from the heuristic hybridization from
Sabar et al. [65], the surgical units are sorted based on multi-

ple variables, and their ranks from each variable are combined
to produce the unit score. Three variables are considered: the
number of feasible slots, preferred slots, and the ratio slot
allocation, hereafter called ratio max. The ratio max (rm) is
calculated using rm = slotg

|W |∗
∣∣∣Pfeasibleg

∣∣∣∗slotparallelg
, where slotg is

the slots allocated for unit g and |W | ∗
∣∣∣Pfeasibleg

∣∣∣ ∗ slotparallelg

is unit g’s maximum slots allocation.
Furthermore, the surgical units are sorted separately before

being recombined from three smaller exclusive lists: con-
strained units (units with blocked OTs), unconstrained units
(units without blocked OTs), and fixed units (units with pre-
defined OTs). The surgical units are segregated as described
because each list has different priorities.
Constrained units are sorted by all three variables. Firstly,

the list is sorted by the number of feasible slots in increasing
order, with ties broken by the number of preferred slots and
random selection. Surgical units with fewer feasible slots
are prioritized to ensure solution feasibility. Secondly, the
units are sorted according to the number of preferred slots in
increasing order, where units without any preferred slots are
placed at the end of the list. Ties are broken by the number
of feasible slots and random selection. Surgical units with
fewer preferred slots have precedence in order to maximize
the preferred slots’ reward. Finally, the list is sorted by the
decreasing ratio max, where ties are broken by random selec-
tion to increase solution feasibility.

In each sorted list, sorting scores are given inverse to the
sorted placement, with the unit at the first position receiving
the maximum score equivalent to the list size. In preferred
slots sorting, units without preferred slots do not receive
scores while not affecting the scores for other units. After-
wards, the scores from each sorted list are aggregated to
obtain the unit score. Each score ismultiplied by its respective
weight coefficient: θpreferred = 1, θratio = 2, θfeasible = 3. The
units are sorted by the unit score in decreasing order, where
the number of feasible slots, preferred slots, and random
selection breaks ties.

The unconstrained and fixed units are sorted consider-
ing only the number of preferred slots and the ratio max,
following steps similar to those of the constrained units.
The three smaller exclusive lists are then recombined, where
the constrained units are placed before the unconstrained
units to avoid infeasible solutions. Fixed units are added
to the end of the final sorted list as they will not affect
other assignments. Fig. 4 represents an example of the surgi-
cal unit sorting method, where yellow-shaded boxes denote
constrained units, green-shaded boxes denote unconstrained
units, and blue-shaded boxes denote fixed units. The sorting
scores are indicated in brackets.

2) SLOT SELECTION USING SATURATION DEGREE
The algorithm iterates through unassigned units, assigning
the unit with the highest priority to a slot selected based on
the saturation degree strategy. All feasible slots for the unit are
given slot scores calculated based on two factors, including:
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FIGURE 4. Illustration of the surgical unit sorting method.

1. The number of feasible unassigned units for the slot.
2. The potential objective function value if the chosen unit

is assigned to the slot.

The potential objective function value is derived from the
equations presented in Section III-B, limited to the chosen
unit and slot. The slot with fewer feasible unassigned units
and lower potential objective function value, as the problem
is minimization, is given a higher score. The score values
are normalized, where the number of feasible unassigned
units is divided by the total number of unassigned units,
and the potential objective function values are divided by
their respective upper boundaries, given in Appendix C. The
chosen unit is assigned to the slot with the highest slot
score calculated by summing the weighted normalized score
values.

3) REPAIR MECHANISM USING SATURATION DEGREE
A repair mechanism is called when all feasible slots of the
chosen unit have already been taken. The repair mechanism
vacates one of the feasible slots chosen based on its swap
score. The swap score for a slot is calculated by adding the
normalized values of the repair unit score of its original unit
and its repair slot score.
The repair unit score is calculated following the unit

sorting method based on the saturation degree discussed in
Section IV-C, where surgical units are sorted considering
three variables. The difference is that the number of feasible
slots is measured when the master plan is empty (initial state)
and at the partial master plan (current state). The following
weights are used to obtain the unit score: θpreferred = 1,
θratio = 2, θfeas.init = 3, θfeas.cur = 4.

Contrary to unit sorting in Section IV-C, a higher repair
unit score is given to units with a higher feasible and preferred
slots count and a lower ratio max. This method is employed
because the repair mechanism aims to unassign a unit with
the lowest assignment difficulty. The repair unit score is also
normalized by dividing it by the number of unassigned units.

Meanwhile, the repair slot score is calculated similarly
to the slot score in Section IV-C. The potential objective
function value is extended to consider the potential gains if
the chosen unit is assigned to the slot and the potential loss
if the original unit is unassigned. A slot with fewer feasible

TABLE 4. Details of the dataset.

unassigned units and higher objective value gain and lower
objective value loss is preferred.

The slot with the highest swap score is selected. The origi-
nal unit from the slot is re-inserted into the list of unassigned
surgical units. Since the unit with the lowest assignment
difficulty is selected, finding a replacement slot in the fol-
lowing iterations should be easier. The swap is performed by
considering the objective function value so that the solution
quality is unaffected.

V. COMPUTATIONAL EXPERIMENT
A. DATASET
The experiment utilizes the post-operative dataset from
the case study hospital, HCTM, which includes surgeries
booked between 1 January 2023 and 31 December 2023.
Each surgery includes details on its booking date, estimated
surgery duration, associated subspecialty, surgical unit, and
type of resource requirement. The booking date is crucial
for calculating waiting time, whereas the estimated surgery
duration is used for slot allocation. These variables will be
utilized in a simulation to assess the operational performance
of the generated master plan. Information on subspecialty,
surgical unit, and type of resource requirement determine
the surgery’s group affiliation to guide the assignment to
the appropriate slot. Table 4 briefly summarizes the dataset
employed in the experiment.

HCTM has 13 OTs and utilizes a two-week cyclic master
plan with five weekly working days. 25 medical sub-
specialties comprised of 29 surgical units, where several
subspecialties have two units, were considered. Surgeons
from a subspecialty can only operate surgeries from its sub-
specialty. Meanwhile, anaesthetists and nurses are shared
among the subspecialties and are assumed to be always avail-
able.

B. EXPERIMENTAL SETUP
Master plans for the case study hospital are generated by
executing the proposed constructive heuristic written in Java.
An additional Java program is developed to simulate surgery
assignments to the master plans produced. The simulation
gives an operation date for each surgery in the dataset from
the first simulated planning day (1 January 2024) until the
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TABLE 5. Sensitivity analysis of the objective function weightings.

dataset is exhausted, following the cyclic master plan. No hol-
idays on workdays throughout the period are assumed.

The algorithm’s performance is assessed using three
metrics: solution feasibility, quality, and operational-level
performance. Solution feasibility is measured by the number
of times a feasible solution is found after 100 executions and
the average repair mechanism calls. Solution quality is deter-
mined by the objective function value. The operational-level
performance ismeasured by the averagewaiting time, waiting
time standard deviation or variability among surgical units,
and the number of days required to schedule all surgeries from
the dataset. Each algorithmic run starts with an empty solu-
tion and stops when a complete solution is produced or the
limit for repair mechanism usage is reached, resulting in an
infeasible run. The experiment was executed on a computer
with anAppleM1 chipwith an 8-core CPU and 8GBof RAM.

C. SENSITIVITY ANALYSIS
The objective function for the optimization model consists
of ten objectives aggregated using the weighted sum method.
Each objective is assigned a weight value based on its
importance. Ideally, the master plan generated should differ
as the weightings are modified. The modifiable weightings
will enable hospital planners to evaluate the effect of each
objective on the solution quality and simulated operational
performance of the master plan. Adapting the method by
Penn et al. [16], the analysis is designed to explore the effect
of small changes on each objective weighting.

Table 5 shows that the objective values of the master plans
produced vary based on the different weightings used. On the
other hand, the operational performance, assessed through the
average waiting time of surgeries scheduled in a simulation,
is only minimally influenced by the different master plans.

Additionally, the proposed constructive heuristic incorpo-
rates weight coefficients in calculating the unit score and
repair unit score. These weight coefficients are lexicograph-
ical, leading to the examination of different permutations.

TABLE 6. Sensitivity analysis of the weight coefficient for the unit score.

TABLE 7. Sensitivity analysis of the weight coefficient for the repair unit
score.

Table 6 illustrates that the best objective function value
is obtained using θpreferred = 1, θratio = 2, and θfeasible =

3 as the weight coefficients for unit scores. Table 7 indicates
that using θpreferred = 1, θratio = 2, θfeas.init = 3, and
θfeas.cur = 4 weight coefficients for repair unit scores lead to
the best objective function value. Consequently, these values
are utilized in our experiment.

D. BENCHMARK CONSTRUCTIVE ALGORITHMS
The proposed improved saturation degree-based constructive
heuristic is compared to two basic approaches (greedy and
random constructive heuristics) and two algorithms from
the literature (regret-based and saturation degree-based con-
structive heuristics). Benchmarking is conducted against only
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constructive heuristics and not to improvement heuristics.
The slot allocation is obtained from Algorithm 2 and remains
constant for all benchmark algorithms. Algorithmic runs for
each benchmark algorithm utilize the same execution envi-
ronment as those employed in the proposed algorithm to
ensure fairness. In addition, the generated master plans are
compared to a manual master plan from the case study hos-
pital.

A greedy approach is very popular due to its simplicity and
efficacy as an initial solution for perturbative algorithms [83].
The greedy constructive heuristic in the experiment mini-
mizes waiting time by assigning the highest average waiting
time unit to the earliest feasible slot available. Ties are broken
by selecting the unit with the higher total estimated surgery
duration. Further ties are broken with random selection. The
repair mechanism vacates the slot with the lowest average
waiting time unit. However, this strategy may not return a
feasible solution. Therefore, it is later replaced with random
swaps.

The random constructive heuristic randomly selects a sur-
gical unit at each iteration. Then, the unit is assigned to a
random slot that does not violate hard constraints. If a feasible
slot is unavailable, the heuristic vacates a random feasible slot
in the partially constructed master plan.

The regret-based constructive heuristic [9] is adapted to
prioritize surgical units with a higher waiting time. Ties are
broken by selecting the unit with the higher total surgical
times and random selection. Then, the regret value for each
feasible slot is calculated by finding the difference between
the highest and second-highest average waiting time of its
feasible units. The slot with the smallest regret value is cho-
sen, while ties are broken by considering the third highest.
Infeasibility is repaired by swapping out the unit with the
lowest average waiting time. However, the repair mechanism
may not be able to guarantee feasibility and later switch to
random swap.

The saturation degree-based constructive heuristic from
Razali et al. [25] only considers the solution feasibility in
surgical units and OT sorting. At each iteration, the surgical
unit with the fewest feasible slots is assigned to a slot with the
least feasible units. The repair mechanism removes the unit
with the most feasible slots in the partial master plan.

The master plan utilized in the case study hospital, HCTM,
for 2023 and 2024 is taken to compare the solution quality and
operational-level performance. The comparison will demon-
strate the potential improvements of using intelligent systems
to generate the hospital’s timetable.

E. RESULTS
1) SOLUTION FEASIBILITY
Due to the poor results on solution feasibility when using
the greedy repair mechanism, additional runs using random
swaps are executed. The solution feasibility for the hospital’s
master plan cannot be measured as it was produced manually
by the hospital planners.

TABLE 8. Number of feasible runs by the benchmarked constructive
algorithms (over 100 runs).

Table 8 shows the results of each algorithm to produce
feasible solutions over 100 runs. It indicated that algorithms
employing a greedy repair mechanism failed in producing a
feasible solution. Infeasibility could be due to cycling, which
occurs when the same pair of surgical units are exchanged
with each other. Greedy approaches are more prone to suffer
from this issue since they cannot select a different surgical
unit when cycling occurs. On the other hand, random repair
and saturation degree-based repair mechanisms produced
feasible solutions in every run. Afterwards, we observe the
number of repair mechanism usage required to obtain the
feasible solutions among these algorithms.

Fig. 5 shows the box-plot graph of the repair calls,
where a lower value is preferred. It shows that both satu-
ration degree-based constructive heuristics outperform other
algorithms in minimizing the repair mechanism usage. The
improved variant performs best at an average of 2.80 calls
over 100 runs. Furthermore, both saturation degree-based
constructive heuristics have a smaller deviation and lower
maximum value compared to the other algorithms using ran-
dom swaps. Fewer requirements for the repair mechanism
demonstrate the efficacy of the saturation degree heuristic
for choosing a surgical unit and slot. Next, the difference in
execution time between the basic approaches (greedy and ran-
dom) and the designed approaches (saturation degree-based
and Spratt and Kozan [9]’s regret-based) is investigated.

Fig. 6 represents the box-plot graph of the execution times,
in seconds, for the benchmark configurations. It demon-
strates that the improved saturation degree-based constructive
heuristic suffers a longer average execution time that is
arguably unnoticeable. Notably, extreme outliers exist for the
proposed algorithm, with runs between 0.06 and 0.10 sec-
onds. Nevertheless, the difference is negligible as all values
are small (less than one second).

2) SOLUTION QUALITY
Runs using the greedy repair mechanism are excluded
from hereafter. Table 9 shows the normalized rewarding
objectives values. The improved saturation degree-based con-
structive heuristic recorded the most rewards for the preferred
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FIGURE 5. Box-plot graph for the repair mechanism calls of the
benchmarked constructive algorithms (lower is better).

FIGURE 6. Box-plot graph for the execution time of the benchmarked
constructive algorithms (lower is better).

slot (SC1), same OT (SC4), and consecutive days (SC5)
objectives. Meanwhile, the original saturation degree-based
constructive heuristic outputs the best results for the extra
equipment (SC3) objective. The hospital’s master plan
achieved the highest same weekly slot (SC6), indicating the
master plans from the first and second weeks have high
schedule stability. Besides, the plan was able to reserve an
ultra-clean OT (SC10) on each planning day, which is not
achieved by any of the intelligent approaches.

Table 10 shows the values for penalizing objectives.
Based on the results shown, the movable equipment shar-

TABLE 9. Rewarding objective value results for the benchmarked
constructive algorithms (bold represents best).

TABLE 10. Penalizing objective value results for the benchmarked
constructive algorithms (bold represents best).

ing (SC2), clashing subspecialty (SC7), and parallel heavy
resource requirements slots (SC9) were minimized best by
the proposed improved saturation degree-based construc-
tive heuristic. This observation highlights the effectiveness
of the proposed algorithm in reducing resource-sharing
among scheduled surgeries, contributing to a lower chance of
scheduling disruption. The best value for exceeding the soft
limit on the parallel slots (SC8) is obtained by the hospital’s
master plan. This could happen because some slots are not
utilized in the hospital’s master plan, potentially affecting
the surgery scheduling performance since less OT time is
available.

The weighted sum of the objectives is demonstrated
in Fig. 7. It indicates the hospital’s master plan as the
best performer (at -2.7411), followed closely by the pro-
posed improved saturation degree-based constructive heuris-
tic (with -2.2819). The hospital’s plan excelled in achieving
the ultra-clean OT objective (SC10), significantly increasing
its weighted sum of objectives. In contrast, the improved sat-
uration degree-based constructive heuristic did not fulfil this
soft constraint on any planning days. Despite this, we contend
that the proposed constructive heuristic produces high-quality
solutions, as evidenced by its superior performance in six of
the ten objectives. Other benchmarked algorithms performed
significantly worse than the two. We theorize that there could
be a trade-off between several objectives and operational
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FIGURE 7. Box-plot graph for the objective function value of the
benchmarked constructive algorithms (lower is better).

scheduling performance. The objective values for SC2, SC3,
SC7, SC8 and SC9 could be increased if fewer surgical units
are assigned on the same day or fewer OTs are in use.

3) SIMULATED OPERATIONAL LEVEL PERFORMANCE
The operational-level performance is evaluated in terms of
surgeries’ waiting time, the standard deviation or variability
for waiting times among surgical units, and the number of
days required to operate all surgeries. The results of the
surgery scheduling simulation are presented in Table 11.
Based on the results, the hospital’s plan obtained the best
average waiting time (with an average of 300.53 days).
Results from the constructive heuristics are nearly identi-
cal, nearly three days longer than the hospital’s master plan
(ranging from 302.97 to 303.26 days). This increase may be
attributed to the slot allocation from the constructive heuris-
tic, which failed to allocate sufficient slots to surgical units
with many surgeries. Consequently, the days to complete
the surgery list are lower for the manually generated mas-
ter plan (309 days) than for the intelligent approaches (370
days). Despite this, the standard deviation for waiting times
among surgical units is smaller for the master plans produced
by constructive heuristics compared to the hospital’s plan,
at 67.772 compared to 70.720. This suggests a more balanced
distribution of waiting time values among the surgical units.

F. STATISTICAL ANALYSIS
To support the conclusions drawn from the results, we con-
ducted statistical analysis on all results acquired, including

TABLE 11. Simulation results for the benchmarked constructive
algorithms (bold represents best).

normality tests and non-parametric tests with pairwise com-
parison. The hospital’s master plan is excluded from the
analysis as only one master plan exists, and each run of the
simulation will produce the same result.
Normality Tests (Shapiro-Wilk Royston Test): We tested

the normality of the three performance measures (repair
calls, average waiting time and objective value) from the
five benchmarked algorithms using the Shapiro-Wilk Roys-
ton test [84]. According to the results, at least one sample
is not normally distributed for every performance measure.
Therefore, non-parametric tests are carried out next.
Non-Parametric Tests (Kruskal-Wallis Test): We per-

formed the Kruskal-Wallis test (α = 0.05) to compare five
independent samples for each performance measure. The
results showed a significant difference between the algo-
rithms in all performance measures (p-value = 7.63057E-78
for repair calls; p-value = 1.09357E-35 for average waiting
time and p-value = 1.78344E-73 for objective value).
Post-hoc Tests (Dunn’s Test): Post-hoc pairwise compar-

isons are carried out on ten algorithm pairings for each
performance measure. The test has proven the significance
of the differences in repair calls for all pairs except Greedy–
Random (p-value= 0.247),Greedy–Regret-based (p-value=
0.257), and Saturation degree-based–Improved saturation
degree-based (p-value = 0.264). For average waiting time,
only Random–Saturation degree-based (p-value = 0.895)
indicates non-significance. For objective value, the null
hypothesis was rejected only for Random–Regret-based (p-
value= 0.898), indicating no difference between the samples.
The claim that the proposed algorithm outperformed the
benchmark algorithms in repair calls has been statisti-
cally proven, except for the original saturation degree-based
constructive heuristic, where no statistical difference was
observed between the improved and original variants. The
regret-based constructive heuristic exhibits a statistically sig-
nificant advantage over other algorithms regarding average
waiting time but shows no significant difference in objective
value compared to the random approach. Importantly, the
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improved saturation degree-based algorithm demonstrates a
statistically significant superiority in objective value com-
pared to other algorithms.

VI. PERFORMANCE AGAINST IMPROVEMENT
HEURISTICS
A. BENCHMARK IMPROVEMENT ALGORITHMS
Comparison of our proposed constructive heuristic to
improvement heuristics is unfair as the former is only run for
one iteration. In contrast, the latter executes multiple itera-
tions to find a higher-quality solution. Despite this, we are
interested in observing the performance of our proposed
algorithm against state-of-the-art improvement heuristics for
the MSSP, including SA metaheuristics and two SA-based
hyper-heuristics. Our proposed algorithm does not necessar-
ily have to beat the improvement heuristics to be presented as
a good solution method.

The improved saturation degree-based constructive heuris-
tic is compared against SA, Hyper SA, and Hyper SA-TS,
which were introduced by Spratt and Kozan [9]. The algo-
rithms utilize five types ofmoves involving assignment swaps
and modifications to the schedule structure, particularly
regarding half-day and full-day slots. When adapting their
approach to our problem, we incorporated the assignment
swap moves while omitting the schedule structure modifica-
tions. This is because our case study does not utilize half-day
slots, rendering such modifications not possible. We adapted
the assignment swap moves to:

1. Swap two subspecialties.
2. Swap two surgical units.
3. Shuffle three subspecialties.
4. Shuffle three surgical units.
5. Swap surgical units until a feasible solution is obtained,

up to a maximum number of swaps.

SA employs a randomly selected move to obtain a candi-
date solution. The acceptance of this candidate solution as the
current working solution is determined by a probability based
on the change in the objective function value and the solu-
tion temperature. The solution temperature decreases upon
accepting a solution, calculated using the formula t∗ = t

1+εt ,
where t∗ is the new value, t is the previous value, and ε is the
temperature decrease factor.

In Hyper SA, a move is selected based on heuristic rank-
ings, guided by a Tabu search strategy. The algorithm chooses
the move with the highest heuristic rank, which is not in
the Tabu list. It applies the same move for multiple itera-
tions, referred to as a block, before updating the heuristic
ranks. A heuristic’s rank increases when the solution from
a block improves the previous solution; otherwise, the rank is
reduced, and the heuristic is added to the Tabu list. The SA
approach is employed for move acceptance, where the tem-
perature decreases when the candidate solution is accepted
and increases otherwise. The solution temperature increases
at a rate of t∗ = t

1−γ t , where t
∗ is the new value, t is the

previous value, and γ is the temperature increase factor.

TABLE 12. Parameter settings for the benchmarked improvement
algorithms.

Hyper SA-TS extends Hyper SA by incorporating a Tabu
mechanism to restrict neighbourhood moves on forbidden
assignments (combinations of OT time block and subspecial-
ties or surgical units). Specifically, the algorithm is prohibited
from performing swaps on assignments that have previously
led to worsening solutions. The algorithmmaintains two Tabu
lists: one for the neighbourhood moves and the other for the
assignments. The Tabu length for the latter is dynamic and
decreases at iteration intervals. Other mechanisms, including
the move acceptance strategy, remain similar to the imple-
mentation of Hyper SA.

The improvement algorithms undergo 31 runs to ensure
robust and representative results across multiple iterations.
The first 31 runs of the improved saturation degree-based
constructive heuristic, as used in the constructive heuristics
comparison, are employed for the comparison of improve-
ment algorithms. Based on the configuration provided by
Spratt and Kozan [9], each algorithm undergoes 16,000 iter-
ations from an initial solution produced by the improved
saturation degree-based constructive heuristic. The parameter
settings align with the specifications outlined in the original
publication, as illustrated in Table 12. Readers are encour-
aged to consult the source publication for a comprehensive
understanding of each algorithm.

B. RESULTS
1) SOLUTION QUALITY
The normalized rewarding objective values in Table 13
reveal that the improved saturation degree-based construc-
tive heuristic excelled in SC1, SC4, and SC5, surpassing
the improvement algorithms. Assignment swap moves were
ineffective in enhancing these objectives. However, they suc-
cessfully improved SC6 and SC10, where SA increased the
rewards. Hyper SA exhibited the best performance for SC3,
albeit with only a slight difference compared to the proposed
algorithm.

Regarding penalizing objective values, as shown in
Table 14, the proposed algorithm exhibits the best value only
for SC2. Assignment swapmoveswere effective in improving
SC7, SC8, and SC9. SA leads to improvements in SC8 and
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TABLE 13. Rewarding objective value results for the benchmarked
improvement algorithms (bold represents best).

TABLE 14. Penalizing objective value results for the benchmarked
improvement algorithms (bold represents best).

SC9, whereas Hyper SA-TS enhances SC7 compared to the
proposed constructive heuristic.

Fig. 8 presents a box-plot graph depicting the weighted
sum of the objectives, comparing the proposed improved
saturation degree-based constructive heuristic to the bench-
mark improvement algorithms. The graph demonstrates that
the improvement algorithm, particularly SA, has improved
solution quality by 17.50% (-2.686 compared to -2.286). This
improvement is achieved through the application of assign-
ment swap moves to a complete initial solution. SA results
suggest that the objectives can be increased at the cost of other
objectives. However, the other improvement algorithms,
Hyper SA and Hyper SA-TS, fall short of outperforming the
proposed constructive heuristic. We observed that they failed
to improve their initial solutions, possibly due to ineffective
pairing of the swap moves and algorithmic strategies.

2) SIMULATED OPERATIONAL LEVEL PERFORMANCE
Table 15 indicates that average waiting times are improved
when simulating scheduling surgeries into master plans pro-
duced by the improvement algorithms. Specifically, Hyper
SA generates master plans with the lowest average wait-
ing time. However, the variability for waiting time among
surgical units worsens compared to the master plans from
the proposed improved saturation degree-based constructive
heuristic. The days required to schedule all surgeries remain
the same for all algorithms because they utilize the same slot
allocation.

C. STATISTICAL ANALYSIS
Normality Tests (Shapiro-Wilk Test): The normality of results
for three performance metrics (objective value, average wait-

FIGURE 8. Box-plot graph for the objective function value comparing the
proposed constructive heuristic to improvement algorithms (lower is
better).

TABLE 15. Simulation results for the benchmarked improvement
algorithms (bold represents best).

ing time, and waiting time standard deviation are assessed for
the improvement algorithms and the proposed constructive
heuristic. The Shapiro-Wilk test is employed, considering
a sample size of 31. The test results indicated that at least
one sample in each performance metric is non-normally dis-
tributed. Consequently, non-parametric tests are utilized for
hypothesis testing.
Non-Parametric Tests (Kruskal-Wallis Test): Kruskal-

Wallis tests at a 0.05 significance level indicate statistically
significant differences among the results from the four
algorithms across all three performance metrics: objective
value (p-value = 9.14725E-19), average waiting time (p-
value = 2.39033E-05), and waiting time standard deviation
(p-value= 1.68388E-18). Subsequent post-hoc tests are con-
ducted to identify specific pairs of algorithms with significant
differences.
Post-hoc Tests (Dunn’s Test): Post-hoc Dunn’s tests

revealed significant differences in the objective value
between SA and other algorithms, including the proposed
constructive heuristic. Only the pair of Hyper SA and Hyper
SA-TS shows an insignificant difference in objective value
(p-value = 0.591). Regarding average waiting time, Hyper
SA exhibited a significant difference from the proposed
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algorithm (p-value = 8.70127E-06), whereas there was no
significant difference with Hyper SA-TS (p-value = 0.631).
For the waiting time standard deviation, all pairings demon-
strated significant differences except for Hyper SA–Hyper
SA-TS (p-value = 0.896), indicating the statistically proven
superior performance of the proposed constructive heuristic
in this metric.

VII. PERFORMANCE AS INITIAL SOLUTIONS
We aim to investigate the impact of employing solutions
generated from various constructive heuristics on the overall
effectiveness of improvement heuristics. In this experi-
ment, we utilize solutions generated by greedy, random,
regret-based, saturation degree-based, and improved satura-
tion degree-based constructive heuristics. The improvement
heuristic SA, identified as the most effective in Section VI,
is applied to enhance solutions produced by each constructive
heuristic. We generate 100 initial solutions and improve them
using SA to obtain the final solution, employing the same
experimental setup as in previous sections. The outcomes are
presented below.

A. RESULTS
1) SOLUTION QUALITY
The SA algorithm produced the best solutions for the
preferred slot (SC1), same OT (SC4), and same weekly
slot (SC6) objectives when utilizing initial solutions from
the proposed improved saturation degree-based constructive
heuristic, as indicated in Table 16. The large difference in the
objective value of SC1 compared to other initial solutions
is attributed to the proposed heuristic’s strategy of assign-
ing surgery groups to their preferred slots when the master
plan is empty. In contrast, other solutions were improved
through iterative swap moves on a complete solution. The
changes are more restricted, leading to lower improvements
in the objective value. The objectives related to extra equip-
ment (SC3) and consecutive days (SC5) are optimized most
effectively when utilizing regret-based constructed initial
solutions, albeit with small differences compared to other
initial solutions. The original saturation degree-based con-
structive heuristic can reach solutions with a higher average
for the ultra-clean OT (SC10) objective, where the proposed
algorithm performed less favourably.

Table 17 highlights that random initial solutions exhibit
optimal minimization of penalties for parallel slots (SC8) and
parallel heavy resource requirements slots (SC9). The lowest
penalty for clashing subspecialty (SC7) is observed when
utilizing initial solutions generated through the regret-based
constructive heuristic. The combination of the proposed
constructive heuristic with the SA improvement heuristic
achieved the most favourable outcome for the movable equip-
ment sharing objective (SC2). It is crucial to emphasize that
all observed differences are minimal, suggesting that the
improvement heuristic could potentially be the bottleneck in
terms of performance.

TABLE 16. Rewarding objective value results comparing different initial
solutions (bold represents best).

TABLE 17. Penalizing objective value results comparing different initial
solutions (bold represents best).

The box-plot graph in Fig. 9 demonstrates that employ-
ing initial solutions generated by the improved saturation
degree-based constructive heuristic yields the overall best
solution (with an average of -2.6793). This aligns with the
notion that the initial solution quality impacts the final solu-
tion, with high-quality initial solutions leading to better final
solutions [85]. Wang et al. [86] suggested that high-quality
initial solutions can enhance computational efficiency. Our
results support this idea, as achieving a solution of compa-
rable quality is possible with lower computational time when
starting from initial solutions already close to a specific point,
compared to less optimal initial solutions.

Apart from the improved saturation degree-based construc-
tive heuristic, other configurations achieved nearly identical
final solution quality despite differing initial fitness, as shown
in Table 18. This similarity in outcomes suggests the
possibility that these configurations have reached a local opti-
mum. This implies that the effectiveness of an improvement
algorithm could be constrained by the starting point [87],
especially those without effective diversification strategies.

2) SIMULATED OPERATIONAL LEVEL PERFORMANCE
Table 19 shows that the regret-based constructive heuris-
tic combined with the SA improvement algorithm obtained
the best operational-level performance. This is evidenced by
achieving the lowest waiting time average and variability
across surgical units.
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FIGURE 9. Box-plot graph for the objective function value comparing the
performance using different initial solutions (lower is better).

TABLE 18. Rate of improvements from using different initial solutions.

TABLE 19. Simulation results comparing different initial solutions (bold
represents best).

B. STATISTICAL ANALYSIS
Normality Tests (Shapiro-Wilk Royston Test): We assessed
the normality of distributions for objective value, average
waiting time, and waiting time variability samples using the
Shapiro-Wilk Royston test. The results revealed non-normal
distribution only for the objective value of the improved
saturation degree-based constructive heuristic (p-value =
1.65462E-4) and the waiting time variability of the ran-

dom (p-value = 2.01878E-2) and regret-based approaches
(p-value = 1.81908E-2). Consequently, non-parametric tests
are applied to identify significant differences in objective
value and waiting time variability. As all samples for average
waiting time exhibit normal distribution, parametric tests are
employed.
Hypothesis Testing (Kruskal-Wallis Test & One-Way

ANOVA): Kruskal-Wallis tests were performed on non-
normally distributed samples for objective value and waiting
time variability, revealing a significant difference in objec-
tive value (p-value = 4.9351E-50). However, no statisti-
cal significance was observed for waiting time variability
(p-value = 0.77705). The parametric one-way analysis of
variance (ANOVA) [88] is applied to the normally distributed
samples of average waiting time, indicating a significant
difference with a p-value of 0.02065. Subsequent pairwise
comparisons are conducted using suitable post-hoc tests.
Post-hoc Tests (Dunn’s Test & Tukey’s Test): Post-hoc

tests were applied to the significantly different samples
of objective value and average waiting time, with ten
pairwise comparisons across five algorithms. Dunn’s test,
employed for non-normally distributed objective value sam-
ples, revealed significant differences between the improved
saturation degree-based constructive heuristic and all other
heuristics (p-value = 3.12961E-11 to greedy, p-value =
6.70597E-12 to random, p-value = 5.91296E-11 to regret-
based, and p-value = 2.77667E-12 to saturation degree-
based). No significant differences were observed among the
remaining four heuristics. Conversely, Tukey’s test, con-
ducted on normally distributed average waiting time samples,
displayed no significant differences between any heuris-
tic pairs, contrary to the parametric one-way ANOVA’s
result. This discrepancy may arise from differing sen-
sitivities of one-way ANOVA and Tukey’s test, along
with the latter’s multiple comparison adjustment, rendering
it less conservative and more sensitive [89]. Addition-
ally, two heuristic pairings approached significance (p =
0.05969 for Greedy–Random and 0.05381 for Random–
Regret-based), suggesting potential sensitivity to sample
variations [90].

VIII. CONCLUSION
This study has addressed the issues in MSSP by proposing
a mathematical model variant with a novel objective func-
tion and an improved saturation degree-based constructive
heuristic that enhances both solution quality and feasibility.
Compared to the original saturation degree-based variant,
the improved heuristic reduces repair mechanism require-
ments by 14.63% and increases objective function value by
2.6 times, supported by statistical tests that demonstrated
significant differences with small p-values. The results indi-
cate that solution quality and feasibility can be increased
concurrently. Moreover, a simulation study suggested that the
proposed heuristic could yield a more balanced waiting time
distribution among surgical units compared to the hospital’s
plan. Initial solutions generated by the proposed algorithm
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can also result in superior solutions discovered by improve-
ment algorithms.

We attribute the increased solution quality to the proposed
heuristic’s ability to maximize potential objective value while
ensuring feasibility at each step of solution construction.
In contrast, the original variant prioritized slot feasibility,
compromising quality, whereas the greedy heuristic focused
on objective value, potentially reducing both feasibility and
quality. The regret-based approach failed to enhance solu-
tion feasibility or quality consistently, whereas the random
approach lacks intelligent rules during solution construction.
Given the superior performance of the improved saturation
degree-based constructive heuristic, it holds potential for
application in other timetabling problems, such as conference
and event scheduling, sports scheduling, and employee shift
scheduling.

Despite its performance improvement, the proposed
method has shortcomings, including subjectivity in solution
quality and the need for a repair mechanism. Implementation
may require adjustments to align with specific objectives in
different contexts. Besides, themodel formulated in this study
has several limitations, such as uncertainty in the surgery
duration and demand not being considered. Future works
can extend the model and constructive heuristics to include
stochastic and dynamic aspects.

APPENDIX
A. UPPER BOUNDARY FOR THE NORMALIZATION OF
MASTER PLAN’S OBJECTIVE VALUES
The maximum values for each soft constraint are detailed in
Table 20.

TABLE 20. Best- or worst-case scenario for each assignment objective.

TABLE 20. (Continued.) Best- or worst-case scenario for each assignment
objective.

B. PROGRAMMING SYNTAX PSEUDOCODE OF THE
IMPROVED SATURATION DEGREE-BASED CONSTRUCTIVE
HEURISTIC
The proposed algorithm is written in Java. Procedures within
the algorithm are explained in Algorithm 3 – 8.
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Algorithm 3 Improved Saturation Degree-Based
Constructive Heuristic Main Method
1 schedule← initialize empty master plan
2 sgtaList← retrieve surgical units
3 for i = 1→ | sgtaList | do
4 Calculate unit score for sgtaList.get(i)
5 end for
6 Sort sgtaList by the unit score in descending order
7 assignToFixedOtUnits(schedule, sgtaList)
8 assignToPreferredSlots(schedule, sgtaList)
9 repairCount← 0
10 while sgtaList is not empty do
11 g← sgtaList.get(0)
12 wpo← selectSlot(schedule, g)
13 hasAssigned← assign(schedule, g, wpo)
14 if NOT hasAssigned then
15 if repairCount < maxRepair then
16 swap(schedule, g)
17 repairCount← repairCount + 1
18 else
19 break
20 end if
21 end if
22 end while

Algorithm 4 assignFixedOtUnits(schedule, sgtaList)

1 for i = 1→ | sgtaLists | do
2 g← sgtaList.get(i)
3 if g has fixed Ots then
4 for j = 1→ | g.noOfSlotsAllocated | do
5 for k = 1→ | weeks | do
6 for l = 1→ | g.fixedOTs | do
7 for m = 1→ | weekly days | do
8

wpo.ot← g.fixedOTs.get(l)
9 wpo.week← k
10 wpo.day← m
11 assign(schedule, g, wpo)
12 end for
13 end for
14 end for
15 end for
16 end if
17 end for

C. UPPER BOUNDARY FOR THE NORMALIZATION OF A
SLOT’S OBJECTIVE VALUE
Since SC1, SC4, SC5, SC6, and SC10 are Boolean objectives
(whether they meet the soft constraint or not), the maximum

Algorithm 5 assignToPreferredSlots(schedule,
sgtaList)
1 for i = 1→ | sgtaList | do
2 g← sgtaList.get(i)
3 if g has preferred slots then
4 for j = 1→ g.noOfSlotsAllocated do
5 for k = 1→ | weeks | do
6 for l = 1→ | g.preferredSlots | do
7

wpo← g.preferredSlots.get(l)
8 assign(schedule, g, wpo)
9 end for

10 end for
11 end for
12 end if
13 end for

Algorithm 6 selectSlot(schedule, g)
1 unitFeasibleSlots← get all feasible slots for g
2 if unitFeasibleSlots is empty then
3 return null
4 end if
5 for i = 1→ | unitFeasibleSlots | do
6 Calculate slot score for unitFeasibleSlots.get(i)
7 end for
8 Sort unitFeasibleSlots by slot score in descending order
9 return unitFeasibleSlots.get(0)

Algorithm 7 assign(schedule, g, wpo)
1 if wpo is null then
2 return false
3 end if
4 planDaydx← wpo.week ∗ | weekly days | + wpo.day
5 otIdx← wpo.ot
6 schedule[planDayIdx][otIdx]← g
7 for i = 1→ | sgtaList | do
8 Calculate unit score for sgtaList.get(i)
9 end for

10 Sort sgtaList by the unit score in descending order
11 return true

Algorithm 8 swap(schedule, g)
1 candidateSwapSlots← get all possible swaps for g
2 for i = 1→ | candidateSwapSlots | do
3 Calculate the swap score for candidateSwapSlots.get(i)
4 end for
5 Sort candidateSwapSlots by swap score in descending order
6 wpo← candidateSwapSlots.get(0)
7 sgtaList.add(wpo.unit)
8 assign(schedule, g, wpo)

value for the normalization is set to one. The maximum
objective value for each slot is listed in Table 21.
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TABLE 21. Upper boundary for the normalization of the objective values
for each slot.
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