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ABSTRACT Regulatory compliance in the pharmaceutical industry is challenging, requiring dedicated
resources and meticulous control over production processes to ensure adherence to established regulatory
guidelines, specifically ALCOA+ (Attributable, Legible, Contemporaneous, Original, Accurate, Complete,
Consistent, Enduring, and Available) principles. This paper introduces an innovative approach to assess
pharma regulatory compliance, utilizing a network model of the production process. The model dynamically
configures production line characteristics based on manufacturing process data, overcoming complexity and
scalability challenges. Purpose: The main purpose is to address the challenges of regulatory compliance
in the pharmaceutical industry by introducing a novel approach using a network model. The research
question involves assessing the effectiveness of this model in ensuring compliance with ALCOA+ prin-
ciples. Methods: The approach involves dynamic configuration of the network model parameters based
on manufacturing process data. Network analysis methods are then applied to evaluate the conformity of
manufacturing process data to ALCOA+ principles. Results: Testing the proposed approach on a real dataset
from a representative pharma production line demonstrates its effectiveness in assessing pharma regulatory
compliance. The results highlight the potential of network modelling in managing data quality and integrity
within the regulatory framework. Conclusions: The study concludes that the network model offers a strategic
solution for evaluating and ensuring regulatory compliance in pharmaceutical manufacturing. The approach
shows promise in addressing the complexities of data management within the stringent regulatory framework
of the industry.

INDEX TERMS ALCOA+, betweenness centrality, graph network modeling, network analysis, pharma
industry, regulatory compliance.

I. INTRODUCTION

The complex nature of modern industrial manufacturing
infrastructures and relevant business processes urge for a
set of accurate, compact, and well-defined rules, so as to
be managed in ultimate transparency and ensure corporation
integrity. Those rules are normally emanated from vari-
ous types of standards, specifications and even government
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laws, so as to compose a complete framework, to be
applied in various sectors such as health, pharmaceutical,
banking, data security, manufacturing, ecological sectors,
to name but a few. The real challenge lies in the fact that
those rules tend to increase rapidly in numbers and com-
plexity rate, and therefore require a dynamic regulatory
framework along with efficient regulatory management to
keep up with them. Regarding pharma manufacturing sec-
tor, those regulatory rules are in perfect alignment with
the 9 ALCOA/ ALCOA+ principles (Attributable, Legible,
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Contemporaneous, Original, Accurate, Complete, Consis-
tent, Enduring, and Available) [1], that emphasize on ensuring
data integrity, and product quality, as well [2]. Numerous
factors have contributed to the growing importance of data
integrity requirements and their efficient management, such
as i) the need to maintain the quality and safety of medicines,
ii) the ever increasing stringent requirements concerning
data traceability and audit trails, iii) the evolving consumer
and end-user expectations that boost competition within the
pharmaceutical industry, and iv) the dependence of Indus-
try 4.0 technologies and systems on enhanced equipment inte-
gration and digital data transfer. Hence, dealing effectively
with pharma regulatory compliance is a difficult and chal-
lenging task, as pharma manufacturing environments tend
to grow up rapidly, merging heterogeneous production lines,
along with complex raw data originated from production line
infrastructures.

Il. MOTIVATION-BACKGROUND

Various research attempts have been focused in modelling
that complex, ever evolving pharma environment, along
with an appropriate regulatory compliance framework. There
is a plethora of approaches which have been successfully
applied on other sector business process modelling, and they
are mainly based on combining well established knowl-
edge management semantic techniques (Resource Descrip-
tion Framework-RDF, natural language processing-NLP, etc),
with semantic web based representations, such as ontolo-
gies coupled with Web Ontology Language (OWL) [3],
or NLP accordingly [4]. The successful results of the combi-
nation of conceptual modelling with semantic representation
have driven the research community to adopt relevant tech-
niques in various industrial environments, including the
pharma manufacturing sector. There are many NLP [5],
or ontology based conceptual representations which have
been attempted in pharma industry regulatory sector, such as,
[6], [7], [8], [9], [10], [11]. Artificial Intelligence (AI) and
Machine Learning (ML) methods have already shown great
results in supporting those pharma manufacturing systems
in multiple ways, such as process monitoring auditing, and
control, data mining and processing, digital transformation
integration with other technologies (e.g. blockchain), [12],
[13], and prediction potential [14]. Digital Twin (DT) solu-
tions have also been successfully applied, facilitating the
transformation of pharma manufacturing environments [15].
However, as already mentioned, in those dynamically evolved
and scalable pharma manufacturing environments, being
characterized by large heterogeneous data volumes and con-
tinuously changing bodies of rules, it is hard to tackle
efficiently with data and compliance management. Opti-
mized data driven approaches in knowledge models may be
a promising solution [16]. The existing conceptual semantic
based representation approaches sooner or later will have to
face bottlenecks of computation processing performance due
to their inherent polynomial dependence in the size of data
input batch reports, especially as they tend to scale up fast and
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merge more and more heterogeneous production lines [17].
At this point, the idea of managing graph network structured
data, instead of data word semantics, along with their multiple
relationships, may lead to a promising and lightly processing
burden model solutions.

Ill. CONTRIBUTION AND STRUCTURE OF THE PAPER
Inspired by the above motivations, in this research work
we propose a network analysis method that applies pharma
regulatory compliance by assessing ALCOA principle vio-
lation, in a network modelling of a pharmaceutical line
process which are analysed using graph theory. This network
modelling is a simulation of the pharma production manu-
facturing process via adoption of a graph network structure,
whereas its nodes represent production line data and infras-
tructure resources, interconnected with each other via edges
accordingly, when there is a pharma domain relationship and
interaction. ALCOA+ principles have been also represented
by graph network nodes allowing for interconnection via
edges, with other node types whenever their predefined crite-
ria are met. On the contrary, any nodes not meeting ALCOA+
criteria result in reduced connectivity, which means violation.
The network analysis approach can be applied to check for
any reduced connectivity across ALCOA+ nodes, indicat-
ing the significant edges decrease, and providing ALCOA+
compliance assessment accordingly. This approach simplifies
the compliance procedure, as it only checks for network
connectivity changes along ALCOA+ nodes, and hence sig-
nificantly reduces the computation time required, especially
when dealing with heavy topologies that represent scalable
and complex pharma manufacturing production lines, with
multiple batches and recipe combinations. This paper is
structured as follows. A related work about network mod-
elling section follows up introduction section. Section III in
Material and Methods is dedicated to an analytical method
description, including graph network design and construc-
tion details, the batch report data and ALCOA+ principle
inclusion within network structure, and the network analysis
scope and metrics selection. Section IV describes and dis-
cusses over the results of network analysis, associating them
with ALCOA+ violation percentages, and elaborating thus
on a regulatory compliance assessment. Finally, section V
concludes the paper and indicates future goals and prospects
in a next work version.

IV. BACKGROUND ON NETWORK MODELING

The study of network models and their characteristics is
inspired by empirical analysis of real networks. A large
part of the research work dealing with complex networks
in manufacturing either discovers structural characteristics
of those networks or investigates the relation between struc-
tural network characteristics and the performance of the
material flow [18]. Assessing the actual material flow in a
network provides more reliable information than consider-
ing network structural properties. However, the advantage
of using network measures is that they provide a systematic
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and quantitative way to analyse and understand the properties
and behaviour of networks, making them a valuable tool
in a wide range of fields where network analysis is appli-
cable. Even when actual material data is not yet available
and can be only acquired using computer simulations, as is
the case in early planning stages for instance, assessment
about the manufacturing system can still be done using net-
work measures [19], [20]. Examples are networks formed by
human social and professional relationships, and networks
found in natural sciences such as physics and biology. Many
network-related insights can be transferred to various tech-
nological application domains, such as manufacturing and
engineering, by considering networks formed by the flow of
material, goods, and information. These artificial networks,
although different from networks found in nature or soci-
ety, have similar structure and properties because they are
governed by the same principles. Therefore, the same set of
mathematical and computational tools can be used to analyse
them. Graph network modelling and network analysis has
been considered as a state-of-the-art modelling approach for
a long time in many application and scientific sectors, such
as Network science, Network biology, Network medicine,
or application sectors such as manufacturing and logistics
industries. Network science, as an interdisciplinary field of
study, plays a role in the utilization of the growing availability
of network data to investigate a wide range of complex phe-
nomena, such as collective social behaviors, technological
progress, financial stability, and biological interactions [21],
[22], [23]. Network biology is a rapidly advancing field
of research that recognizes biological processes as intri-
cate systems governed not solely by individual proteins or
isolated linear pathways but rather by complex, intercon-
nected networks of molecular interactions, often referred
to as the interactome [24], [25]. Network medicine the-
ory extends this notion, proposing that disease-associated
characteristics do not stem from single gene mutations act-
ing in isolation but rather result from disruptions within a
gene’s network context [26], [27], [28]. Researchers have
access to a multitude of bioinformatics tools and molecular
interaction data for constructing networks from gene/protein
lists and exploring novel systems-level insights into the tar-
get phenotype [29]. Moreover, manufacturing and logistics
industries benefit from this development since material flow
systems are inherently suited to be modelled as networks.
Selected advances in network modelling and analysis within
the manufacturing and logistics industries that have been
achieved in the past decade are provided in a review paper
that highlights the fundamental modelling concept, and sev-
eral examples of how network models can be utilized to
contribute to the resolution of planning and control issues
within logistic systems. With the use of network models,
it is possible to gain insights into the functioning of logis-
tic systems and identify areas where improvements can be
made, leading to increased efficiency and cost savings [30].
A further development in network modelling in manufactur-
ing was the introduction of stochastic models. In particular,
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the Stochastic Block Model (SBM) allows for a prediction
of future states in a manufacturing system [18] and testing
different variants and classical machine learning methods for
prediction. An SBM is a network model in which groups of
similar nodes (such as clusters) are seen as structural equiva-
lent. Instead of explicitly modelling the links between nodes,
the general probability of two nodes from two groups being
connected is given. In another approach network modelling
has been used to study phenomena occurring in interacting
economical agents, such as bank bankruptcies, as well as rela-
tionships between shareholders, board directors, and stock
prices [31]. In business ecosystems in particular, networks
have been used to represent relationships and interactions
between stakeholders, processes, products, and financial enti-
ties to identify bottlenecks, inefficiencies, and opportunities
for improvement [19], [20], [32], [33], [34], [35], [36], [37].
Recent research indicates that the simulated network struc-
ture flow can undergo changes over a specific period due
to various events or changing circumstances, and hence,
can be applied in dynamic environments as well (e.g. job
transfers or workstation malfunctions). This has been demon-
strated in recent studies by [38], [39]. Therefore, it may be
advantageous to consider such dynamic processes in specific
applications. In general, such network modelled systems are
termed complex because it is generally not possible to exactly
predict their collective behaviour based on the individual
behaviours of their components. However, understanding
the mathematical description of these systems enables pre-
dicting certain system properties and subsequently taking
appropriate control actions. Along this line many dynamical
processes, from biological until technological contexts such
as epidemic dynamics [40], [41], vector-borne or livestock
diseases [42], [43], spreading rumors [44], [45], and syn-
chronization [46], [47] have been investigated. Furthermore,
the inclusion of Artificial Intelligence (AI) methods in the
processing of network data can further increase the quality
of network models. Massive amounts of system data will be
collected in the context of Industry 4.0 and enabling detailed
analysis of network models. This will significantly increase
the transfer of existing network analysis methodologies into
practical applications for decision-making in planning, oper-
ation, and control of industrial and business systems. The
common approach is to model certain parts of an application
domain as an artificial network, analyse the network using
existing methods and tools, and based on the network analysis
results draw conclusions and take control decisions con-
cerning that application domain. Examples include machine
learning models [47], semantic representations of language
notations [48], [49], systems biology investigations, and pub-
lic sector organisations and policy networks [50].

V. PROPOSED METHODOLOGY

As mentioned, the method proposed in the current paper is a
network modelling approach that simulates pharma produc-
tion manufacturing process as a graph, typically consisting of
nodes and edges. Particularly, the manufacturing line process
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Product manufacturing components

Manufacturing Report

¢ Product number & description
 Batch number

* Order number

* Batch dimension

* Manufacturing time

* Recipe number & version & status

Components of the Batch
* Material ID

* Description

*  Quantity

Dispensing material report

Order details
* Material description & Quantity & Time

Material Identification
« Palletid

Material id & description & batch & quantity
Time

Weighing details
* Material id & weighed quantity & operator
*  Weigh scale

Room Cleaning control
* Cleaning reason & time & operator

Equipment Cleaning control
* Equipment id
* Material id & time & operator

Daily weighing machine calibration

Semestral weighing machine calibration

BIN and RESI List (pallet & material info)

FIGURE 1. Product manufacturing components of each recipe.

has been considered as a network, with its components being
related to product materials, recipe procedures and instruc-
tions, and machinery equipment, represented as nodes, and
their relationships as edge connections, accordingly. Apart
from regular pharma component nodes, ALCOA+ princi-
ples have been considered and included as nodes within
graph structure, as well. ALCOA+ node interconnections
with other regular nodes have been set, according to pre-
defined criteria, emanating from corresponding ALCOA+
principles [1]. E.g. for Attributable principle, the corre-
sponding ALCOA+ node has been related and hence be
connected to a regular node that represents pharma system
personnel.

As soon as the graph network structure has been com-
pletely set, representing the overall production line process
for a given recipe of a product, then the simulation runs,
and the network analysis, which has been based upon many
metrics, and mostly on betweenness centrality, has been
searching for ALCOA+ node connectivity status, for a given
batch recipe report. In case of a batch that experiences
ALCOA+ violation, it would result in reduced connectiv-
ity, compared to an ideal, fully complied batch. Hence, our
novel network analysis has been checked for any reduced
connectivity across ALCOA+ nodes, indicating the signif-
icant edges decrease, and providing ALCOA+ compliance
assessment accordingly. The proposed approach includes the
following methodology steps: i) Network design and con-
struction, ii) ALCOA+ node integration and iii) Network
connectivity validation — network analysis.

VOLUME 12, 2024

Related data in each stage

MHS Preliminary

Phase 1 operations

Phase 1

Loading and

Phase 2 fusion Materials

|

1.1 - Order Activation

Simple verification (OK)

Transfer to the

Phase 3 1.2 — Material
preparator identification
Pallets Ids information
Semi-finished
Phase 4

Instructions

*  Description

* Recipe parameters
*  Limits

* Theoretical data

Process Tracking (output)
* Beginning time

* Ending time

* Operator

* \Verification

preparation

l

Concentrate
Preparation

Phase 6

Production

Washing

A. NETWORK DESIGN AND CONSTRUCTION

In this study, as an initial step we start by defining the man-
ufacturing line process as a network, identifying its various
phases, and the components of each phase. Each component
is related to product materials, recipe procedures and instruc-
tions, and machinery equipment that can be represented as
a node, and the connections between them as edges respec-
tively. Normally in pharma industry, the automated control
and management system (Manufacturing Execution System -
MES and SCADA/PLC) of a pharma manufacturing product
line, are responsible as entitled, for the automated control and
management of the manufacturing line process and the cor-
responding execution of the recipes for each product. At the
end of each process for a given recipe of a product (order),
these systems provide a comprehensive batch recipe report.
Hence, each order recipe is uniquely associated with a spe-
cific batch report. The report includes essential details such as
product identification, unique identifiers, batch dimensions,
processing start and finish dates, recipe identification, version
information, approval date, as well as comprehensive infor-
mation regarding the materials/components utilized in the
production line. The materials/components are labelled with
their respective identifiers, full names, and characteristics,
including quantities measured in grams (gr) or kilograms
(kg), as described in Fig 1. These nodes and their relation-
ships (edges) have been defined by batch recipe report data,
and identify the distinct phases within the recipe. To achieve
this, we established the network structure for the product
manufacturing line process using a dataset comprising recipes
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Sections of the recipe

PROCESSING PHASE No.1 PRELIMINARY OPERATIONS MHS F1
SUBRECIPE No. 1  INSTRUCTION No.1  MHS ORDER ACTIVATION S1.1
Parameters in recipe Acceptance Limits Theoretical data

OPERATION CLOSURE MODE N.A. SIMPLE CONFIRMATION IN1.1-1
LABEL NUMBER NA. 10 IN1.1-2
Process Traceability

Process Data Instruction Start Instruction End Operator Verifier

MHS Order: 32104 MHS

Order Activation: OPERATION SUCCESSFULLY PERFORMED ~ 10/06/2019 19:08:17 10/06/2019 19:09:05 Checcucci Emanuele Automatic =~ OUT1.1-1
SUBRECIPE No.1  INSTRUCTION No. 2 MHS MATERIAL IDENTIFICATION S1.2
Parameters in recipe Acceptance Limits Theoretical data

OPERATION CLOSURE MODE ~ N.A. SIMPLE CONFIRMATION IN1.2-1
Process Traceability

Process Data Instruction Start Instruction End Operator Verifier

BIN Identification: L . -
oollot 1 ALoaTan 10/06/2019 21:05:08  Bertini Michele ~ Automatic OUT1.2-1
Material Identification:

Pallet 1: AL017435 - Material: 170940 Batch: 932201 - Quantity: 94.100 - Udm: KG

Pallet 2: ALO17615 - Material: 112165 Batch: 981240 - Quantity: 300.000 - Udm: KG 10/06/2019 21:06:06 Bertini Michele ~ Automatic 0OUT1.2-2
Pallet 3: AL016903 - Material: 112165 Batch: 982147 - Quantity: 450.000 - Udm: KG

Pallet 4: AL0O16853 - Material: 171435 Batch: 931607 - Quantity: 168.000 - Udm: GR

PD Station Release: L .

PD Station 1: PCDO3 10/06/2019 21:12:58 Bertini Michele ~ Automatic OUT1.2-3
PD Station 2: PCD04

PD Station 3: PCDO5

PD Station 4: PCD06
Closing Material Identification MHS 10/06/2019 19:09:11 10/06/2019 22:06:07 Bertini Michele ~ Automatic OUT1.2-4

Table of node interactions

F1 > S11
S1.1 > IN1.1-1
S1.1 > IN1.1-2
S1.1 > OUTL.1-1
S1.2 &> IN1.21
S1.2 - O0uUT1.2-1
S1.2 &> 0uUT1.2-2
S1.2 > 0UT1.2-3
S1.2 > O0UT1.2-4

C
Network representation of Phase 1
INLI-1  INLI2 INL.2-1
.—- 51_1 ST L L L L L S EEh ittt iednd 512 _—.
\ 21 0UT1.2-2
QUTL.1-1 e / \

OUT1.2-3 QuTl.2-4

FIGURE 2. The production line data workflow for constructing graph. A) The first step is to split the recipe into sections related to the flow and
dependencies between phases, sub-recipes, input data, and output messages. We use a part of the recipe that includes a phase (F1) with two
sub-recipes (S1.1) and (S1.2). Each of these recipes includes input data (IN) and output messages (OUT) of the manufacturing production
workflow. B) After separating the sections in the recipe, the sections are listed as nodes. Each node is connected hierarchically as the raw
material flows through the processing, with phase 1 connected to its sub-recipe 1 (S1.1) and sub-recipe 1 connected to the next sub-recipe
(S1.2), indicating the flow of material between them. Full list of networks of that format is shown in Supplementary materials. Then each
sub-recipe connects to the input and/or output message nodes (IN, OUT). Finally, the sub-network of phase 1 is shown in C as a graph.

obtained from a pharmaceutical company. Each phase is char-
acterized by a series of sub-recipes, each assigned a unique
two prefix number, and fully defined with process-related
data. Those data, as seen for Phase 1 (Supplementary Fig 2A),
have been originated from batch reports, and are normally
provided in pdf format. At this network construction stage,
a pdf parser has been adopted that converts the recipe report,
initially provided in PDF format, into a code formatted text
file with well-defined node connections, so as to input net-
work simulator and compose the graph structure. We further
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classify each node component within a sub-recipe as input
data and be represented as input nodes in the graph. All
parameter nodes are considered as inputs and hence, they are
connected to the respective sub-recipe nodes. E.g for example
in the batch report sample for phase 1 in Figure 2A the orig-
inal component node “LABEL NUMBER” has now been
considered as an input node for phase 1 (F1), assigned with
label IN1.1-2. Moreover, at the end of each sub-recipe, there
is an output message indicating the successful completion
of the operation. These output messages are represented as
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output nodes in the graph and depending on the parameters
they are referred to, they are connected to the corresponding
sub-recipe nodes. In Figure 2A can be seen 5 in total output
nodes. Hence, Figure 2 illustrates the production line data
workflow for constructing graph for phase I (F1) and its two
sub-recipes S1.1 and S1.2 respectively. Fig 2A shows the
batch report table for F1 phase of a given recipe, including
all input and output data that required for capturing the flow
and dependencies between phases and sub-recipes, in the data
collection workflow. Those dependencies are mapped into
network connections between stages of the manufacturing
production line and presented in the edge table of Fig 2B.
The final network construction (connections) of phase 1 can
be seen in Fig 2C.

The production line data workflow is divided into phases,
with each phase represented by a node labelled with the letter
“F” followed by a number (e.g., F1, F2). Within each phase,
there are sub-recipes identified by a two prefix numbers.
Each sub-recipe is denoted by the letter ““S” followed by its
phase number (1st prefix) and its unique sequence number
(e.g., S1.1, S1.2). The connections between the phases and
sub-recipes are established as follows: The first sub-recipe
of each phase is connected to the corresponding phase node,
and subsequent sub-recipes are connected to each other. For
example, F1 is connected to S1.1, and S1.1 is connected
to S1.2. If there are no additional sub-recipes within a phase,
the connection continues with the next phase, such as F2.
Hence, S1.2 is connected to the F2 node. The nature of these
connections can be either directed or undirected, depend-
ing on the flow of material in each stage. The parameters
associated with the sub-recipes are referred to as input data
and are represented as nodes connected to each sub-recipe
in the graph. For instance, a node labelled as IN1.1-1 indi-
cates that it belongs to sub-recipe S1.1 and is connected to
its representative S1.1 node. Similarly, all parameter nodes
are connected as inputs to the respective sub-recipe nodes.
At the end of each sub-recipe, there is an output message
indicating the successful completion of the operation. These
output messages are represented as output nodes in the graph
and connected to the corresponding sub-recipe nodes. For
example, S1.1 has two input nodes, IN1.1-1 and IN1.1-2,
and one output node, OUT1.1-1. Thus, all three nodes are
connected to S1.1. We add direction to the edge when one
stage is depending to another for production to indicate the
material flow (e.g. S1.1 towards S1.2).

B. ALCOA+ NODE INTEGRATION

To complete network design and construction, we need to
import ALCOA+ nodes within graph structure, as well.
At first, we need to identify the relationships of ALCOA+
principles with batch record data parameters, and then to
represent them with network connections accordingly. Hence,
we need to associate the ALCOA+ principles represented
by ALCOA+ nodes, with the corresponding data points into
the existing network model. ALCOA+ principles, may deal
with different format data types (e.g. single numerical values,
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binary values, time series numerical values, categorical data
string values, etc) emanating from corresponding multiple
different data sources. Normally, all such data types of a
pharma production process, have been included within an
electronic batch record (EBR). This ALCOA+ node associ-
ation procedure may require inference of metadata or data
annotations to the nodes or edges that represent the batch
record data points. This can involve automated checks, audits,
or quality control procedures at various stages of the man-
ufacturing process. For example, the Attributable principle
node, which is responsible for writing down the authorized
personnel for each activity, has been directly associated to the
datapoint that represents pharma system personnel. The Con-
sistent principle, on the other hand, which is responsible for
checking all operations with improper time sequence, is based
on inferred knowledge of time comparison of timestamp data
points. Should we have finished with relationship identifica-
tion, then we could proceed with including the appropriate
connections accordingly. As mentioned, batch record data
could be either input (sub-recipe parameters) or output data
(output messages), and hence the ALCOA+ node connec-
tions would be referred to either one of these generic node
types. Fig 3 illustrates integration of ALCOA+ principle into
the network model.

C. NETWORK CONNECTIVITY VALIDATION—-NETWORK
ANALYSIS

In the suggested approach, each ALCOA+ principle is
separately considered, meaning that we have devised dis-
tinct network topologies, each corresponding to a specific
ALCOA+ principle. These topologies were constructed
based on the methodology steps described above. In the
following, we present an overview for six (out of nine)
ALCOA+ principles, describing the connectivity pattern for
each one, in the ideal case that there is no rule violation
(Table 1). The remaining three ALCOA+ principles require
extra software module for representing their total graph struc-
ture, and hence they will be considered in a future version of
our research work.

TABLE 1. Connections between ALCOA+ nodes and graph nodes.

Attributable Principle Output nodes

Legible Principle Input and output nodes

Contemporaneous Principle Output nodes

Accurate Principle Output nodes

Complete Principle Input and output nodes

Consistent Principle Output nodes

This connectivity matrix corresponds to an ideal, fully con-
nected topology, named Topology 1, which will be used for
comparisons with non-ideal topologies, named Topology 2,
that represent ALCOA+ violation cases. In cases where a
particular principle is violated, the connectivity between the
ALCOA+ node and the corresponding node is severed. The
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FIGURE 3. lllustrative Explanation of ALCOA+ node integration (Complete Network) for Phase 1. In this illustrative example, we elucidate the process of
completing our network model to encapsulate Phase 1 activities with ALCOA+ node inclusion. A) Step 1: Phase Segmentation and Sub-Recipes As an
initial step, we segment the phases within the production recipe, resulting in seven discrete phases designated as F1, F2, F3, F4, F5, F6, and F8. Focusing
specifically on Phase 1 (F1), we identify two sub-recipes denoted as S1.1 and S1.2. Our approach involves establishing a sequential linkage between F1
and S1.1, followed by the subsequent connection of S1.1 with S1.2 (highlighted by the red line in the graphical representation). B) Step 2: Sub-Recipe
Elaboration As indicated in subsection 2.1, each sub-recipe graph structure is consisted of two generic node types, namely inputs and outputs,
characterized as ‘IN’ and ‘OUT’ nodes respectively. For instance, in S1.1, two inputs (IN1.1-1 and IN1.1-2) and one output (OUT1.1-1) are identified, and
corresponding connections are established as depicted by the red line. C) Step 3: Integration of ALCOA+ Nodes The inclusion of ALCOA+ nodes is a
pivotal augmentation within the network. The positioning and connections of ALCOA+ nodes are based upon the ALCOA+ principles. In a hypothetical
scenario, let’s consider an evaluation of completeness ALCOA+ principle. Should all nodes exhibit complete values, an ALCOA+ node is connected to both
input and output nodes. However, if a value is missing, no interaction occurs between the ALCOA+ node and the affected node. D) Step 4: Successive
phase connections ALCOA+ nodes are strategically connected to the succeeding phase, thus conveying the ALCOA+ assessment status across the
network, as denoted by the red line. This linkage enables the propagation of ALCOA+-related assessments across successive phases, and the potential to
provide segmented assessment on a per phase basis, enabling to locate those violations across production line, as well.
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same topology name type applies for each principle, and
hence the comparison will be held separately for each prin-
ciple between the two network type Topologies, validating
their connectivity mismatch. Such network modelling analy-
ses are normally based on investigation of centrality metric.
There are 4 centrality types used to analyze a manufacturing
process network, namely degree, betweenness, closeness and
eigenvector centralities. Among them we choose between-
ness centrality, as we want to focus and emphasize on specific
ALCOA+ nodes, and on their influence degree of the pro-
cess flow of pharma production line, being characterized by
edge connectivity across them. We can conclude by reporting
batch report samples of particular sub-recipes for a given
recipe, concerning ALCOA+ violation cases which lead to
a decreased edge connectivity, Topology 2 graph, to be com-
pared with ideal Topology 1 graph structure. Figure 6 depicts
an overview of the proposed methodology and workflow.
ALCOA+ node integration has also been included within
workflow for Attributable principle. In future work, we plan
to provide a complete and automated implementation for
ALCOA+-based regulatory assessment, by using a single
network structure, including all 9 ALCOA+ principles in a
single digitalized workflow.

1) ATTRIBUTABLE PRINCIPLE

The Attributable Principle mandates that task assignments
be endorsed solely by authorized individuals. We have iden-
tified in a batch recipe report sample (pdf file), that in
sub-recipe 6.6 the output node 8 is not attributed with an
operator, as well as in the sub-recipe 8.1, the output node 1.
Consequently, we removed the two edges, finalising topology
2 for ALCOA+ attributable principle, before comparing it
with topology 1 (full attributable) to record the metrics of the
network.

2) LEGIBLE PRINCIPLE

The Legible Principle underscores the necessity for data to
possess readability characteristics, including specific encod-
ings, formats, or linguistic attributes conforming to estab-
lished word standards. To assess adherence, a lexicon was
developed and employed for scrutinizing incoming pharma-
ceutical parameter values. We have checked at the batch
report file for such violation in text formatting and we didn’t
identify any word inconsistency. Therefore, topology 1 and
topology 2 are same.

3) CONTEMPORANEOUS PRINCIPLE

The Contemporaneous Principle dictates that data activities
must be accompanied by timestamp records signifying their
occurrence times. Notably, parameters lacking timestamp
values were identified, exemplified by instances where (a spe-
cific timestamp ““1970-01-01T00:00:00” was given instead)
from the database system. In the sample batch report file,
we identified 12 violations in output nodes of sub recipes
(OUT1.2-1, OUT1.2-2, OUT1.2-3, OUT4.15-1, OUT6.6-1,
OUT6.6-2, OUT6.6-3, OUT6.6-4, OUT6.6-5, OUT6.6-6,
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OUT6.6-7, OUTS.1-1). Therefore, Topology 2 contains
12 less edges than Topology 1.

4) ACCURATE PRINCIPLE

The Accurate Principle emphasizes the importance of data
values falling within predefined acceptable ranges. Devia-
tions from these ranges were categorized as violations and
delineated as outliers in the dataset. In the sample batch
recipe report, we didn’t record any violation and therefore,
topology 1 and topology 2 are same.

5) COMPLETE PRINCIPLE

The Complete Principle stipulates that obligatory data fields
in reports must be populated and not left empty. In practice,
this principle was verified by detecting null-valued parame-
ters. We have checked all non-null values in input and output
nodes and identified 8 nodes with null values (OUT6.6-1,
OUT6.6-2, OUT6.6-3, OUT6.6-4, OUT6.6-5, OUT6.6-6,
OUT6.6-8, OUTS8.1-1). We excluded these 8 edges with
ALCOA+ node in the Topology 2.

6) CONSISTENT PRINCIPLE

The Consistent Principle, mandates that the starting dates
of batch report data items must precede their respective
ending dates. To ascertain consistency, timestamps were com-
pared chronologically. In this step, we have checked batch
report for each finished timestamp of each sub-recipe out-
put, comparing it, with the initiated timestamp of the next
sub-recipe. We identified, the last output (OUT4.25-1) of sub-
recipe S4.25 initiated at 12/06/2019 10:12 end finished at
12/06/2019 10:12 whereas the next output of sub-recipe S5.1
(OUTS5.1-1) initiated at 12/06/2019 00:33 until 12/06/2019
00:33 instead of 13/06/2019 00:33. Similarly, there is not
consistency on time difference between OUTS5.5-1 (end:
12/06/2019 00:36) and OUT6.1-1 (start: 12/06/2019 10:18).
In addition, the last output of sub-recipe S6.9-1 ended at
13/06/2019 03:15 whereas output of sub-recipe S8.1 started
without timestamp. Consequently, we removed 6 edges con-
nected with the corresponding ALCOA+ of consistency.

VI. RESULTS

A. NETWORK VISUALIZATION

In this section, following the steps of the proposed method,
we simulate in the form of a network, the production pro-
cess of a pharmaceutical product based on a recipe with
number 932132. In this recipe, 7 phases were recorded,
each of them contains a number of sub-recipes which in
total are 58. For instance, phase 1 contains two sub-recipes,
phase 2 contains 7, phase 3 contains 7, phase 4 contains 25,
phase 5 contains 5, phase 6 contains 11, and phase 8 con-
tains 1 sub-recipe. Each sub-recipe contains its own set of
input (IN) and output data (OUT), represented as nodes
accordingly. Six networks were constructed, each represent-
ing an ALCOA+ principle that needs to be assessed. The
nodes of the ALCOA+ for each network are 7, the same
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FIGURE 4. Network generation and identification of ALCOA+ centrality. Table 2 represents the definitions of each topological characteristics
and what they physically mean.

as the number of phase nodes. The 7th ALCOA+ is con- recipe with number 932132, we have calculated the number
nected to a pseudo-node representing the end of production of edges (647), the number of nodes (339), diameter (28),
node (FINAL). The six network topologies are given in density (0.01), average path length (8.09), modularity (0.73),
the supplementary material as an edge list. We visually average eccentricity (18.16), average eigenvector centrality
represent in 3D format the topologies for each ALCOA+ (0.04), average number of neighbours (0.96), centralization
principle. Topology 2 is compared with Topology 1 of each betweenness (0.21), centralization degree (0.16), motifs-3
individual ALCOA+ principle and connectivity statistics (11,623.00) and motifs-4 (31,9732.00). In network analysis,

are measured using the Network Analysis Profiler (NAP) “motifs” refer to specific subgraph patterns or configurations
[51], a comprehensive web tool to automate network pro- that occur with notable frequency within a larger network.
filing and intra/inter-network topology comparison. In total, Motifs are typically denoted by ‘“motif-N,” where N rep-
12 networks are loaded in as a two-column binary list of resents the number of nodes or vertices involved in the
connections as a tab delimited text file and in a directed subgraph. So, “motif-3”’ and “motif-4” specifically refer to
topological feature. First column in the text file represents subgraph patterns with three and four nodes representing a
the source node and second column the target node. Then, triangular relationship where nodes are all connected to each
we can automatically generate an inter-network topological other, as a square pattern where four nodes are interconnected

analysis in order to directly compare pairwise networks for in a specific way, respectively. All these graph network fea-
each ALCOA+- principle. Network analysis for each network tures will be used for composing a thorough network analysis
is presented in Fig 4 giving values for each statistic. For and estimating betweenness centrality metric, so as to finally
the general network that presents the production process of compare the two Topologies, and come up with our finite
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Network metrics Comparison for two topologies presenting one of the 6 ALCOA principles

Attributable Principle Legible Principle Cont;rrr;r;]);rpalr;eous
Topology 1 Topology 2 Topology 1 Topology 2 Topology 1 Topology 2
ALCOA_F1 2.616 2.600 3.597 3.597 2616 1625
ALCOA_F2 7.056 7.008 12.936 12.936 7056 6132
ALCOA_F3  10.080 10.000 21.672 21.672 10080 9250
ALCOA_F4  10.640 10.450 25.312 25.312 10640 10010
ALCOA_F5 8.667 8.453 20.817 20.817 8667 8137
ALCOA_F6 1.104 822 2.640 2.640 1104 762
Topology 2 ALCOAF8 142 0 337 337 142 0
: 98% 100% 89%
Accurate Principle Complete Principle Consistent Principle
Topology 1 Topology 2 Topology 1  Topology 2 Topology 1 Topology 2
ALCOA_F1 3.597 3.597 3.597 3.597 2.616 2.600
ALCOA_F2 12.936 12.936 12.936 12.936 7.056 7.008
ALCOA _F3 21.672 21,672 21,672 21.672 10.080 10.000
ALCOA_F4 25.312 25.312 25.312 256.312 10.640 10.230
ALCOA_F5 20.817 20.817 20.817 20.817 8.667 8.058
ALCOA_F6 2.640 2.640 2.640 2.584 1.104 786
ALCOA_F8 337 337 337 329 142 0
100% 99% 96%

FIGURE 5. ALCOA+ assessment through network analysis. On Left two topologies are compared regarding their connectivity. On the right,
rewiring of ALCOA+ edge connectivity returns betweenness centrality measures for each ALCOA+ nodes in both Topologies. The fold change
difference for all principles shows that Contemporaneous ALCOA+ principle is violated by 11%.

goal, the ALCOA+ assessment. Histogram of betweenness
centrality in Fig 4 shows that the majority of nodes (250) have
betweenness centrality less than 700 indicating that very few
are bottlenecks in the network. Three nodes, the ALCOA-+
F3-F5 ranked as nodes with highest betweenness centrality
with more than 20,800 pathways crossing these nodes.

B. DATA INTEGRITY ASSESMENT WITH NETWORK
ANALYSIS

We can establish the general topology of the network by
connecting different phases with their sub-phases/sub-recipes
in an order that represents the production flow as described in
the recipe report (Top left). An overview of the first phase is
shown in the bottom-left group, which includes 2 sub-recipes
with a direction from S1.1 to S1.2. These sub-recipes consist
of a set of nodes serving as input (IN) and output (OUT)
nodes, which will be linked to an ALCOA+ node correspond-
ing to a specific principle. We have analysed the network
and recorded fundamental topological measurements pertain-
ing to network characteristics such as Number of Edges,
Number of Nodes, Diameter, Radius, Density, Average Path
Length, Clustering Coefficient, Modularity, Number of Self-
loops, Average Eccentricity, Average Eigenvector Centrality,
Average Number of Neighbours, Centralization Between-
ness, Centralization Degree, Motifs-3, Motifs-4 (Top right).
Apart from centrality metric estimation, many of these
graph network features can be used for estimating other
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metrics as well, that may lead to important conclusions
regarding the behavioural patterns of the simulation sys-
tem they represent. For example, diameter and eccentricity
are critical parameters for the magnitude of graph network
model, and their numerical behaviour can be used for inves-
tigating pharma manufacturing system performance as it
scales up.

Two 3D animated network Topologies are compared by
performing node-level analysis to assess ALCOA+ compli-
ance. The clusters of the Topologies showing in Figure 5,
represent production line phases. In each network Topology,
calculation of relevant metrics such as betweenness central-
ity for each node has been performed. Our focus is on the
measurements of the ALCOA+ nodes. The average number
of betweenness centrality in ALCOA+ nodes of network
with Topology 1, which is the ideal case, is compared to the
Topology 2 and the fold change returns the percentage of
ALCOA+ compliance for each principle. Those percentages
can be seen at the end of each ALCOA+ principle two-
column list, in the table of Fig 5. In our example for the recipe
with number 932132, only contemporaneous principle is less
than 90% indicating that lack of timestamps in data has a
result of low connectivity between ALCOA+ nodes and input
nodes, therefore ALCOA+ node decreased centrality and
consequently the principle itself, has been violated by 11%,
or alternatively, its compliance percentage is 89%. Legible
and Accurate principles are 100% complied, as the topologies
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FIGURE 6. Workflow overview.

of the two network Topologies compared are the same.
Finally, Attributable, Consistent and Complete principles,
tend to ideal levels as well, with 98%, 96% and 99% percent-
ages respectively. The remaining three ALCOA+- principles
assessment, as mentioned will be included in a future version
of our work. Moreover, as it can be seen in Fig 5, for a given
principle, each ALCOA+ node has a different betweenness
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centrality at the end of each phase of production line and
plays a crucial role in the process flow information of pharma
production line. The position of ALCOA+ nodes at the end
of each phase enables not only the process flow information
propagation, but also the ALCOA+- violation assessments on
a per phase basis. Hence via this method is feasible to locate
the corresponding violations on a per phase basis across
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TABLE 2. Centrality measures definitions. Understanding these centrality measures helps in characterizing different aspects of a network’s structure,
connectivity, and organization. The choice of centrality measure depends on the specific characteristics and goals of the network analysis.

All metrics are calculated using the NAP web tool (See Proposed Methodology).

Num. of Edges

Indicates the overall level of connectivity in the network

Num. of Nodes

Represents the size of the network in terms of individual elements.

Diameter Provides a measure of the "longest path" or the maximum communication distance in the network.
Radius Represents the "shortest maximum distance" from any node to all other nodes in the network.
Density Describes how connected the network is relative to its maximum potential connectivity.

Avg. Path Length

Represents the average communication distance in the network.

Clustering Coeff.

Indicates the presence of tightly connected groups or communities within the network.

Modularity

Quantifies the network's structure in terms of distinct, internally connected groups.

Num. of Self-loops

Indicates the presence of self-connections within the network.

Eccentricity

Represents the average distance from a node to all other nodes.

Avg. Eigenvector Centrality

Measures the influence of nodes based on the influence of their neighbors.

Avg. Num. of Neighbours

Describes the average level of local connectivity for nodes.

Centralization Betweenness

Indicates the concentration of control or communication pathways in the network.

Centralization Degree

Indicates the concentration of connections or links in the network.

Motifs-3, Motifs-4

Captures recurring substructures or motifs in the network.

production line, thus providing a more thorough monitoring
view of production line failures.

VII. CONCLUSION

In this paper we presented a novel approach for assessing
pharma regulatory compliance by adopting a graph net-
work modelling of a pharmaceutical line process associated
with a network analysis method which are analysed using
a graph theory that would be applied to electronic batch
as well as to traditional paper-based records. This approach
simplifies the compliance procedure and thus its required
processing burden, as it benefits graph structure, via check-
ing only for network connectivity changes along ALCOA+
nodes, instead of managing vast amounts of word semantics
and complex relationships that other conventional modelling
approaches require, especially when dealing with scalable
and complex pharma manufacturing production lines, with
multiple batches and recipe combinations. In future work,
we plan to provide a complete and automated implementation
for ALCOA+-based regulatory assessment, by using a single
network structure. We are also intent to validate the proposed
approach on various pharma industry conditions, and in par-
ticular in cases where the complexity of a production line is
scaling up.
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