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ABSTRACT In multi-core heterogeneous systems, communication on the data bus/NoC (Network-on-
Chip) is complex. To ensure low-latency transmission of high-level messages, such as control messages,
configuration instructions, and status information, while maintaining the efficiency of data bus/NoC
transmission, we propose the concept of a message bus. In this paper, we present a lightweight and
high-throughput asynchronous message bus capable of receiving and forwarding messages from different
synchronous domains. A Quasi-Synchronous communication mechanism is proposed, where flits from the
transmitter can be transmitted at fixed intervals without waiting for the ready signal from the receiver.
This resolves the additional latency introduced by asynchronous handshaking, particularly in long-wire
transmissions. Instead of flit-level handshaking, we introduce a packet-level flow control mechanism to
avoid data overflow. Furthermore, we propose a novel Asynchronous Blocking Retransmission Buffer
(ABRB) to address the communication congestion where subsequent packets are blocked by preceding
ones. The packets can be sequentially written into the ABRB, enabling partial parallel transmission. For
various benchmarks, the proposed asynchronous message bus achieves significant performance and energy
consumption improvements compared to the synchronous baseline, at the cost of some additional area
overhead and more design effort.

INDEX TERMS Asynchronous message bus, quasi-synchronous communication, asynchronous blocking
retransmission buffer, globally asynchronous locally synchronous.

I. INTRODUCTION
In a multi-core heterogeneous system, CPUs, and acceler-
ators inevitably need to exchange a large amount of data
with the memory. The communication between CPUs and
accelerators is complex, and currently, it is accomplished
through data buses or NoCs. Complex data transfers can
lead to increased congestion on the data bus or NoC [1].
In complex SoC systems, there is also a need to transmit
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high-level protocol messages between CPUs and accelerators
such as control signals, status information, and configuration
instructions. These messages have low latency requirements
and high transmission priority. Transmitting these high-level
protocol messages directly on the data bus/NoC will reduce
system performance. To address this issue, the concept of a
message bus is proposed in this paper. The message bus is
a separate lightweight bus compared to the data bus/NoC,
used for transmitting specific high-level messages. It can
provide a more flexible and low latency communication
mechanism.
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As the area of the chip increases, the issues of global
clock trees have become more prominent, resulting in
additional system power consumption and timing over-
head [2]. Different processors, accelerators, memories, and
other modules operating at their optimal frequencies can
achieve higher system efficiency. Therefore, it appears
that GALS (Globally-Asynchronous Locally-Synchronous)
systems are a more suitable solution [3], [4]. Asynchronous
buses/NoCs play a crucial role in GALS systems by enabling
data interaction between different synchronous domains.
Compared to synchronous circuits, asynchronous circuits
have inherent advantages in terms of low power consumption
due to the elimination of a global clock and their event-
driven characteristic [2]. They can easily connect blocks
operating at different voltages and frequencies ignoring the
clock alignment at the interface. Consequently, in recent
years, there has been an increasing interest in asynchronous
NoC (Network-on-Chip) research [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. Numerous asynchronous NoC architectures have been
proposed, demonstrating significant reductions in area and
power consumption compared to synchronous NoCs while
maintaining comparable performance [10], [11].
The aforementioned NoCs typically employ traditional

asynchronous communication protocols for data commu-
nication, including Bundled Data (BD) and Quasi Delay
Insensitive (QDI). Some asynchronous NoCs utilize the BD
transmission protocol [5], [6], [7], [8], [9], [14], where
asynchronous pipelines such as Click, Mousetrap, and Latch
Controller are used as control paths to generate local clock
signals. To ensure functional correctness, additional timing
constraints must be met between handshake signals and data.
On the other hand, other asynchronous NoCs [15], [16],
[17], [18], [19], [20] employ QDI transmission protocols
that do not require additional timing constraints to maintain
the relationship between clocks and data. Special encoding
binds data and request signals together. Data validity is
detected based on changes in the encoded signal, such as dual-
rail encoding, 1-of-4 encoding, 2-of-7 encoding, and so on.
This approach exhibits excellent robustness, but it introduces
additional area and power overhead due to reduced encoding
efficiency.

In traditional asynchronous transmission, the handshake
signals are used to ensure the completion of data trans-
mission, which increases the communication latency of
the data. Especially for long-wire communication, each
transmission incurs double the wire delay or even worse,
leading to a significant decrease in system throughput. While
in synchronous transmission, ignoring global clock overhead,
the clock period just needs to ensure that the data can be
received by the receiver. Inspired by this, an innovative
Quasi-Synchronous communication mechanism is proposed
in this paper to eliminate the handshake time of traditional
asynchronous transmission and improve throughput.

In bus-based architectures, there are multiple initia-
tors accessing the same target, leading to communication

congestion. Many of the aforementioned asynchronous NoCs
or buses lack effective congestion handling mechanisms,
resulting in decreased system communication efficiency.
Some NoCs [5], [6], [24], [25], [26] employ virtual channel
techniques to alleviate congestion, but this approach incurs
significant area and power overheads. To alleviate the issue of
communication congestion, a novel Asynchronous Blocking
Retransmission Buffer is proposed in this paper.

A. CONTRIBUTIONS
In this paper, we propose a lightweight message bus for trans-
mitting high-level messages in a multi-core heterogeneous
system. The message bus is designed using asynchronous
techniques, and data transmission is performed in a serial-
ized manner using 2-of-7 non-return-to-zero encoding. The
message bus utilizes a Quasi-Synchronous communication
protocol for data transmission, along with the Asynchronous
Blocking Retransmission Buffer and a novel flow control
mechanism, resulting in significantly improved throughput.
In summary, the contributions of this paper are as follows:

1. We have implemented an asynchronous lightweight
message bus with high throughput using traditional EDA
tools in a 55nm process. The throughput of the Routing-Node
reaches 6.27 Gbps when no blocking occurs, and in the
random data traffic model, it achieves a throughput of
4.69 Gbps. The proposed asynchronous message bus exhibits
an 85.3% system throughput improvement compared to the
synchronous baseline version, with an additional 38% area
overhead and the cost of more design effort.

2. Data transmission is performed in a serialized manner to
reduce area overhead.We employ 2-of-7 Non-Return-to-Zero
encoding, where a single link with seven wires transmits 4-bit
data. Only 2 bits change during each data transmission on the
link, leading to reduced power consumption.

3. To reduce the transmission cycle overhead caused
by asynchronous handshake, a novel Quasi-Synchronous
communication mechanism is proposed. It allows data to
be transmitted at a pre-set time, eliminating the feedback
of acknowledgment signals, similar to synchronous trans-
mission, reducing the transmission time per flit, while
still maintaining asynchronous event-driven characteristics.
Instead of a flit-level handshake signal, this paper proposed a
novel packet-level flow control mechanism to prevent packet
overflow. The control information is transmitted through the
data channel using a special encoding to complete the back
pressure of data.

4. To address the issue of throughput decline caused by
communication congestion when multiple initiators access
the same target, we propose an Asynchronous Blocking
Retransmission Buffer (ABRB) that can receive multiple
packets and concurrently transfer them to their respective
destinations. The ABRB consists of the proposed novel
asynchronous FIFOs and asynchronous control logic. The
asynchronous control logic significantly reduces the occur-
rence of back pressure, resulting in high throughput.
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II. BACKGROUND
A. ASYNCHRONOUS DATA COMMUNICATIONS
Within a synchronous circuit, synchronization is global
and implicit through the use of a global clock signal.
Conversely, synchronization is accomplished explicitly,
through handshake signaling protocols in an asynchronous
circuit. Depending on the timing requirements, asynchronous
circuits can be classified into ‘‘Bounded-Data(BD)’’ and
‘‘Delay-Insensitive(DI)/Quasi-Delay-Insensitive(QDI)’’ pro-
tocols. In BD protocol, the ‘‘req’’ signal is separated from
the data itself. It is related to a local clock signal and
the timing assumptions are necessary. On the other hand,
in the DI/QDI protocol, data and ‘‘req’’ are fully correlated
[22], [23], so no timing assumptions are required. Another
acknowledgment (ack) signal is used for flow control and
back pressure. It exhibits strong robustness to process, volt-
age, and temperature (PVT) variations. There are many QDI
data encodings including one-hot codes (dual-rail, 1-of-4,
1-of-5), 2-of-7, 3-of-6 and so on [21].

FIGURE 1. The asynchronous communication protocol - Boundled-Data.
(a) 4-phase handshake protocol; (b) 2-phase handshake protocol.

FIGURE 2. The asynchronous communication protocol - Delay-Insensitive.
(a) 4-phase handshake protocol; (b) 2-phase handshake protocol.

Among various asynchronous data communication proto-
cols, the most common handshake protocols are four-phase
and two-phase handshake protocols, as illustrated in the
FIG.1 and FIG.2 respectively. The four-phase handshake
offers a simpler circuit structure, while the two-phase
handshake provides higher communication efficiency.

FIG.1a illustrates the 4-phase BD transmission protocol.
The transmitter detects the ready state of the receiver and
then transmits the new data and ‘‘req’’ signal to the receiver.
The receiver detects the ‘‘req’’ signal, raises the ‘‘ack’’ signal,
and receives the current data. Upon detecting a level change
of the ‘‘ack’’ signal, the transmitter lowers the ‘‘req’’ signal.
If the receiver detects that the current data is invalid, it lowers
the ‘‘ack’’ signal and returns to the ready state. Once the

transmitter detects that the receiver is ready again, it can
initiate the next data transmission.

FIG.1b depicts the 2-phase BD transmission protocol.
It differs from the 4-phase BD protocol in that the changes in
‘‘req’’ and ‘‘ack’’ signals are represented by edges rather than
levels. The two-phase transmission protocol does not require
a spacer phase and can achieve higher performance, but it
involves more complex circuit implementation compared to
the 4-phase protocol.

FIG.2a represents the 4-phase DI transmission protocol.
The data is transmitted using dual-rail encoding, where
two lines represent 1-bit data. ‘‘00’’ indicates no data
transmission, ‘‘01’’ indicates data ‘0’, ‘‘10’’ represents data
‘1’ and ‘‘11’’ denotes invalid data. Unlike 4-phase BD
protocol, the DI protocol encodes the ‘‘req’’ signal in the
data. Upon detecting a change in the dual-rail data, the
receiver provides feedback with the ‘‘ack’’ signal following
the four-phase handshaking protocol.

FIG.2b showcases the 2-phase DI protocol. The data
transmission does not require a spacer phase, resulting in
higher performance. The specific transmission process of 2-
of-7 encoding will be further presented below.

B. DI PROTOCOL: 2-OF-7 ENCODING
The 2-of-7 encoding is a classical encoding technique in
asynchronous circuit design, representing 4-bit data with
7 wires. During data transmission, only 2 bits change at a
time, resulting in reduced power consumption. Due to its ease
of detection and low power characteristics, 2-of-7 encoding is
commonly utilized in the design of asynchronous routers and
circuits [3], [21], [22], [23]. The 2-of-7 encoding has 21 valid
symbols, with 16 symbols used for encoding 4-bit data. The
remaining 5 symbols are used for various purposes. Usually,
one symbol is dedicated to representing EOP (End of Packet).
Another symbol, referred to as ‘‘FULL’’ in this paper, is used
to provide a new flow control mechanism.

FIGURE 3. The circuit implementation of 2-of-7 DI transimission protocol.

The circuit of the 2-of-7 DI transmission protocol is
shown in FIG.3. At the TX (transmitter) side, the data to
be transmitted is encoded into a 2-of-7 Return-to-Zero (RZ)
code, denoted as rz_code_i. This rz_code_i is then XORed
with code_tx to generate the NRZ code called nrz_code.
It represents the encoded data without zero crossings. The
NRZ code nrz_code is transmitted to the RX (receiver)
side, where it is XORed with code_rx to obtain the RZ
code rz_code_o. The RX receives the rz_code_o and uses a
completion detection (CD) circuit to generate an ack signal,
indicating that the current data has been received by the RX
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successfully. The ack signal updates code_rx to nrz_code, and
this updated value is fed back to the TX side to update code_tx
to nrz_code. The process is repeated for the next data to be
transmitted.

III. OVERVIEW OF THE ARCHITECTURE
The proposed asynchronous message bus that supports
Quasi-Synchronous communication is now introduced,
including its novel flow control mechanism without flit-level
handshake, a novel Asynchronous Blocking Retransmission
Buffer that enables partial parallel transmission of packets,
before presenting the detailed designs.

A. QUASI-SYNCHRONOUS COMMUNICATION
Chip-wide synchronous operation is becoming prohibitively
difficult to achieve in large, high performance chip [2].
Possible solutions are in direction of asynchronous commu-
nication, since they rely on the clockless handshaking for
inter-domain communication. Asynchronous communication
comes with a number of potential advantages: self-timed,
data-driven control, and no dynamic power consumption
when idle. Traditional asynchronous communication uses the
handshake protocol to control communication. It will cause a
large overhead of cycle time due to the long-wire latency of
the handshake signals.

1) QUASI-SYNCHRONOUS COMMUNICATION PROTOCOL
FIG.4 compares the asynchronous four-phase handshake
communication protocol with the proposedQuasi-Synchronous
communication protocol under conditions of long wire
delay. In the case of the asynchronous four-phase handshake
protocol, the cycle of the flit transmission includes not only
the time required for the four handshake phases but also four
times the wire delay, resulting in a lower communication
throughput. We propose a Quasi-Synchronous communica-
tion that effectively improves the throughput of asynchronous
communication. It allows data to be transmitted at a pre-set
time, eliminating the feedback of acknowledgment signals,
similar to synchronous transmission, reducing the trans-
mission time per flit, while still maintaining asynchronous

FIGURE 4. The timing diagram of asynchronous four-phase handshake
communication and the proposed Quasi-Synchronous communication.

event-driven characteristics. The specific implementation is
described as follows.

Upon the arrival of valid data, the transmitter sends the
newly arrived data at a fixed interval without waiting for
the receiver to be ready. However, it is assumed that the
receiver can consistently receive new data at this frequency.
This fixed delay is implemented through an internal circuit
in the TX. On the other hand, for each newly detected data,
the receiver generates a clock pulse that meets the timing
requirements of the current data. The receiver does not need
to interact directly with the transmitter but passively waits
for new data to arrive. In the absence of new data, both the
transmitter and receiver remain in an IDLE state, performing
no operations, resulting in no energy consumption. This
novel communication protocol ensures the event-driven
characteristics of asynchronous communication maintaining
the essence of low power consumption, and guarantees
the throughput of data communication when transmitting
continuous new data.

2) THE FLOW CONTROL OF THE QUASI-SYNCHRONOUS
COMMUNICATION
A back pressure mechanism is employed to control the
communication and maintain the communication correctness
and data throughput. In conventional synchronous buses
like ARM’s AMBA bus [28], back pressure is achieved
through a ‘‘READY’’ signal, and this signal needs to
be synchronized in clock domain crossing communica-
tion. While in asynchronous communication, ‘‘req’’ and
‘‘ack’’ are used as handshake signals. As mentioned above,
to reduce the transmission latency of flits, we proposed
a quasi-synchronous communication that eliminates the
feedback of acknowledgment signals. In the absence of
acknowledgment signals, we proposed a new packet-level
flow control mechanism to ensure no packet overflow. The
overflow signal is transmitted through the data channel using
a special encoding.

FIGURE 5. The novel flow control mechanism in the Quasi-Synchronous
communication.
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The specific process is depicted in the FIG.5. When a
packet arrives at the RX and encounters blocking, the RX
signals the TX on the same side with an RX-full signal,
denoting that the RX is unable to accept a new packet (still
able to receive the current packet). Upon receiving the RX-
full, the TX on the same side encodes it as a full information
flit, inserting it into the outgoing packet and transmitting
it to the RX on the opposite side via the data channel.
Upon reception, the full information flit is decoded into the
TX-PAUSE signal by the RX on the opposite side, instructing
the TX on the opposite side to suspend the transmission
of the next packet until the current packet is completely
transmitted. This flow control process is faster than a single
packet transmission time, so no data packet loss will occur.

B. ASYNCHRONOUS BLOCKING RETRANSMISSION
BUFFER
In the traditional crossbar structure, as shown in FIG.6,
each input port has access to an output port. The system
achieves maximum throughput when there is no blocking.
However, when two or more input ports request the same
output port, only one input port among them can establish
communication with the output port. The other input ports
have to pause until the destination output port is released,
even if the subsequent packets request different output ports.
Additionally, when multiple ports request the same output
port, the other output ports remain idle. As a result, the system
throughput deteriorates. As shown in FIG.6, the packet from
the S direction to the N direction is being blocked for 5 packet
cycles, even though there is no many contention from other
sources in the N direction.

FIGURE 6. Blocking analysis of the traditional crossbar.

We introduce an Asynchronous Blocking Retransmission
Buffer (ABRB) to avoid communication pauses caused by
packet blocking. The structure of the ABRB is depicted in
FIG.7. For a routing node, simultaneously blocking packets
heading in three different directions and then restoring their
transmission simultaneously yields maximum benefits for the
ABRB. Therefore, there are three FIFOs in the ABRB where

the FIFOs are implemented using redesigned asynchronous
FIFOs and have a depth of one packet, allowing a maximum
of three packets to be stored. The specific operation is
described as follows:

Firstly, packets are written into different FIFOs in the
ABRB. The first packet is initially written into FIFO1 and
requests the destination output port. If the output port is
currently transmitting packets from other input ports, the first
packet will be blocked in FIFO1. The subsequent packet
will be written into FIFO2. If the subsequent packet has the
same destination address as the first packet, it must wait for
FIFO1 to complete transmission before requesting access to
the output port. Conversely, if it has a different destination
address, it can independently request access to the output
port corresponding to its destination address. At this point,
no blocking has occurred for the current input port. As shown
in FIG.7, the 12 packets from four directions are transmitted
within four cycles. The packet from the S direction to the N
direction is successfully transmitted in the third cycle without
being blocked by previous packets.

Traditional asynchronous FIFOs use synchronized read
and write pointers to generate empty and full signals, with
the full signal serving as the back pressure signal. In an
asynchronous system, where the write clock and read clock
are asynchronous events, it is not possible to synchronize the
read and write pointers. The read clock can occur at any time,
and the signal length of the full signal cannot be guaranteed.

A new back pressure mechanism is proposed to ensure
that the FIFO does not overflow while maintaining high
throughput in the ABRB. Data from TX can continue to be
transmitted until only one FIFO remains empty in the ABRB.
In other words, when the first flit of the packet from TX is
written into the last empty FIFO, the transmission pauses after
the current packet is completed and resumes only after all the
packets in the ABRB have been read. This approach is taken
because when two input ports are blocked, the duration of the
blockage is one packet transmission time. The blocked packet
has completed transmission before the second packet is fully
written into FIFO2, so when the third packet is written,
there are two empty FIFOs and the input port will not be
blocked.

The ABRB effectively improves the system throughput.
Input ports no longer need to enter the flow control mech-
anism every time a packet is blocked. Instead, transmission
is paused after receiving up to three blocking packets.
In most cases, data transmission continues uninterrupted, and
blocking only occurs in rare situations.

IV. IMPLEMENTATION
The asynchronous message bus includes the Sync-Async-
Host andRouting-Node. The Sync-Async-Host is responsible
for receiving and sending packets to the synchronous domain,
while the Routing-Node transmits flits to other IP domains.
By changing the number of routing nodes, the asynchronous
message bus can connect multiple domains. N routing nodes
can connect to a maximum of 2(N + 1) domains.
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FIGURE 7. Blocking analysis of the proposed new crossbar architecture with ABRB.

FIGURE 8. The format of the packet and the serial transmission.

A. THE FORMAT OF PACKETS
Data from a synchronous domain is transmitted in packets
with a length of 20 bits. The detailed format of a data packet is
shown in FIG.8. For lightweight, serial transmission is used in
communication between different synchronous domains, and
the 2-of-7 encoding is used to lower the power consumption.
Therefore, a 20-bit packet will be unpacked to 5 4-bit flits,
which, after encoding, will be transmitted within a 7-bit
transmission channel.

B. THE SYNC-ASYNC-HOST
The Sync-Async-Host is an interface between the syn-
chronous domain and the asynchronous domain. It con-
sists of two parts, Host-TX and Host-RX. Host-TX can
receive packets from synchronous domains and send flits
to asynchronous domains and Host-RX receive flits from
asynchronous domains and send packets to synchronous
domains. This part is not the focus of this article, so it will
not be described in more detail.

C. THE ROUTING-NODE
The Routing-Node receives flits and sends them to other
Sync-Async-Hosts of synchronous domains. Each routing
node has four directions, allowing it to be connected to
form any topology, providing good scalability. It consists of
Routing-Node-RX, Routing-Node-TX. The Routing-Node-

RX module includes routing logic to determine the destina-
tion of the packet, anAsynchronous BlockingRetransmission
Buffer to alleviate congestion, and a RX-CLK generator
to convert the received Non-Return-to-Zero(NRZ) data into
Return-to-Zero(RZ) data, and picks out the control data
for realizing flow control. The Routing-Node-TX module
receives input data from various directions and grants one
of them. It detects the arrival of RZ data, generates a local
clock to drive NRZ data transmission, and inserts control data
into the data channel according to the requirements of flow
control. The details of the above modules will be presented
in the next two sections.

D. ROUTING-NODE-RX
The Routing-Node-RX mainly consists of the RX-CLK
generator, the routing logic, the ABRB, and other logic. The
RX-CLK generator first detects the arrival of a new flit and
generates a clock pulse signal RX-CLK. The routing logic
then examines the address information contained in the head
of the flit and stores the address information in an address
register. Simultaneously, the current flit is written to the
ABRB corresponding to the current address register. The
Routing-Node-RX continues this process until no new flits
arrive. The routing logic is not the primary focus of this paper
and will not be extensively discussed below.

1) THE GENERATION OF RX-CLK
As shown in FIG.9 and FIG.10, upon the arrival of new
data, it is XORed with the value in the register. Due to the
nature of the 2-of-7 encoding, if the XOR result is non-
zero, it indicates that the current data is new data. After a
stable delay(D in FIG.9), which should satisfy the setup and
hold time requirements of the register, the clock pulse signal
RX-CLK is generated. If the XOR result corresponds to the
RX-FULL control information, it is decoded into the TX-
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FIGURE 9. The circuit structure of the RX-CLK generator in
Routing-Node-RX.

FIGURE 10. The post-layout simulation waveform of the RX-CLK
generator in Routing-Node-RX.

PAUSE signal. Subsequently, the current address is stored
in the address register using the following RX-CLK signal,
and the current data is written into the ABRB. When there
is no new data arrival, the clock generation module remains
inactive, consuming no power.

2) ASYNCHRONOUS BLOCKING RETRANSMISSION BUFFER
To further increase the system’s throughput, this paper
proposes the asynchronous blocking retransmission buffer,
as shown in the FIG.11. It consists of a redesigned
asynchronous FIFO and control logic. The asynchronous
FIFO is used to store data packets and separates two different
clock domains, enabling data transfer between them. The
control logic consists of a flow control module, a FSM, and
a data channel arbiter. The control logic is responsible for
controlling the read and write order of data packets in the
FIFO, and implementing the back pressure mechanism.

3) A NOVEL ASYNCHRONOUS FIFO
We propose a novel asynchronous event-driven FIFO struc-
ture in our asynchronous message bus, as illustrated in
FIG.12. The asynchronous FIFO includes a write pointer
update module in the RX-CLK clock domain, a read pointer
update module in the TX-CLK clock domain, and FIFO
empty/full control logic. For each data in the FIFO, there are
two registers indicating whether it has been read or written,
thus representing the empty/full status of that slice. The
overall empty/full status of the FIFO is determined accord-
ingly. This approach avoids the need for synchronization
operations using clocks from different domains in traditional
asynchronous FIFOs.

The specific operation process is shown in FIG.13. When
new data arrives, the flit is written into the FIFO under the
drive of RX-CLK, and the write pointer is updated. For each
slice in the FIFO, its initial state is empty. After data is
written, the slice’s state becomes full, and after data is read,
the slice’s state becomes empty again. The full state of a
slice indicates that it contains valid data. This valid signal,

along with the current flit, is passed to the TX, generating
the TX-CLK. After the current flit is read by TX-CLK, the
read pointer and the empty/full status of the current slice are
updated. For an individual slice, it is undoubtedly a write-
then-read operation. For the entire FIFO, read and write
operations can be performed concurrently.

The proposed FIFO exhibits asynchronous data-driven
characteristics, where the read and write clocks are generated
based on data. All of these write or read processes do not incur
power consumption when there is no data transfer.

4) THE CONTROL LOGIC IN ABRB
The read and write order of the FIFO, as well as the
back pressure of the ABRB, are determined by the control
logic. It has a great impact on the system performance and
function correctly. The read and write order should follow
the following principle. First, a FIFO follows the principle
of first in, first out. Second, for the ABRB, packets with the
same destination address need to be read from the destination
port in strict accordance with the order in which they were
written to ensure the correct basic functionality of the bus.
The read order at each port strictly follows the arrival order
of the data destined for that port, which is achieved through
the data channel arbiter. Third, for the ABRB, packets with
different destination addresses can be accessed in parallel by
their respective destination ports. This effectively improves
the average packet transmission cycle.

Since the writing and reading of packets occur asyn-
chronously, determining whether the buffer needs back pres-
sure is a relatively complex but crucial task. In synchronous
circuits, D Flip Flop(DFF) is used for event detection.
However, applying this method to asynchronous circuits can
lead to highly dangerous metastability. Therefore, to achieve
event detection in asynchronous circuits, we innovatively
use MUTEX instead of DFF to detect asynchronous events,
effectively avoiding the occurrence of metastability.

The order of writing data is ensured by the FSM (Finite
State Machine) as shown in FIG.11, where W1, W2, and
W3 represent the current packet being written into FIFO1,
FIFO2, and FIFO3, respectively. The data follows the overall
sequence of 1, 2, and 3, taking into account the availability
of the current FIFOs. This is primarily achieved through the
combination of the FSM and MUTEX. The MUTEX serves
as an event detector, specifically to check whether there is an
available empty FIFO to receive new data in the current state.
N FIFOs require N(N-1) MUTEX units to form the control
unit in ABRB. This introduces additional area and power
overheads, impacting packet transmission latency as well.

The back pressure mechanism of the ABRB shown in
FIG.11 follows this principle: during the writing of packets,
if the ABRB still has a capacity greater than one packet, it can
continue to receive new data. Otherwise, a back pressure
signal needs to be generated to pause transmission until
the buffer is cleared. At the moment when FIFO1 becomes
empty, FIFO2 is also empty, and the data is written into
FIFO2. If FIFO2 is not empty but FIFO3 is empty, the data
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FIGURE 11. The architecture of the proposed asynchronous blocking retransmission buffer.

FIGURE 12. The detailed architecture of the proposed asynchronous FIFO.

FIGURE 13. The post-layout simulation waveform of the proposed
asynchronous FIFO.

is written into FIFO3. If both FIFO2 and FIFO3 are not
empty, a back pressure signal RX-FULL is generated. The
data writing process for FIFO2 and FIFO3 follows the same
principle.

E. ROUTING-NODE-TX
The main component of Routing-Node-TX is the TX-
CLK generator. As mentioned earlier, the TX exhibits both
asynchronous event-driven characteristics and synchronous
fixed-time sending characteristics. Another crucial function
of Routing-Node-TX is to implement the flow control
mechanism by inserting RX-FULL information flits into
normal packets. What’s more, upon receiving the TX-PAUSE
signal, the transmission is paused after the current data packet
is transmitted.

1) THE GENERATION OF TX-CLK
To achieve a Quasi-Synchronous communication of flits,
Routing-Node-TX requires an internal delay that matches
the timing interval for transmission. When valid data arrives,
the valid signal handshakes with the internal ready signal
and generates the TX-CLK. The flow control mechanism is
implemented through a MUTEX to select between data flits
and control flits, generating the data clock and control clock,
respectively. When the TX-PAUSE signal is present, the data
clock is inhibited, pausing the transmission while the current
flit continues to be transmitted. The specific circuit structure
for Routing-Node-TX is illustrated in the FIG.14.

2) THE PROCESS OF DATA TRANSMISSION
As shown in FIG.15, when the valid signal Nvalid arrives,
the Nreq signal is generated through MUTEX-pause when
there is no TX-PAUSE, followed by the Ngnt signal through
MUTEX-full when there is no RX-FULL, indicating that
new data is ready without any pause or control flit insertion
required. The TX-READY signal is generated internally in
the TX and is used to indicate that the receiving side (Routing-
Node-RX) is ready to receive new data. The Ngnt signal
represents that the current data to be sent is ready. The
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FIGURE 14. The circuit of Routing-Node-TX.

FIGURE 15. The post-layout simulation waveform of data transmission in
the Routing-Node-TX.

TX-CLK signal is generated through a handshake between
the Ngnt and TX-READY signals. Using the 2-of-7 encoding
scheme, the new data is XORedwith the current data and then
transmitted. After the data is sent, the TX-READY signal is
pulled low until the next-level RX successfully receives the
data, and then it is pulled high again. The reassertion of the
TX-READY signal is achieved through an internal delay in
the TX. The T Flip Flop is triggered by TX-CLK, generating
an edge. This signal, after an internal delay, is XORed with
its complement to obtain a reset pulse.

3) THE PROCESS OF CONTROL FLIT INSERTION
When the RX-FULL signal wins theMUTEX-full, indicating
that valid data arrives after the control flit, the Fgnt signal
is generated. When Fgnt and TX-READY are both high, the
TX-CLK-full signal(red TX-CLK in FIG.15) is generated,
and the ‘‘full’’ information is inserted in the data channel
using a 2-of-7 encoding scheme. The process of TX-READY
signal generation is the same as described earlier.

4) THE PROCESS OF TRANSMISSION PAUSE
The packet-req represents the current packet transmission
being valid. The TX-PAUSE and packet-req compete through
MUTEX-pause, and the result of MUTEX-pause is only
generated after packet-req goes low, i.e., after the current
packet transmission is completed and before the next packet
transmission. The TX-PAUSE signal stops the generation of
the normal clock but does not affect the generation of the

control clock since the flow control needs to be executed even
during the transmission pause state.

5) THE MUTEX DESIGN
In our proposed asynchronous message bus, MUTEX plays
a crucial role. In addition to serving as the arbiter for
output ports, MUTEX also acts as the arbiter for data
channels, determining the reading order of data in ABRB.
The structures of the 2-MUTEX used in this paper are
illustrated in the FIG.16. It employs a four-input NOR gate
as a metastability filter [27]. Compared to previous arbiters,
this type of arbiter is constructed using standard cells, making
it easier to integrate into the system.

FIGURE 16. The circuit of 2-MUTEX used in this paper.

V. EXPERIMENTAL AND RESULTS
The Routing-Nodes and Sync-Async-Hosts are implemented
using standard cells at the 55nm process node. The entire
design involves traditional EDA tools such as Synopsys
DC for circuit synthesis and Synopsys ICC for layout and
routing. The layout of the asynchronous message bus in
FIG.17 identifies the different network topologies and the
functional blocks in the Routing Node. Due to the local
clocks in this design instead of a global clock, the clock tree
synthesis and timing analysis become complex. We employ
a combination of static timing analysis using EDA tools
and manual timing analysis to do this, which requires
more design effort compared to synchronous designs. Partial
timing constraints in synthesis are shown in FIG.18. The
delay values required to be inserted for Quasi-synchronous
communication are obtained by Static Timing Analysis.
Subsequently, set_min_delay insert delay cells at layout and

FIGURE 17. The layout of asynchronous message bus with different
network topology and the functional blocks in the routing node. The
orange part is the simple network and the blue part is the complex
network.
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FIGURE 18. Partial timing constrains in synthesis.

routing. Post-layout simulation is performed to obtain the
area, energy consumption, and system performance.

A. COMPARISON WITH STATE-OF-THE-ART
We follow a similar approach as in previous studies [8], [14],
[16], measuring the static performance of the message bus
and comparing it with existing works. This method provides
a better reflection of the message bus’s performance at the
circuit level, independent of factors such as topology and
routing algorithms. We obtained average latency (with longer
head latency followed by shorter subsequent latency), energy
consumption, and throughput by continuously transmitting a
congestion-free 6-flit packet shown in FIG.19, and the results
are summarized in Table 1.

FIGURE 19. The post-layout simulation waveform of transmitting a
congestion-free 6-flit packet.

Table 1 compares the area, performance, and energy
consumption of the recent asynchronous router with different
communication protocols. The data in Table 1 is from [7],
[8], [14], [16], and [19] and technology and voltage are
normalized to 65nm and 1.2V according to the equation
in [29]. This work is implemented in 55nm and 1.2V,
so compared to other designs in 65nm, latency, and energy
are slightly optimistic while the area is pessimistic for this
work.

ANoC is a 4-phase QDI router, which is an influential
design series from CEA-LETI. It has gone through several
generations [16], [19]. Compared to the ANoC, this work
performs 45.6% lower latency, 44% lower throughput, 60%
lower energy, and 86.8% lower area. The ANoC uses 4-phase
delay-insensitive communication, which has the advantage of
robustness and variability, at the cost of the low throughput
and the large numbers of wires. ANoC has 2 virtual channels,
which can provide the ability of congestion-free at the cost of
area and energy.

BAT-Hermes [8] is a 16-bit two-phase bundled-data router.
This work has 66.2% lower latency and 2.6x equivalent speed
at the cost of 45.9% higher energy per bit. BAT-Hermes just
has an input port FIFO and it cannot deal with the congestion.
Nonetheless, it has a 62.16% higher area than this work.

TaBuLA [14] is a two-phase bundled-data router with
the Mousetrap controller, which is an asynchronous pipeline
controller using a latch instead of a flip-flop. It also has gone
through several generations [7]. Normalized to 65nm and
1.2V, it has comparable latency and 10% higher area than this
work. Compared to the asynchronous 2-phase bundled data,
the proposed Quasi-Synchronous communication has higher
throughput. Despite the faster latch used in TaBuLA, this
work has 23.07% higher throughput than it. TaBuLA has two
level pipeline stage at the input port and output port, so the
cycle is the latency of data from an input port to an output
port. In this work, the cycle is the latency of data from an
input port to FIFO, so it makes higher throughput. TaBuLA
has 2 virtual channels using crossbar replication instead of a
virtual channel buffer to gain lower area and energy.

B. SYSTEM LEVEL PERFORMANCE ANALYSIS
More detailed system level performance comparison by
contrasting it with a synchronous baseline version of the same
structure.

FIGURE 20. The architecture of proposed network architecture, (a) simple
network; (b) complex network.

1) EXPERIMENTAL SETUP
The Routing-Node and Sync-Async-Host form two dif-
ferent network architectures: simple network architecture
with 4 synchronous domains and 1 Routing-Node and
complex network architecture with 8 synchronous domains
and 3 Routing-Node, as shown in FIG.20. The packet with
6-flit is sent from different synchronous domains to the
Routing-node under test with maximum injection rate, and
then the flit will be sent to other synchronous domains.
According to different traffic models, each synchronous
domain sends 1024 packets. Upon completion of the trans-
mission and reception of all data packets by each synchronous
domain, the completion time and the energy consumption are
observed to obtain system throughput and energy per bit. The
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TABLE 1. Comparison of asynchronous routers.

area is directly obtained from the layout area. At different
injection rates, the send and arrival times of each packet
are recorded to calculate the average packet latency, thus
determining the network system’s performance.

For comparison, we also implemented a synchronous
baseline of the asynchronous message bus. The synchronous
message bus includes Hosts and Routing-Nodes. The Host
is responsible for packing and serially transmitting flit,
while the Routing-Node receives packets from different clock
domains and forwards them to their respective destinations.
Asynchronous FIFOs are added at the input port of the
Routing-Node to receive data from different clock domains,
incurring two additional cycles. The synchronous message
bus uses traditional synchronous transmission with valid and
ready handshakes for data transmission. The flow control
mechanism is primarily controlled by the empty and full
signals of the traditional asynchronous FIFOs.

To evaluate the impact of different numbers of FIFOs
with ARBR on the performance of the Routing-Node,
we also implement three versions of Routing-Nodes: ABRB-
1FIFO, ABRB-2FIFO, and ABRB-3FIFO. Under the same
conditions, we have obtained the results for the area, energy
consumption, and system performance of the three different
ARBR implementations in both simple and complex network
architecture.

2) BENCHMARK
By setting the ‘‘DEST’’ field of the packets sent from
each synchronous domain, the data flow can be controlled.
To obtain performance results under different traffic models,
we propose two benchmarks to simulate different traffic
models.

Maximum Performance Traffic Model: Certain destina-
tions are set for each clock domain, simulating a scenario
where no blocking occurs in the message bus. This bench-
mark provides a more realistic reflection of the performance
metrics of the basic circuit.

Random Traffic Model: Packets with random destinations
are continuously sent at a saturate injection rate from

each clock domain. This model represents situations with
both blocking and concurrent transmissions, providing a
more realistic evaluation of the performance metrics of the
architecture of the message bus.

In the experimental setup, we conducted measurements on
the proposed asynchronous message bus and the synchronous
message bus under the two different network architectures.
We obtained the area, energy consumption of the Routing-
Node, and the system throughput, the latency of the message
bus. Our analysis focused on the following two aspects:

(1)Comparison with synchronous baseline: We compared
the area, system throughput, packet latency, and energy
consumption of our proposed asynchronousmessage buswith
synchronous baseline. This analysis aims to demonstrate that
the proposed Quasi-Synchronous communication achieves
comparable performance to synchronous communication
while maintaining the low energy consumption characteristic.

(2)Evaluation of the impact of ABRB with different
FIFOs on system performance: By comparing ABRB-1FIFO,
ABRB-2FIFO, and ABRB-3FIFO under the same conditions,
we obtain the system throughput and latency of ARBR with
different FIFOs. This analysis aimed to demonstrate that
ABRB with three FIFOs achieves better performance for
asynchronous message buses.

3) THE ASYNCHRONOUS MESSAGE BUS AND THE
SYNCHRONOUS BASELINE
In the simple network architecture, we analyzed the
area, throughput, energy consumption, and average latency
for ASYNC-1FIFO and SYNC-1FIFO. The area, system
throughput, and energy consumption of the simple network
are shown in Table 2.

a: SYSTEM THROUGHPUT ANALYSIS
In the maximum performance traffic model, the throughput
of the synchronous and asynchronous message bus is
nearly the same, which demonstrates that our proposed
Quasi-Synchronous communication achieves similar trans-
mission efficiency as synchronous communication. In the
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FIGURE 21. The latency of different networks at different injection rates.

TABLE 2. The analysis of the area, throughput, and energy between
asynchronous message bus and synchronous baseline in different
traffic models in the simple network.

random traffic model, the asynchronous message bus proves
to be a better solution. The system throughput of the
asynchronous message bus reaches 3.18 Gbps, showing a
21.4% improvement compared to the 2.62 Gbps of the
synchronous version in the random traffic model, where con-
gestion occurs frequently. The proposed Quasi-Synchronous
communication and flow control mechanism is designed to
effectively handle the congestion in the message bus.

b: ENERGY CONSUMPTION ANALYSIS
In the maximum performance traffic model, compared to
the synchronous baseline, the asynchronous message bus
exhibits a 12.64% reduction in energy consumption. In the
random traffic model, it exhibits a 27.18% energy advantage.

TABLE 3. The analysis of the area, throughput, and energy between
asynchronous message bus and synchronous baseline in different
traffic models in the complex network.

This mainly stems from the following aspects: Firstly,
in GALS systems, asynchronous communication eliminates
the synchronization overhead across clock domains and uses
local clocks instead of a global clock. Secondly, our proposed
asynchronous message bus features a data-driven nature,
resulting in flips only when there is valid data, thus avoiding
additional dynamic power consumption. Lastly, we utilize
a 2-of-7 encoding method where only 2 bits flip during
each data transmission, leading to lower energy consumption
compared to synchronous systems.

c: AREA ANALYSIS
Compared to the synchronousmessage bus, the asynchronous
message bus incurs an additional 38% area overhead. Unlike
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TABLE 4. The area, throughput, and energy of Routing-Node with different FIFO-based ABRB in different networks and traffic models.

the 4-bit synchronous message bus, we’ve employed a 7-bit
low-power encoding, significantly increasing the number of
registers within the router. Additionally, our usage of local
clocks instead of a global clock leads to extra area overhead
from the local clock generation units.

d: SYSTEM PERFORMANCE
As shown in FIG.21a and FIG.21b, the ASYNC-1FIFO
shows substantial benefits achieving 34% lower low-load
latency when the injection rate is 0.1 flit/cycle. The cost is
introduced due to the deeper pipeline and the synchronizers
for clock domain crossing in synchronous communication.
For ASYNC-1FIFO, however, it enters the saturation region
at an injection rate that is earlier than SYNC-1FIFO and has
the same average latency as SYNC-1FIFO when it achieves
saturation. Because the flow control of the ASYNC-1FIFO is
not enough to handle the higher load communication.

The results for the complex network architecture are
shown in Table 3, and in the maximum performance traffic
model, they exhibit similar conclusions to those in the
simple network architecture. In the random traffic model, the
throughput of the asynchronous message bus decreases. Due
to the flow control mechanism of ASYNC-1FIFO, it pauses
every transmission after receiving each packet to avoid
overflow. As the network becomes more complex with an
increasing number of synchronous domains, the transmission
pause time also increases. This has a significant negative
impact on throughput.

In the maximum performance traffic model, it also exhibits
similar conclusions of latency to those in the simple network
as shown in FIG.21c. But in the random traffic model under
the complex network shown in FIG.21d, at low load when
injection is 0.1 flit/cycle, the advantage latency of ASYNC-
1FIFO narrows to 25%, and it enters the saturation region
earlier. Furthermore, the latency after reaching the saturation

region is also 10% lower than that of the SYNC-1FIFO. It is
evident that the ASYNC-1FIFO, with its inherent low latency
characteristics, achieves significant performance advantages
over SYNC-1FIFO under low-load conditions. However,
as the load increases, the flow control disadvantages
of ASYNC-1FIFO become increasingly apparent, leading
to a substantial overall performance decrease. Therefore,
we propose the ASYNC-3FIFO to better address high-load
situations. This will be demonstrated in the next experiment.

4) ABRB WITH DIFFERENT NUMBERS OF FIFO
As the network architecture becomes more complex, ABRB-
1FIFO struggles to cope with the increased complexity of
traffic patterns, resulting in a decrease in system through-
put. To overcome this issue, ABRB-2FIFO and ABRB-
3FIFO were introduced. These additional FIFOs in the
ABRB mechanism help mitigate the impact of complex
traffic models and improve system performance. Despite
the potential for achieving better system throughput with
more FIFOs, the tradeoff involves increased latency, power
consumption, and area. Additionally, we believe that the
throughput improvement it brings may also diminish. Table 4
displays the area, throughput, and energy consumption of
Rouing-Node with different FIFO-based ABRB.

It is evident that as the number of FIFOs increases, the
area of the Routing-Node significantly increases. However,
the additional FIFOs result in a significant improvement
in system throughput. In the maximum performance traffic
model of the simple network, ABRB-3FIFO and ABRB-
2FIFO achieve 60.8% and 17.9% higher system throughput,
respectively, compared to ABRB-1FIFO. In the random
data traffic model of the simple network, ABRB-3FIFO,
and ABRB-2FIFO achieve 47.5% and 19.5% higher sys-
tem throughput, respectively, compared to ABRB-1FIFO.
The additional energy consumption incurred is negligible,
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indicating that the ABRB-3FIFO structure has higher com-
munication efficiency.

The ABRB-3FIFO structure is more effective in handling
congestion, especially when the destination of subsequent
packets is different. The ABRB-3FIFO can concurrently
transmit subsequent data packets while the previous packet
is blocked. In the case of ABRB-2FIFO, it is challenging to
ensure that the second packet arrives after the first packet
has been read in dense data transfers. Hence, blocking occurs
after both packets are written into the two FIFOs.

The conclusions obtained in Table 4 also validate this
observation. In the maximum performance traffic model of
the complex network, the system throughput of ABRB-
3FIFO reaches 12.72 Gbps, which represents a 44.2% and
71.42% improvement over ABRB-2FIFO and ABRB-1FIFO,
respectively. It performs the best among all tested Routing-
Nodes. In the random data traffic model of the complex
network, the ABRB-3FIFO version of the Routing-Node
achieves an 85.3% system throughput improvement com-
pared to the synchronous version, with no additional energy
consumption overhead.

In the maximum performance traffic model shown in
FIG.21a and FIG.21c, the average latency remains unchanged
by the increase in injection rate. This indicates that the
ASYNC-3FIFO structure performs well in flow control
under low-load conditions. In contrast, for several other
structures including ASYNC-2FIFO, ASYNC-1FIFO, and
SYNC-FIFO, with the increase in injection rate, it becomes
more likely to trigger backpressure mechanisms, leading
to increased latency. In a random traffic model shown in
FIG.21b and FIG.21d, compared to several other asyn-
chronous and synchronous structures, ASYNC-3FIFO, due
to its stronger ability to handle congestion, enters the
saturation later. Furthermore, after reaching saturation,
in both the simple network and complex network, ASYNC-
3FIFO exhibits an improvement of 40.16% and 18.62%,
respectively, compared to the synchronous baseline.

VI. CONCLUSION
This paper introduces a lightweight asynchronous message
bus with high throughput. It aims to transmit high-level proto-
col messages independent to the data bus/NoC, improving the
overall communication efficiency of the system. To minimize
the additional impact of the message bus on the system,
an asynchronous manner is adopted, featuring data-driven
characteristics that reduce energy consumption when no
message transmission is occurring. To enhance transmission
throughput, a novel Quasi-Synchronous communication
is proposed, eliminating flit-level handshake signals and
replacing them with packet-level flow control signals. These
control signals propagate through the data channel using a
special flow control mechanism, reducing additional control
line overhead. To further alleviate bus congestion caused by
access conflicts, an Asynchronous Blocking Retransmission
Buffer (ABRB) is introduced, effectively improving the
system throughput. The proposed asynchronousmessage bus,

along with the synchronous message bus, is implemented
using conventional EDA tools in the SMIC 55nm process
node, and performance, area, and energy consumption
metrics are obtained through post-simulation. Compared to
the synchronous baseline, our message bus demonstrates
a 22.8% overall throughput improvement and a 17.78%
energy consumption improvement in the random data traffic
model at the cost of 38% area and more design effort.
Additionally, it reveals that ABRB-3FIFO achieves higher
system performance and energy efficiency, along with better
handling of congestion. Finally, in the complex network with
the random data traffic model, the ABRB-3FIFO version
of the asynchronous message bus exhibits an 85.3% system
throughput improvement and 18.62% system average latency
improvement compared to the synchronous baseline, with no
additional energy consumption overhead.
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