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ABSTRACT It is difficult to perform multiplication with digital devices and required to the more practical
implementation methods. Thus, a well-known simpler transfer function adaptation to a swimming pattern
generator is suggested for the digital implementation easiness in here. However, the direct adaptation of
this function to this neural circuit is insufficient, so a control parameter is included in the laterally inhibitor
neurons. Its fittest value is determined by a bifurcation diagram for getting a neural circuit that produces
rhythmic patterns. Then, a four-segmented neural swimming pattern generator is constructed by using
this simpler function and the anti-phase firings of neuron groups on the opposite sides is observed by
the numerical simulations. Additionally, it is aimed to obtain an adjustable time delay between the neural
segments, so the ‘reciprocal inhibition’ synaptic connections are adapted to this four-segmented structure.
The effect of the reciprocal inhibition on time delays is observed by the standard deviation and numerical
simulations. The final aim is to get the electrical signals with the digital device-based implementation for
emulating the swimming rhythmic pattern generator of a lamprey and a Field Programmable Gate Array-
based realization is carried out by using the simpler transfer function. To see the achievement of this
implementation, the anti-phase firings of neuron groups on the opposite sides and getting an adjustable
time delay between neural segments are verified by the electrical signals. Moreover, the swimming pattern
generator of a lamprey is realized with FPGAwithout using anymultiplier blocks thanks to the simplification
process.

INDEX TERMS Swimming pattern generator, lamprey, reciprocal inhibition, time delay, field programmable
gate array (FPGA).

I. INTRODUCTION
The functional mechanism of the brain is the main subject
of many researches with different perspectives. Along with
this research topic, the rhythmic pattern generator structures
have been discovered [1], [2], [3]. These structures are the
neural circuits that are the sources of the rhythmic move-
ments such as swimming, locomotion, digestion, heartbeat
etc. in the living beings [4], [5]. It is now a known fact
that when a certain number of neurons come together with
various synaptic connections, they form the neural circuits.
These neural circuits produce the rhythmic patterns and they
are available in both vertebrates and invertebrates [6], [7],
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[8]. All neurons and their interactions are modeled in these
neural circuits, mathematically. There are many examples of
the neural circuit models in the literature and the internal
interactions among the neurons are able to be examined with
these models, functionally. One of the most widely known of
these structures is swimming rhythmic pattern generator of
a lamprey (see Fig.1) [9], [10], [11], [12], [13]. Some basic
assumptions have been made about the neurons and their
interactions in the swimming rhythmic pattern generator of
a lamprey. Some of these acceptances are as follows: i) There
are reciprocally interacting neuron groups on the right and
left sides in the swimming pattern generator of a lamprey,
ii) These right and left neuron groups maintain to produce
rhythmic patterns within themselves; even they are isolated
from each other, iii) These neuron groups are coupled with
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FIGURE 1. A simple representative draft for swimming pattern generator
of a lamprey.

each other through along the spinal cord of a lamprey (from
head to tail), iv) One excitatory ‘EIN’, two inhibitory (one of
them is laterally inhibitor neuron ‘LIN’ and another of them
is collaterally inhibitor ‘CIN’ neurons) interneurons and one
motor neuron ‘M’ are available in each neuron groups on
the right and left sides, v) Each of these neurons interacts
with each other, with the other neurons on the opposite side,
and with neighboring neural segments, vi) The neurons on
the right and left sides fire in anti-phase. vii) There is a
certain time delay between neuron firings in each neural
segment, thanks to these time delays, the neural segments
triggered sequentially and they create the fluctuating move-
ment in the living being. As seen from these assumptions, the
anti-phase firing between the right and left neuron groups and
a time delay between neural segments are among the primary
requirements for the formation of the swimming pattern of
lampreys.

Many studies have been carried out on the models that
provide these features mentioned above. One of the most
well-known of them is the model proposed by Ekeberg [14],
[15]. The neurons act as integrators according to this model.
Several delay parameters have been defined to get time
delays. The excitatory input has been limited by a func-
tion and this boundary function includes an exponential
expression. Another model is presented to the literature by
Anzinger & Rottoy [16] in 2009 for modeling the swimming
pattern generator of a lamprey. Their model is based on the
integrated and fire neuron model and describes the average
evoked activity of a neuron populations in a neural segment.
The model includes a sigmoid-shape transfer function for
limiting the output signal.

The next stage of the modeling studies is to develop
neuromorphic systems. These neuromorphic systems, which
are developed using swimming pattern generator of a lam-
prey, have several applications in different research areas.
For example, an interaction between a real-time circuit and
spinal cord of a lamprey has been explored as an neuro-
prosthetic applications in [17] and a VLSI circuit design
has been improved for that generating the spinal motor pat-
tern. In [18], a visually guided robotic lamprey has been
designed and the anguilliform swimming of this robot has
been controlled by validating output of the computational
neuron model. The investigation of the novel telepresence
strategies and the validation of the neuroscience models has
been handled by designing a neurobotic artificial lamprey
model in [19]. The study in [20] has been focused on control-
ling the locomotion of a lamprey robot and it is demonstrated

the adjustment easily the speed and direction of locomotion
by the central pattern generator. The dorsal fins affect the
swimming speed and performance of the bioinspired under-
water robots and a systematic dual dorsal fin design has been
performed in [21] for swimming efficiency of a snake-like
underwater robot. In these applications, it can be aimed to
implement a neuromorphic emulator circuit by utilizing the
rhythmic pattern generator models [22], [23], [24]. However,
the realizations of the exponential boundary functions in
these mentioned models are quite difficult directly with the
digital equipment. There are many different approaches to
overcome this problem in the literature. Several approaches
such as linearization operations [25], [26], integration of
different computational methods into the systems [27] and
the usage of an approximation functions [28], [29] are sug-
gested for the simplification of the exponential function, so it
has been gotten the revised boundary expressions compati-
ble with the digital systems. The fact that both swimming
pattern generator models mentioned above also contain expo-
nential expressions and this situation makes difficult their
digital equipment-based implementations. In this study, it is
aimed to make a simplification in the activation function
of the model, which is derived from the integrated and fire
type neuron models by Anzinger & Rottoy [16], so it is
aimed realization easiness with the digital equipment. In this
context, the linear-characterized ‘sign’ function is adapted
to the model instead of the sigmoid-shaped transfer func-
tion. Although the ‘sign’ function has several convergence
drawbacks in terms of the signal continuity, it is easier to
model mathematically this function instead of an exponential
model. It is possible to construct a sigmoid shape function
with the analog circuit devices such as voltage comparators
and differential amplifiers. In fact, this realization process
may be quite suitable for prototype trials. However, the ana-
log circuits have disadvantages such as sensitivity to noise,
inflexible designs and inability to hold the previous data.
On the other hand, due to the increasing number of neurons
in a neural network structure design, the number of the used
hardware increases and the connections between the emu-
lated neurons become extremely complex. For this reason,
the usage of programmable electronic devices comes for-
ward instead of discrete device-based analog designs in such
realizations. Although the neural systems can be designed
with programmable analog circuit devices such as Field Pro-
grammable Analog Arrays [30], [31], the limited memory
problems are encountered in such also devices as the num-
ber of neurons in the neural structure increases. Thus, the
programmable digital devices prefer in the hardware imple-
mentations of the neural systems. The digital circuits are
more compatible with existing hardware to develop systems
that can meet different requirements in the different situa-
tions. For this reason, in this study, the digital device-based
application is used for the neuromorphic circuit realization
of the swimming rhythmic pattern generator of the lamprey
and the Field Programmable Gate Array-FPGA device is
preferred in this implementation with its prominent features
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FIGURE 2. a) An extended and updated network design from for the
swimming pattern generator of a lamprey [16], b) A representative
illustration of a neuron group in mathematical form.

such as parallel programmability and the design system on a
chip.

On the other hand, the direct adaptation of the ‘sign’
function to this model is insufficient to obtain a network
structure that produces the rhythmic swimming patterns.
Thus, a control parameter ‘9’ is included in the laterally
inhibitor interneuron in the neuron groups and the effect on
the swimming network of this control parameter is observed
with a bifurcation diagram. After determining an appropriate

value of this control parameter, a swimming pattern generator
network in [16] is extended and updated as in Fig.2a.

In general, when the studies about central pattern gen-
erator structures in the literature are examined, it is stated
that ‘reciprocal inhibition’ is also effective as one of the
sources of time delays between neuron firings [8], [32]. From
this point of view, it is also aimed to obtain time delays
between neural segments by changing the synaptic weights.
The collaterally inhibitor interneuron indicated by the ‘CIN’
are connected to the excitatory interneuron ‘EIN’ on the
opposite side by a variable synaptic weight in each neural
segments (see Fig.2). Therefore, in here, i) the results of the
anti-phase firings between neuron groups on the right and left
sides, ii) results of time delays between neural segments, and
iii) the results that show the effect of the reciprocal inhibition
connections on the time delays are firstly presented with
standard deviation results and numerical simulation studies
by using the revised swimming pattern generator model.
Then, the final aim of this study is to get the electrical
signals for emulating the swimming pattern generator of a
lamprey by using digital equipment and the swimming pat-
tern generator network given in Fig.2a is realized by using
the ‘Field Programmable Gate Array-FPGA’ device. The
FPGA device is one of the hardware that is an alternative
device instead of discrete devices and analog systems in
the implementations of the central pattern generators [33],
[34], [35], [36], [37], [38], [39], [40]. FPGAs are among
the pioneer electronic equipment to verify prototype designs;
thanks to its programmability feature and parallel working
principle. In this study, all numerical simulation results for
the designed swimming pattern generator network in Fig.2a
are repeated with the electrical signals that are obtained by
the FPGA-based implementations. Thus, the proposed sim-
plification and the control processes are accomplished for
the swimming rhythmic pattern generator model of a lam-
prey, successfully and the electrical signals are obtained in
an efficient way. We aim the less hardware usage in digi-
tal circuits with the simplification process of the boundary
function and it is achieved with the use of no multipliers
by using a simpler definition instead of the exponential
function.

The following parts of this study are organized as fol-
lows: After introducing of the swimming pattern generator
of a lamprey, its network model definition and the proposed
simplifications about this model are given in Section II. The
results of the bifurcation diagram that is illustrated the effect
of the control parameter on the pattern generation and the
aforementioned standard deviation and numerical simulation
results are also presented in this section. The realization
details of the swimming rhythmic pattern generator with the
FPGA device are presented in Section III. The electrical
signal measurement results, which are recorded from the neu-
romorphic swimming pattern generator, are also presented in
this section. The synthesis results of the FPGA-based imple-
mentation and the general results of the study are evaluated
in the conclusions part. systems.
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FIGURE 3. Bifurcation diagram results for observing the effect of the control parameter on the dynamical
patterns of a neuron group.

II. ON SWIMMING PATTERN GENERATOR OF A
LAMPREY
A lamprey is a primitive vertebrate animal. It has an alepidote
skin and one or two dorsal fins. Their eyes are hidden under
their skin. Their respiration and feeding are provided bywater
entering their mouth and extruding their gills. The body of
a lamprey moves from head to tail with a lateral undulation
and this movement is similar to a snake that moves through
water [41]. The swimming pattern generator of a lamprey
takes the considerations, because its anatomy and nervous
system is simple, the oscillations on this patterns generator
are able to measure and these primitive living beings are
an inspiration for more complex vertebrates. Some basic
assumptions have been made about the neurons and their
interaction with each other in the swimming rhythmic pattern
generator of a lamprey [9], [10], [11], [12], [13]. Some of
these acceptances are as follows: i) There are reciprocally
interacting neuron groups on the right and left sides in the
swimming pattern generator of a lamprey, ii) These right and
left neuron groups maintain to produce rhythmic patterns
within themselves; even they are isolated from each other,
iii) These neuron groups are coupled with each other through
along the spinal cord of a lamprey (from head to tail), iv) One
excitatory ‘EIN’, two inhibitory (one of them is laterally
inhibitor neuron ‘LIN’ and another of them is collaterally
inhibitor ‘CIN’ neurons) interneurons and one motor neuron
‘M’ are available in each neural group on the right and left
sides, v) Each of these neurons interacts with each other, with
the neurons on the opposite side, and with neighboring neural
segments, vi) The neurons on the right and left sides fire in
anti-phase, vii) There is a certain time delay between neuron
firings in the each neural segment. The collaterally inhibitor
neurons determine the neuronal behavior and they cause to
start firing mechanisms. The neuronal activity is switched
from one side to other side by the collaterally inhibitor
neurons. While the neuronal activity increases thanks to the
excitatory interneuron on one side, the collaterally inhibitor
neurons cause to lessen neuronal activity on the other side.
Thus, the neuronal activities on the opposite sides are induced
in anti-phase [42].

FIGURE 4. Standard deviation results between the motor neurons on the
left sides.

The model, which has been presented to the literature by
Anzinger & Rottoy [16], is expanded as in (1) in here for
defining each neuron groups on the left or right side:

τEINside
dEINside

dt
= −EINside + sign [2Mside − 1.4LINside

+Mside_previous − 8CINopposite_side]

τLINside
dLINside

dt
= −LINside + 9sign [EINside +Mside]

τMside

dMside

dt
= −Mside + sign [2EINside − 1.4LINside]

τCINside
dCINside

dt
= −CINside + sign [Mside]

(1)

In (1), the time constants are given the ‘τ ’ parameters
and they are adjusted to the following values: τEINL =

0.2, τLINL = 3.5, τML = 2.1, τCINL = 0.2, τEINR =

0.2, τLINR = 6, τMR = 1, τCINR = 0.2.
Here, a representative illustration of a neuron group in (1)

is given in Fig.2b and the outputs of the neurons are limited
with a ‘sign’ function. This function set the output to one for
the positive inputs or it set to the output minus one for the
negative inputs, and the output is zero for zero input. In the
referred study, this boundary function is a sigmoid-shape
function and the limits of the sigmoid function lie between
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FIGURE 5. The numerical simulation results of the anti-phase firings between neuron groups on the right
and left sides for four neural segments.

FIGURE 6. The numerical simulation results in time domain that show the effect of the ‘reciprocal inhibition’
connections on the time delays between neuron’s firings for the a) 8 = 1, b) 8 = 1.25, c) 8 = 1.5, d)
8 = 1.75 and e) 8 = 2 values.

zero and one. [16]. In fact, the direct revision is insufficient
for getting individual rhythmic patterns in the neuron groups
on the reciprocal sides. Thus, a control parameter ‘9’ is
included in the laterally interneuron of each neuron groups.
The effect of this control parameter on the dynamical patterns
of one neuron group is observed by the bifurcation diagram.

The biological neuron models resemble oscillator structures.
If the parameter values in the models are not selected cor-
rectly, they do not exhibit dynamiceal neuronal response.
Bifurcation diagram is a graph and it is used to observe
the change of the output dynamics over time versus to a
control parameter change in the system, simultaneously. The

VOLUME 12, 2024 43853



N. Korkmaz: Digital Emulator Design for the Swimming Rhythmic Pattern Generator of a Lamprey

FIGURE 7. The comparison between the phase portraits of the left motor neurons in Fig.1 for observing the time
delays between the neural segments: The phase differences between i) the ML1-ML2 neurons, ii) the ML1-ML3
neurons and iii) the ML1-ML4 neurons for the a) 8 = 1, b) 8 = 1.25, c) 8 = 1.5, d) 8 = 1.75 and e)
8 = 2 values.

horizontal axis represents the change of the control parameter
and the vertical axis represents the output dynamics of the
system. In here, parameter research is executed from one to
three with the ‘0.01’ step size and the time-span is adjusted to
‘0-300ms’. Its result is seen in Fig.3. According to the result
in Fig.3, since no neural output dynamics can be observed in
the1 < 9 < 1.4 range, approximately, it can be concluded
that the individual neurons in a neuron group do not produce
a dynamical pattern. As the value of the control parameter
increases, the activities of the neurons also increase. Since
high amplitude-neurons are not desired, the value of the
control parameter is set to ‘1.6’ in the all-neuron groups of
the swimming pattern generator network in Fig.2a.

After that, we focus on the effect of ‘8 ’ parameter in (1)
on this swimming pattern generator. When the studies about
central pattern generator structures in the literature are exam-
ined, it is stated that ‘reciprocal inhibition’ is also effective
as a source of time delays between neuron firings [8], [32].
The asymmetric body movements are produced by the central
nervous systems of the living being and it is thought that
the ‘reciprocal inhibition’ is the source of the asymmetri-
cal activations on the left and right sides, biologically [43].
In addition, the inhibition and excitation states that exist in
the chemical synapse structures between neurons are related
to the properties of the neurotransmitter substance. These
states, which are the source of information transfer between
neurons, is associated with the concept of synaptic weight in
the mathematical modeling process. The value of the synaptic

weight parameter is directly related to the concept of the
synchronization between neurons. At the optimum value of
synaptic weight, the dynamical firings of two neurons are
simultaneous. On the other hand, as the synaptic weight
value changes, a time delay occurs between firing times of
the coupled neurons. Thus, the ‘8’ parameter is included
in the model as a synaptic weight parameter. This param-
eter represents a synaptic connection from the collaterally
inhibitor neuron on one side to the excitatory neurons on the
opposite side and it is represented by the variable resistors in
Fig.2b. This parameter has a changeable characteristic in all
neural segments except from the first neural segment, namely
it is equal to one in the first neural segments. Here, it is
aimed to get a certain time delay between neural segments
of the swimming pattern generator network. Even better, it is
also observed that the amount of this delay can be adjusted
by changing the values of this synaptic weight parameter.
Additionally, all exhibitory interneurons take an input from
the motor neurons in the previous neural segment as seen in
Fig.2a, but the exhibitory interneurons in the first neuronal
segments take a stimulus signal instead of the motor neuron
signal in the previous neural segment. The value of this
stimulation is equal to the ‘0.6’ on the both sides. Standard
deviation results between the coupled neurons offer an idea
about their synchronized or unsynchronized firings [27], [44].
As their dynamical behaviors get close to each other, standard
deviation result converges to zero, otherwise, it shows an
increasing trend. In this study, the standard deviation results
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FIGURE 8. a) The constructed blocks for implementing the swimming pattern generator network in Fig.2a, b) The constructed block for
implementing a neuron group in any side in Fig.2b on the FPGA.

of the motor neurons on the left sides are given in Fig.4
depending on the effect of ‘8’ parameter. The red line is
the standard deviation between ML1 and ML2 neurons. The
green line belongs to the ML1 and ML3 neurons. The orange
line represents the standard deviation betweenML1 andML4

neurons. The red line is closer to zero and the standard devia-
tion represented by orange line is the highest one. According
to these graphs, while the closest characteristic to the dynam-
ical behavior of the ML1 neuron belongs to ML2, the furthest
characteristic belongs to ML4. Moreover, as the value of the
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control parameter increases, the standard deviation results
also increase, and the dynamical behavior of all neurons
moves away from the ML1 neuron. Accordingly, the effect of
the ‘8 ’ parameter on the time delay between neurons is seen
clearly. The parameter is changed in range 0.4 and 2.2, and it
is observed that as its value increases, the standard deviation
results also increases.

In here, the numerical simulation results of the anti-phase
firings between neuron groups on the right and left sides
for four neural segments are given in Fig.5. The numerical
simulation results that show the effect of the ‘reciprocal inhi-
bition’ connections on the time delays between neuron firings
are presented in Fig.6. This figure includes five different
time-delayed results for the ′8 = 1, 8 = 1.25, 8 =

1.5, 8 = 1.75, 8 = 2’ values. From these numerical simu-
lation results, it is seen that the increasing of the ‘8’ synaptic
weight parameter causes the increased time delays between
the neural segments. The phase attractors, which are plotted
by using X-Y plot feature of the measurement systems, allow
observing the phase differences between the input signals
such as Lissajous pattern [45]. Thus, the phase domain illus-
trations of the left motor neuron in the first segment and the
other left motor neurons in the next segments are plotted for
the values given above (′8 = 1, 8 = 1.25, 8 = 1.5, 8 =

1.75, 8 = 2), respectively. The results of these numeri-
cal simulations are given in Fig.7. According to Fig.7, the
phase differences betweenML1-ML2 neurons increase as the
synaptic weight values increase (from Fig.7i.a to 7i.e). Simi-
larly, while the phase differences betweenML1-ML3 neurons
are given from Fig. 7ii.a to Fig.7ii.e, ones of ML1-ML4 are
seen in from Fig. 7iii.a to Fig. 7iii.e. Their phase differences
are also increases with the increment of the synaptic weights.
Additionally, the phase differences between the ML1-ML4
neurons’ are bigger than the ML1-ML3’s and the ones of the
ML1-ML3 neurons are bigger than the ML1-ML2 neurons’.
According to these results, the change of the ‘8’ param-
eters, which represents the synaptic connection from the
collaterally inhibitor interneuron to the excitatory interneuron
on the opposite side, causes an equivalent time delay in
consecutive neural segments of the swimming pattern gen-
erator network. These numerical simulations are performed
on the MATLAB-SIMULINKTM numerical simulation tool
by using the Dormand-Prince integration algorithm.

III. OBTAINING THE ELECTRICAL SIGNALS WITH FPGA
FOR A NEUROMORPHIC SWIMMING PATTERN
GENERATOR
A neuromorphic system describes the designing of an elec-
tronic circuitry that is emulate any capability of a living being,
so various bio-inspired developments, which are transferred
the biological mains to the engineering applications, are pre-
sented to the literature [22], [23], [24]. The pattern generator
networks are one of the most critical application fields of the
neuromorphic studies. After the modeling of these rhythmic
patterns, these models are able to be realized by various
electronic equipment.

TABLE 1. The states of the switches and the outputs of the multiplexer
block.

FIGURE 9. A flow chart for the design procedure of the swimming pattern
generator implementation with FPGA.

There are many examples in the literature regarding the
usage of the analog or digital equipment in the realization
of these structures [33], [34], [35], [36]. However, the FPGA
device is one of the most preferred hardware in the imple-
mentations of the rhythmic pattern generators [37], [38], [39],
[40]. FPGAs are among the pioneer electronic equipment
to verify prototype designs; thanks to its programmability
feature and parallel working principle. In this study, the
SPARTAN-3ANFPGAboard ofXILINXTM company is used
and it is utilized from the ‘System Generator for DSP tool’
for constructing the swimming pattern generator network in
Fig.2a on this FPGA board [46].
In this process, this swimming network is designed as

in Fig.8a on the ‘System Generator for DSP tool’ of the
MATLAB-SIMULINKTM. There are several tools to syn-
thesize the hardware description language codes from a
high-level description to a gate-level synthesis on FPGA. The
‘System Generator for DSP tool’ generates the bitstreams
to program the FPGA device and the RTL synthesis in the
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FIGURE 10. The measured electrical signals from the FPGA device for the anti-phase firings in the a) first neural segment
(ML1 & MR1), b) second neural segment (ML2 & MR2), c) third neural segment (ML3 & MR3) and d) fourth neural segment
(ML4 & MR4) of the swimming pattern generator.

gate level design are routed in FPGA automatically with
this tool. In Fig.8a, there are four neural segments similar
to Fig.2a and each of these neural segments contains two
neuron groups, left and right. All of these neuron groups
include one excitatory interneuron, one laterally inhibitory
interneuron, one collaterally inhibitory interneuron and one
motor neuron and a total of thirty-two neurons are constructed
on FPGA. The constructed block for implementing a neu-
ron group in any side in Fig.2b on the FPGA are seen in
Fig.8b. As seen from Fig.8b, the neuron definitions in (1)
transform to a discretize system by the Euler Method and
the constant that defines the step size is taken as ‘0.1’.
The integrator definition in (1) is converged by using Euler
method and the next values of the calculations are hold by
a register block for each state variable. The multiplications
with constants are obtained with the gain, right and left reg-
ister blocks. The ‘sign’ function is constructed by using the
conditional decision expressions. The remaining operations
are combined with the mathematical operands. In Fig.8a, the
‘Phase-Locked Loop-PLL’ block adjusts the clock frequency
and this block triggers the registers in the sequential circuit.
The ‘Digital to Analog Convertor-DAC’ is LTC2624. This
DAC is a dual 12-bit, it works with I2C protocol and it has
two channels (A and B). The outputs are measured through
this DACs. The ‘multiplexer block’ in Fig.8a selects the input
signals of the DAC blocks. In the multiplexer block, three
switches are used for selecting two of eight different input
signals and these selected inputs are sent to the A and B
channels of the DAC block. Two input channels of the DAC

block are defined according to the states of switches as in
Table 1:
According to this table, the analog electrical signals

at the output of the DAC are able to observe consistent
with the results in Figs.5, 6 and 7. The anti-phase firings
(from the ML1-MR1 to ML4- MR4 neurons) in each neu-
ral segments are measured by adjusted the switches from
SW2=0, SW1=0, SW0=0 to SW2=0, SW1=1, SW0=1,
respectively. After changing the synaptic weight parame-
ters, the time-delayed firings of the neurons in each neural
segment are also measured by controlling the states of
these switches (from SW2=1, SW1=0, SW0=0 to SW2=1,
SW1=1, SW0=0). ‘Very high-speed integrated circuit Hard-
ware Description Language-VHDL’ codes are obtained by a
code transformation process between the System Generator
for DSP and the XILINXTM core. After this transforma-
tion, the bitstream of RTL level design is downloaded to
SPARTAN-3AN FPGA devices. These codes are embedded
to FPGA devices and the measurements are recorded by a
digital oscilloscope. A flow chart for the design procedure of
the swimming pattern generator implementation with FPGA
is summarized in Fig.9.

The measured electrical signals from the FPGA device
through the DAC are presented in Fig. 10 for the anti-phase
firings in each segment. The ‘8’ synaptic weight parameters
are fixed to one in these measurements. The experimental
implementation results that show the effect of the ‘reciprocal
inhibition’ connections on the time delays between neuron
firings are presented in Fig. 11. This figure includes five

VOLUME 12, 2024 43857



N. Korkmaz: Digital Emulator Design for the Swimming Rhythmic Pattern Generator of a Lamprey

FIGURE 11. The measured electrical signals with the FPGA device for showing the effect of the ‘reciprocal inhibition’ connections on
the time delays between neuron’s firings: Time domain and phase portrait illustrations of i) the ML1-ML2 neurons, ii) the ML1-ML3
neurons and iii) the ML1-ML4 neurons for the a) 8 = 1, b) 8 = 1.25, c) 8 = 1.5, d) 8 = 1.75 and e) 8 = 2 values.

different time-delayed results. The amounts of these delays
are recorded by measuring the phase differences between the
left motor neurons in the neural segments. In the numerical
simulation results, the time domain responses and the phase
attractors of the left motor neurons have been observed by
two different illustrations (Fig.6 and Fig.7), separately. On the
other hand, these results are presented together in the real-
ization stage by utilizing an illustration feature of the used
oscilloscope. The DAC outputs on FPGA are connected to

the oscilloscope channels. The phase differences between
neural segments are measured by utilizing the phase mea-
surement option of a digital oscilloscope and the electrical
signals obtained by the FPGA device are recorded by this
oscilloscope. An experimental setup illustration is given
in Fig.12. During the realization stages, the ‘8’ synaptic
weight parameters are also adjusted to the ′8 = 1, 8 =

1.25, 8 = 1.5, 8 = 1.75, 8 = 2’ values, separately and the
recorded results for the values are given from Fig.11a to 11e,
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FIGURE 12. An experimental setup illustration for measuring the
electrical signals obtained by the FPGA device via an oscilloscope.

TABLE 2. The measured phase differences between the neural segments
for observing the effect of the synaptic weight parameters on the time
delays block.

respectively. According to the results given in Fig.11, the
measured phase differences between the neural segments
are summarized in the Table 2 for observing the effect of
the synaptic weight parameters on the time delays. As seen
from Table 2, when the ‘8’ synaptic weight parameters are
set a value, the phase differences of the consecutive neural
segments increase by approximately equal steps.

For example, the ‘8’ synaptic weight parameters are equal
to ‘1.5’, the phase differences of the ML1-ML2, ML1-ML3
and ML1-ML4 neurons are measured as 24.3280, 48.6480

and 73.6120. The phase difference between the consecutive
segments has been recorded as approximately 240 degrees
for ‘8 = 1.5’. On the other hand, the increasing of the
‘8 ’synaptic weight parameters also increases the phase dif-
ference between the neuron groups. For example, while the
phase differences between ML1-ML3 neuron groups is equal
to 10.2410 for ‘8 = 1’, this difference has been measured as
48.6480 and 127.2800 for ‘8 = 1.5’ and ‘8 = 2’, respec-
tively. Therefore, the time delay effect of the synaptic weight
parameters, which are included in the system as a ‘reciprocal
inhibition’, has been also confirmed by the hardware imple-
mentations. These obtained phase correlations between the
motor neurons are the result of the synaptic weight parameter
changes.

IV. CONCLUSION
This study focuses on the swimming pattern generator of a
lamprey that is a well-known neural circuit. A previously

proposed model, which is described the interactions of the
swimming pattern generator’s neurons, has been extended for
adapting to a digital implementation.While a sigmoid-shaped
transfer function has been used for limiting the activities of
the neurons in the previous version of this model, the usage
of a ‘sign’ function is offered instead of this sigmoid-shape
function for digital implementation easiness in here. How-
ever, additionally, a control parameter has been added to
the laterally interneurons in the swimming pattern generator
model because of the insufficiency of the ‘sign’ function’s
direct usage. The result of the bifurcation diagram has been
used for observing the response of the system to the change
of this control parameter. The value of this control parameter
has been determined as ’1.6’. Then, a four-segmented neu-
ral swimming pattern generator has been designed and the
numerical simulation stage has been performed via this net-
work. Since the lampreys resemble swimming snakes, they
move by utilizing asymmetric fired-patterns that are produced
in swimming pattern generators. While these movements are
occurring, it is very important that the neuron groups on
the right and left sides of the lamprey’s swimming pattern
generator fire in opposite phases. Thus, one of the charac-
teristic assumptions about the lamprey’s swimming pattern
generator is that the neuron groups on the opposite sides
fire in anti-phase. The numerical simulation results of these
anti-phase firing have been observed for each segment in
this designed network and their results has been given in
Fig.5.

In addition, the ‘reciprocal inhibition’ synaptic connec-
tions have been adapted to the swimming pattern generator
model. The collaterally inhibitor interneurons in one side are
connected to the exhibitory inter neurons in the opposite side
with a variable synaptic weight parameter. The time delay
between the firings of the coupled neurons changes depend-
ing on the values of the synaptic weight. The synchrony
or asynchrony firings between the coupled neuron can be
observed by utilizing standard deviation results, so several
standard deviation results have been given for getting a fore-
sight about the time delays between the neurons. Since these
delays can be measured by observing the phase attractors, the
additional numerical simulations have been also performed
for five different synaptic weight values in order to observe
the effect of these parameters on the time delay between the
neural segments. The results of these numerical simulations
are presented in Figs.6 and 7, and they confirm the conclusion
that the synaptic weight parameter provides an adjustable
time delay.

The final aim of this study has been offered as designing a
neuromorphic digital circuit that is able to emulate the swim-
ming rhythmic patterns of a lamprey. For this reason, a digital
realization has been carried out by using the ‘sign’ function-
based revised pattern generatormodel. In this implementation
process, the digital programmable FPGA device has been
used and the obtained electrical signals have been given in
Figs.10 and 11. The used element quantities on the FPGA
device are summarized in Table 3.
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TABLE 3. The used element quantities on the FPGA device.

TABLE 4. The details of the power consumption in the FPGA device.

One of the most encountered problems in the digital
device-based implementations of the nonlinear systems is
the limited number of multiplier blocks. For example, the
SPARTAN-3AN FPGA board of XILINXTM company has
twenty multiplier blocks. Thus, the realization studies per-
formed using as few as possible multiplier block take the
attentions in the literature [47], [48], [49], [50], [51]. From
Table 3, it is seen that no multiplier block has been used in
the FPGA-based implementation of this swimming pattern
generator thanks to the simplification process of the transfer
function. This outcome makes more valuable the provided
contribution in here. The power consumption in this pro-
grammable digital element is also very low. Details about
the consumed power in this FPGA device are summarized in
Table 4:
Moreover, the anti-phase firings of the neuron groups

on the opposite sides and getting an adjustable time delay
between neural segments have been also achieved in the
hardware implementation process, successfully. The electri-
cal signals have been gotten by these realizations and these
electrical signals may also enable to carry out several exper-
iments without interfering with the living being. Since these
obtained electrical signals can be used in the control of the
actuators of the swimming robots, they are also suitable for
using in the electromechanical systems.
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