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ABSTRACT Keyword Spotting (KWS) is the task of recognizing spoken command words from a database.
With recent application human-machine interactions, KWS systems require real-time performance, where
edge computing is a preferable option. To allow KWS systems to work on fast and real-time implementation,
a low-complexity yet high-accurate AI model is mandatory. In this paper, we propose a comprehensive voice
command recognition system design and its hardware implementation. The proposed AI model considered
in this system is SpectroNet-based and an efficient hybrid CNN-LSTM architecture with low complexity.
Jetson Xavier NX is an edge device because of its strong computational power as an embedded device. The
implementation result shows the proposed method offers quite good in terms of accuracy, indicated by no
accuracy drop between the model implemented in PC and Jetson Xavier. However, the inference time is
quite high, which is 180 ms/step. To improve the speed of the system, the TensorRT library is used to further
optimize the model. Optimization of the model is found effective, reducing 59.35% of the total operation
performed in SpectroNet when FP32 precision is used, and 59.63% when FP16 precision is used. The model
is also sped up by 45% if FP32 precision mode is used and 62% if FP16 precision mode is used. However,
there is a slight accuracy drop of 2.68% if FP32 precision mode is used and 4.84% if FP16 precision mode is
used. This slight drop in accuracy is considered negligible compared to the performance boost that TensorRT
gives. The work is useful for intelligent control systems such as smart vehicles, smartphones, computers, and
smart communications.

INDEX TERMS Edge computing, hybrid CNN-LSTM, keyword spotting, real-time, embedded devices.

I. INTRODUCTION
Interaction with machines, particularly using voice com-
mands has gained much attention in both academia and
industry with the advancement of speech recognition and
Artificial intelligence (AI) technology. Voice assistants such
as Amazon’s Alexa, Apple’s Siri, Google’s Assistant, and
Microsoft’s Cortana are some application examples of
keyword-spotting using the Automatic Speech Recognition
(ASR) technique [1].

Automatic Speech Recognition (ASR) refers to the task
of recognizing spoken words from an audio input. One of
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the essential tasks within ASR in speech-enabled devices
is Keyword Spotting (KWS) [2]. In KWS, a specific set of
keywords is going to be recognized or detected. However,
ASR covers a wide range of techniques and applications
in converting spoken language to text. Keyword Spotting
(KWS) is the task of recognizing spoken words from a
limited set of predefined word options [1]. By fast-growing
deep learning techniques and algorithms, KWS allows the
activation of voice assistants in small electronic devices [1],
[3]. Unlike full voice recognition systems such as ASR,
KWS focuses on classifying spoken words without the need
for transcribing them into text. Moreover, KWS focuses
only on a small set of pre-defined keywords. Thus, KWS
systems can perform on almost all speech-enabled devices
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FIGURE 1. Keyword spotting using artificial intelligent illustration.

especially small devices with low computational complexity
[4]. Figure 1 shows an illustration of a keyword spotting
flow using artificial intelligence where a speaker produces
words that are converted to audio signals and processed in an
intelligent system. Finally, the main goal is that the system
can classify the spoken words accurately.

Keyword Spotting (KWS) has become more crucial
for human-machine interaction since it allows a user
to interact more naturally with their own devices by
leveraging their voice, which usually uses a portable
or mobile device. However, the implementation of this
algorithm on an embedded system is limited by several
constraints. These include limited power, memory, and
computational capacity [5]. Consequently, KWS models do
not require the same complexity as more comprehensive
voice recognition systems andmust prioritize low complexity
to enable real-time performance, especially in embedded
systems.

KWS can be implemented through two main paradigms:
cloud computing and edge computing. Cloud computing
involves utilizing powerful cloud servers to process and
classify spoken words, requiring less computational power
on the edge side. However, it depends on a robust internet
connection and substantial server resources to maintain
real-time performance. On the other hand, edge computing
leverages embedded systems to directly store and process
spoken words, thus eliminating the need for server and
internet dependencies. Several common embedded devices
for this purpose are NVIDIA Jetson Nano, NVIDIA Jetson
Xavier, and FPGAs.

While edge computing offers independence from server
and internet connectivity, its real-time performance can be
limited due to the computational capabilities of the embedded
device. To address this limitation, a low-complexity model
becomes essential.Moreover, certain embedded devices, such
as NVIDIA Jetson Xavier, have optimization libraries like
TensorRT to enhance inference speed, resulting in faster
system performance.

In this paper, we introduce SpectroNet, a KWS model
with minimal complexity, which we propose to implement
on the Jetson Xavier platform. We train the model using
the Google Speech Commands dataset and evaluate its
performance using real spoken words. To further boost the
model’s performance, we employ TensorRT for optimization,
focusing on the impact of different data precisions available

within TensorRT. Lastly, we incorporate an LED indicator to
display the system’s output.’’

In summary, we list ourmain contributions as follows:
1) We employ CNN-LSTM architecture based on Mel

Spectrogram to allow receiving raw speech signal
input and does not require a different Spectrogram
conversion process.

2) We use a lower number of parameters while maintain-
ing high accuracy.

3) Our method offers lower inference time since it uses
a smaller number of parameters and optimizes Tensor
RT.

4) Finally, we implement and evaluate our proposed
method in Jetson Xavier GPU to confirm the real-time
processing using real voice data (not a voice data set).

The rest of this paper is organized as follows: Section II
discusses previous works. Section III explains basic defini-
tions and properties to provide fundamental knowledge to
the reader. In section IV, we describe our proposed KSW
Systems, covering deep learning model development, data
set preparation, and hardware-software implementations.
Section V explains experimental evaluations and discussion
on the obtained performance results. Finally, the conclusions
are elaborated in Section VI.

II. PREVIOUS WORKS
The literature study done in this paper is divided into
4 major topics, which are Keyword Spotting methods,
Keyword Spotting databases, Cloud vs Edge computing,
Model Compression, Model Optimization, and Embedded
Devices.

A. KEYWORD SPOTTING METHODS
As one of the most popular topics, Keyword Spotting (KWS)
problems have been solved using several methods. One of the
most popular methods is using Artificial Neural Networks
(ANN) [6], [7], [8]. The recent success of Deep Learning
(DL)methods in other topics, such as image classification [9],
[10], [11], [12], medical signal analysis [13], [14], [15], [16],
and weather forecasting [17], [18] has inspired researchers
to apply Deep Learning methods to KWS problems. The
examples of the most useful DLmethods to performKWS are
Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN). CNN is a good network to classify images,
so applying DL methods to solve KWS involves a feature

43110 VOLUME 12, 2024



I. Syafalni et al.: Efficient Real-Time Smart KWS Using Spectrogram-Based Hybrid CNN-LSTM

TABLE 1. Performance and details comparison of the existing CNN-RNN architectures.

extractionmethod to convert audio data into image data called
Spectrograms [19]. Another DL method that has been used
for KWS is Recurrent Neural Network (RNN). The advantage
of using RNN is that it needs no phonetic transcription, and
it is easier to modify the keyword list without retraining [20].

Besides CNN and RNN alone, works also have been
done to combine CNN and RNN into a hybrid CNN-
RNN architecture. This architecture is created to exploit
the local structure and long-range context of speech data
[21]. Some examples of these combinations are CNN-RNN,
CNN-LSTM [22], and Gated Convolutional LSTM [23].
Furthermore, a performance comparison of KWS using
various Deep Learning methods is shown in Table 1.

B. KEYWORD SPOTTING DATABASES
Keyword Spotting systems need a lot of training data to
be able to perform well. Therefore, there are also works
to develop keyword-spotting databases. Some of them are
documented in papers, but some of them are not available.
Keyword-spotting databases usually have a specific topic,
such as home automation, wake word detection, etc. Some
examples of keyword spotting databases are shown in
Table 2.

TABLE 2. Some examples of commonly used KWS dataset.

C. CLOUD VS EDGE COMPUTING
In the field of deep learning application, there are 2 major
ideas, which are cloud and edge computing [30]. Cloud
computing benefits from using less computational resources,
but suffers from latency, security, and scalability problems
[31]. This makes edge computing a more realistic solution.
In the edge computing idea, all processes in the system are
computed offline in the computing device.

For edge computing applications, the system needs
to be able to perform in real time. This requires less
resource-intensive deep learning models. To create less
resource-intensive models, several techniques, such as model
compression and model optimization can be used. Moreover,
specific integrated circuits for keyword spotting are also
proposed for edge computing applications [32], [33], [34].

D. MODEL COMPRESSION
Model compression is a technique to identify a model that has
as few parameters and as little accuracy drop [35]. Some of
the most popular model compression techniques are pruning,
knowledge distillation, and quantization [36].
Pruning is used to effectively compress the model size.

The compression is done by removing some unimportant
neuron or connection and then retraining the network without
that neuron or connection. This process is repeated until the
desired trade-off between accuracy and the pruning objective
is achieved. Pruning theoretically can compress model size
more than 10× the initial size [37]. One of the important
parameters in pruning is the pruning criterion. The pruning
criterion is used to decide which connection is pruned.
For example, a small weight connection, whose value is
below a certain threshold, is considered unimportant and is
pruned [38]. The choice of this pruning criterion decides the
outcome of the pruning.

Another popular model compression technique is Knowl-
edge Distillation (KD). KD aims to transfer knowledge that
is learned by a complex, computationally intensive model
to a simpler, task-specific model [39]. One way to do this
is to use a larger, complex model to perform inference on
a specific unlabeled dataset, then use that result as labeled
training data to train the smaller model [40]. KD has already
been successfully used to compress the KWS model in a
noisy environment [41], [42]. Thework in [41] shows a robust
Knowledge Distillation (KD) learning method by computing
three distinct distance metrics for KD training and feature
extraction processes. In [42], babble noise signal is added
to evaluate the proposed method using LeNet-5, SqueezeNet,
and EfficientNet-B0.

E. MODEL OPTIMIZATION
Besides model compression, another strategy to improve
the system’s real-time performance is to use model opti-
mization. The main idea of this model optimization is
mixed-precision computation and precision reduction, among
other optimization strategies such as weight and activation
function calibration. Some of the most popular model opti-
mization frameworks are NVIDIA’s TensorRT and Google’s
TFLite [31]. Studies say that the TensorRT optimized model
performs faster, but consumes more energy (+40%), while
the TFLite optimized model consumes less energy, but its
performance is significantly slower (-62%) [30].

One of the important parameters of model optimization
is data precision. Some of the most popular data precision
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are 32-bit Floating Point precision (FP32), 16-bit Floating
Point precision (FP16), and 8-bit Integer precision (INT8).
FP32 is the default precision used by Deep Neural Network
(DNN) programming frameworks, such as TensorFlow, so if
the model is optimized using FP32 precision, no precision
reduction is done. Studies say that an FP32 TensorRT
optimized model has 107.69% throughput increase, while an
FP16 TensorRT optimized model has 746.15% throughput
increase, and an INT8 TensorRT optimized model has
1318.15% throughput increase [31]. This indicates that if
a less precise mode is used, the model’s processing speed
increases.

F. EMBEDDED DEVICES
Finally, the choice of the embedded device used to implement
the system is also crucial. Some of the popular edge devices
are NVIDIA’s Jetson platform, and custom hardware imple-
mented in FPGAs. In [43], a Hardware-Software codesign
approach is used to make a DNN hardware accelerator,
reaching 181ms inference time. For Jetson devices such as
Jetson Nano, Jetson Xavier NX, and Jetson Xavier AGX,
Jetson Xavier NX has the best performance in terms of
FPS/Watt, Jetson Nano has the best performance in terms of
FPS/$ [44], and Jetson Xavier AGX has the best performance
in terms of calculated FPS [45].

III. BASIC DEFINITIONS AND PROPERTIES
In this section, some basic definitions and properties that
are needed to implement this work are discussed. The
fundamental concepts that are going to be discussed are voice
feature extraction, Convolutional Neural Networks (CNN),
and Long Short Term Memory (LSTM). This section aims to
give a step-by-step understanding of building our proposed
method.

A. VOICE FEATURE EXTRACTION
One of the most popular signal feature extraction is
Spectrograms. Spectrograms are the squared magnitude of
a Short-Time Fourier Transform (STFT) of a signal [46].
The STFT divides the time-domain signal into some frames.
The frames are overlapping and transformed using Fourier
Transform. The aim is to get the frequency information of
each frame.
Definition 1: The STFT with continuous signal is defined

as:

X (t, ω) =

∫
∞

−∞

x(τ ) · w(τ − t) · e−jωτdτ,

where X (t, ω) is the STFT output, x(t) is a signal in the time
domain t, w(τ − t) is the t-centered window function, and ω

is the angular frequency. Note that e is an Euler’s number.
Spectrograms represent signals in the time versus fre-

quency domain. An example of the Spectrogram of a
noisy sine wave is shown in Figure 2. In Figure 2, the
X -axis of the Spectrogram shows the time, while the Y -axis
of the Spectrogram shows the frequency. This means the

Spectrogram shows which frequency component is present
each time. The color of the Spectrogram, as shown in the
color bar beside it, shows the magnitude of the corresponding
frequency component at each time. From this Spectrogram,
we can learn that the signal contains a base signal of 1, 2, and
3 kHz (indicated by a dark red line in 1, 2, and 3) with random
noise added (indicated by the orange color in the rest of the
frequency and time).

For voice feature extraction, Mel Spectrogram, which is a
variant of the original Spectrogram, is a more suitable option.
This is because the Mel Spectrogram uses the Mel scale [47]
instead of the Hertz scale. Mel scale is a logarithmic scale and
is close to how human hearing works.
Definition 2: The formula to convert frequency from the

Hertz scale into the Mel scale is defined as:

Mel(f ) = 1127 × ln(1 +
f

700
)mels,

where Mel(f ) is the Mel frequency output and f is the
frequency in hertz.

The flowchart to create a Mel Spectrogram, compared to
an original spectrogram is shown in Figure 3. In Figure 3,
Spectrogram creation involves preprocessing, signal framing
and windowing, Short Time Fourier Transform (STFT),
and power spectrum calculation. The preprocessing step is
often different, depending on the case. Some examples of
preprocessing are noise removal, filtering, dc removal, etc.
After the data is preprocessed, it is divided into frames, and a
windowing function is applied to each frame. Framing and
windowing are done to divide the input signal into short,
stationary signals [48]. The formula to apply framing and
windowing to the input signal is shown in Lemma 1. For voice
feature extraction, Mel Spectrogram, which is a variant of
the original Spectrogram, is a more suitable option. This is
because the Mel Spectrogram uses the Mel scale [47] instead
of the Hertz scale.Mel scale is a logarithmic scale and is close
to how human hearing works. Furthermore, the formula to
convert frequency from the Hertz scale into the Mel scale is
shown in Definition 2.
Lemma 1: Furthermore, the framing and windowing for

STFT with a discrete signal with N samples is represented
as:

y(m, n) =

N−1∑
n=0

x(n+ mH ) × w(n)

where y(m, n) is the output of the framing & windowing step,
x(n) is the input signal, w(n) is the windowing signal, N is the
input signal length, n is time index, and m is frame index, and
H is the hop size.

The parameters of this step are frame length, which
controls the length of each frame, hop size, which controls
how much portion of data from each frame will overlap, and
window function type. One of the most common window
functions, and the one that is used in this work, is the
Hamming Window as described in Definition 3.
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FIGURE 2. An example of spectrogram.

FIGURE 3. Flowchart of (a) Spectrogram creation (b) Mel Spectrogram
creation.

Definition 3: The Hamming Window is represented by

w(n) =

 0.56 + 0.48 × cos(
2πn
M

), if 0 ≤ n ≤ N

0, otherwise

where w(n) is the window function, n is the time index, and M
is window length. Usually, it is the same as the frame length.

After the framing and windowing step, the Fast Fourier
Transform (FFT) is computed for each frame. The compu-
tation of FFT for each frame.
Lemma 2: The formula to compute STFT with discrete

signal is as follows:

S(m, k) =

N−1∑
n=0

x(n+ mH ) × w(n) × e(
−i2πnk

N ),

where S(m, k) is the STFT of the signal, x(n) is the input
signal, w(n) is the window signal, N is the frame length, H is
hopping size, m is frame count, and k is time count.
Proof:Let x(n) be a discrete signal with n as the time index.

As Lemma 1, a localized segment of signal x(n + mH ) in a
window signal w(n) is obtained in y(m, n) by:

y(m, n) =

N−1∑
n=0

x(n+ mH ) × w(n).

Note that m is the frame count, H is the hopping size, and n
is the current sample index.

Moreover, for transforming to the frequency domain, the
y(m, n) signal is applied to the Fourier transform complex
exponent function represented by e−jωτ in a continuous form
and e(

−i2πnk
N ) in a discrete form. If we multiply the y(m, n)

in Lemma 1 with the e−jωτ as Definition 1, we have the
following:

S(m, k) = y(m, n) × e(
−i2πnk

N )

=

N−1∑
n=0

x(n+ mH ) × w(n) × e(
−i2πnk

N ).

Thus, we have the lemma. □
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FIGURE 4. An example of mel filterbank used in this work.

Lemma 3: The last step of the Spectrogram creation is
to compute the power spectrum. The power spectrum is
represented by:

Sp(m, k) = S(m, k) × S(m, k),

where Sp(m, k) is the power spectrum and S(m, k) is the STFT
signal.

Mel Spectrogram’s creation involves the creation of the
original Spectrogram. After the Spectrogram of the signal
is obtained, it is filtered using a Mel filter bank. A typical
Mel filterbank is a set of triangular filters shown in Figure 4.
To create this Mel filterbank, Lemma 4) is used [49] for
determining the hopping size H .
Lemma 4: Let fa = f [m−1], fb = f [m+1], fd = (fb− fa),

and fp = f [m], where f is a frequency in certain position and
m is the frame index. Hopping size H is represented by:

Hm(k) =



0 , k < fa
2(k − fa)

(fd )(fp − fa)
, fa ≤ k ≤ fp

2(fb − k)
(fd )(fb − fp)

, fp ≤ k ≤ fb

0 , k > fb,

where Hm(k) is the mth filter bank, f is the frequency in mel,
m is the filter index, and k is the time index.

Filtering is done by taking the dot product of the filter
bank and the original Spectrogram filter. After the filtering
is done, further logarithmic scaling is done to complete the
Mel Spectrogram creation process.

B. CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Network(CNN) is a version of the
Deep Learning model that has been widely implemented

in image data problems, such as image classification.
It uses a convolution process to replace the original matrix
multiplication that a usual neural network uses [50]. CNNs
work using a certain key feature in images, which is that
nearby pixels in an image have bigger correlations than more
distant pixels [51]. There are 3 key components that usually
exist in a basic CNN, which are the Convolutional Layer,
Pooling Layer, and Fully Connected Network Layer.

1) CONVOLUTION LAYER
A CNN layer computes the convolution of an input image
with a smaller matrix called a kernel.
Lemma 5: The formula to compute this convolution is as

follows:

S(i, j) =

M−1∑
m=0

N−1∑
n=0

I (i+ m, j+ n) × K (m, n)

with S(i, j) is the output matrix of the CNN layer, I is the input
image, and K is the kernel. M and N is the size of the image
where m and n is the corresponding indexes.

The adjustable parameters of this layer are kernel size and
stride. The kernel size decides the size of the kernel used
in the convolution process. Furthermore, the stride decides
how many pixels are skipped after each convolution process.
Some examples of the convolution process applied to an
input matrix are shown in Figure 5. Figure 5(a) shows a
convolution process with a stride. Moreover, Figure 5(b)
shows a convolution process with two strides. All convolution
process uses a 4 × 4 input matrix and 2 × 2 kernel.
In Figure 5(a), after the first convolution process in

I (0, 0) = a is done, the next image submatrix that
is considered is a 2 × 2 image submatrix starting from

43114 VOLUME 12, 2024



I. Syafalni et al.: Efficient Real-Time Smart KWS Using Spectrogram-Based Hybrid CNN-LSTM

FIGURE 5. An example of convolution operation: One-stride (Top), Two-stride (Bottom).

I (0, 1 = b). This is because the stride is 1 (yellow arrow).
When the stride is 1, the kernel moves in the x and y
direction with an increment of 1. In Figure 5(b), after the first
convolution process in I (0, 0) = a, the kernel moves in the
x direction with an increment of 2, taking the 2 × 2 image
submatrix starting from I (0, 2) = c because the stride
is 2 (yellow arrow).

2) POOLING LAYER
The pooling layer is a special layer that replaces the value
of the output image with a summary statistic of nearby
outputs [50]. Some of the most popular pooling methods are
maximum pooling and average pooling. The max pooling
layer replaces a pixel value with the maximum pixel value
within a rectangular neighborhood, while the average pooling
layer replaces a pixel value with the average pixel value
within a rectangular neighborhood.
Definition 4: A max-pooling layer is defined by:

S(i, j) = maxA, (1)

where the element of array A is arranged by A(m×M +n) =

I (i+m, j+ n) for m = 0, · · · ,M − 1 and n = 0, · · · ,N − 1,
and S(i, j) is the maximum value of an element in the matrix
A for M × N input matrix.
Lemma 6: An average pooling layer is defined by:

S(i, j) =

∑M−1
m=0

∑N−1
n=0 I (i+ m, j+ n)
m× n

(2)

where S(i, j) is the output of the average pooling layer, and I
is an M × N-sized input matrix.

FIGURE 6. Max pooling and average pooling illustrations.

A visualization of a 2 × 2 max-pooling layer and average
pooling is shown in Figure 6 and calculated using Lemmas 4
and 6, respectively. The stride indicates the amount of kernel
movement for the next iteration. The input array arrangement
of the max-pooling layer and the average pooling is the same
with the corresponding pooling function fp.
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3) FULLY CONNECTED LAYER
The convolutional layer and pooling layer are usually used for
image feature extraction. After some convolution and pooling
processes, the image is often further classified using Fully
Connected Layers. The fully connected layers are formed
by the connected neurons. First, we define a neuron by the
following definition:
Definition 5: A neuron in a fully connected layer is defined

as:

y = f (
N−1∑
n=0

wnxn + bn),

where y is the output of the neuron, xn is an element of the
input vector X = [x0, . . . , xN−1], wn is an element of the
weight vector W = [w0, . . . ,wN−1], bn is an element of
the bias vector B = [b0, . . . , bN−1] and f is an activation
function.

Furthermore, the fully connected layers can be imple-
mented by a matrix multiplication. To compute the output
of the layer, an activation function is used. The activation
function is usually in the form of a nonlinear function that
is applied to the matrix.
Lemma 7: The formula of the matrix multiplication is a

weighted summary of the input vector, as follows:

Y = W × X + B,

where Y is the output matrix, W is the weight matrix, X is the
input matrix, and B is the bias matrix. After Y is computed,
a nonlinear function is usually applied to it.

Some of the most popular nonlinear functions are sigmoid,
tanh, softmax, ReLu, and LeakyReLu. The equation for each
function is shown in Definitions (6), (7), (8), (9), (10),
respectively.
Definition 6: A sigmoid(x) is represented by:

f (x) =
1

1 + e(−x)
,

where x is the input value and f (x) is sigmoid function output
value.
The sigmoid(x) maps the input to a value between 0 and 1.
As shown in Figure 7(a) (blue), the sigmoid function forms
an S-shaped curve.
Definition 7: A tanh(x) is represented by:

f (x) = tanh(x) =
1 − e−2x

1 + e2x
,

where x is the input signal.
The tanh(x) converts the input signal to a value between -1
and 1. Similar to the sigmoid function, the tanh function also
forms an S-shaped curve as shown in Figure 7(a) (red).
Definition 8: A ReLu(x) is represented by:

f (x) = max(0, x),

where max(0, x) is a maximum function that selects the larger
value between 0 and x. Note that if the value of x is negative
or less than 0, the function selects 0 as the output value.

Definition 9: A LeakyReLu(x) is represented by:

f (x) =

{
ax for x < 0
x for x ≥ 0,

where x is the input signal, a is the gradient when the value
of x < 0 and f (x) is x when x is larger or equal than 0.
Definition 10: A softmax(x) is represented by:

f k =
e(xk)∑J−1
j=0 e

(xj)
,

where x is the input signal in the form of vector, J is the
number of classes, and xi is the i-th element of the vector x.
The softmax activation function is commonly used for solv-
ing the problem of multiclass classifications. The softmax
activation function converts the inputs into a probability
distribution function, where the sum of all the outputs
equals 1.

In summary, the sigmoid and the tanh convert the input
into the range [0, 1] and [−1, 1], respectively. ReLu and
LeakyReLu activation functions clip the negative values to
0 and ax, respectively, where a is the gradient when x < 0.
Softmax, tanh, and ReLu activation functions are often used
in hidden layers, while softmax is often used in the output
layer to show the probability distribution function of each
class in a classifier network.

Figure 8 shows an example of a Fully Connected Layer
with a 4×1 vector input and 2 output cells. The output of each
cell is a weighted sum of the input and bias, then a nonlinear
function f is applied to the result.
Example 1: In Figure 8, X is;

X =
[
x1 x2 x3 x4

]
,

W is;

W =


w1,1 w1,2
w2,1 w2,2
w3,1 w3,2
w4,1 w4,2

 ,

and B is;

B =
[
b1 b2

]
.

By using Lemma 7, we have the following vector:

H =
[
h1 h2

]
=

[∑
1,j(x1,jwj,1 + b1)

∑
2,j(x2,jwj,2 + b2)

]
Finally, we have the output vectors:

Y =
[
y1 y2

]
=

[
f (h1) f (h2)

]
.

where f is an activation function.
These activation functions are used in neural networks such

as Long Short Term Memory (LSTM). Now, we explain the
LSTM and its components.

43116 VOLUME 12, 2024



I. Syafalni et al.: Efficient Real-Time Smart KWS Using Spectrogram-Based Hybrid CNN-LSTM

FIGURE 7. Several types of activation functions: (a) sigmoid(x) and tanh(x) functions, (b) ReLu(x) and LeakyReLu(x) functions, (c) softmax(x)
function.

FIGURE 8. Fully connected layer example.

C. LONG SHORT TERM MEMORY
Long Short Term Memory (LSTM) is a variant of Recurrent
Neural Network (RNN) that consists of 3 gates, which are the
input gate, forget gate, and output gate, and 2 states, which
are cell state (long-term memory), and hidden state(short
term memory). The block diagram of an LSTM is shown in
Figure 9

The formulas that are used to compute the gate LSTMgates
outputs are shown in Lemmas 8, 9, and 10 [17].
Lemma 8: The forget network is represented by:

ft = σ (Wfi × Xt +Wfh × Ht−1 + Bf ),

where ft is the forget gate, Xt is the input of the activation
function, Wfi is the weight vector connecting the forget gate
to the input, Wfh is the weight vector connecting the forget

FIGURE 9. Block diagram of A LSTM cell.

gate to the hidden state of the LSTM cell and Bf is the bias of
the forget network.
Lemma 9: The input gate is represented by:

it = σ (Wii × Xt +Wih × Ht−1 + Bi),

where it is the output gate, Xt is the input of the activation
function, Wii is the weight vector connecting the input gate
to the input of the LSTM cell, and Wih is the weight vector
connecting input gate into the hidden state, and Bi is the bias
of the input gate.
Lemma 10: The output gate is represented by:

ot = σ (Woi × Xt +Woh × Ht−1 + Bo)

where ot is the output gate, Xt is the input of the activation
function, Woi is the weight vector connecting the output gate
to the input of the LSTM cell and Woh is the weight vector
connecting the output gate to the hidden state of the LSTM
cell and Bo is the output gate bias.
Lemma 11: The update of the cell state is represented by:

Ct = ft × Ct−1 + it × tanh(Wci × Xt +Wch × Ht−1 + Bc)

where Ct is the cell state, Xt is the input of the activation
function, and tanh() is the tanh activation function defined in
Definition 7. Wci and Wch are the weight vectors connecting
the cell state to the input and hidden state of the LSTM cell.
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Lemma 12: The update of the hidden state is represented
by:

Ht = ot × tanh(Ct ),

where Ht is the hidden state, and tanh() is the tanh activation
function defined in Lemma 7.

The effectiveness of LSTM over RNN is supported by the
additional forget gate (Lemma 8) and output gate (Lemma 10)
as well as the modified input gate (Lemma 9). In LSTM,
the forget gate selects which state to be forgotten while the
output gate controls the updated cell state to be exposed as
the output.

Moreover, the update of the cell state as represented
by Lemma 11 is updated using the forget gate, the input
gate, as well as the output gate. The cell state retains
the information as a long-term memory. The cell state is
updated by selecting the information over time. Finally, the
update of the hidden state as represented by Lemma 12
controls relevant information to be outputted at each time
step.

IV. REAL-TIME KEYWORD SPOTTING USING
SPECTROGRAM-BASED HYBRID CNN-LSTM
(SPECTRONET)
The proposed SpectroNet that we propose in this paper
is based on the works done in [52]. The concept that
we took is the hybrid CNN-LSTM idea, the choice of
DenseNet as the CNN architecture, and the one-dimensional
convolution concept used in the DenseNet. However, we only
use LSTM (not Bidirectional LSTM such as the work in
[19]), and the sequence of layers design in the SpectroNet
is our contribution. Lastly, we embed a Mel Spectrogram
layer into the hybrid CNN-LSTM architecture to enable
it to receive audio input directly and perform real-time
performance. Finally, the proposed method explained in this
section is divided into three parts. The first one is the
deep learning model. The second one is the hardware and
software specification. And, the third one is the dataset
used.

Furthermore, the physical meaning of the proposed
SpectroNet block diagram is explained as follows: The detail
layer architecture of SpectroNet is described in Table 3 and
Figure 10. The SpectroNet accepts audio data as its input. The
audio data is then converted into a mel spectrogram in the mel
spectrogram layer. The mel spectrogram is then preprocessed
using a normalization layer, a 5 × 1 convolution layer, and a
2 × 2 average pooling layer. After the preprocessing stage
is completed, the voice feature is extracted from the mel
spectrogram using DenseNet with 3 Dense Blocks and a
single LSTM layer. Once the feature vector is obtained, the
output class is determined using a 64-neuron fully connected
layer, a dropout layer with p = 0.5, and a softmax activation
function, which gives the probability of the input data
belonging to a class. The class with the largest probability
will be taken as the output class.

TABLE 3. SpectroNet layers.

A. DEEP LEARNING MODEL
The deep learning model that is used in this paper is
SpectroNet, which is a low-complexity hybrid Convolutional
Neural Network (CNN)-Recurrent Neural Network (RNN)
model. This model has a total of 142,877 trainable param-
eters, which demonstrates its low complexity. To be able to
handle audio data directly, this model has an embedded Mel
Spectrogram Layer to eliminate the need to convert the audio
input intoMel Spectrogram to extract features from the audio.

Some common deep learning classifiers need a separate
process to compute Mel Spectrograms of each input data.
This is inefficient, time-consuming, and resource-consuming.
SpectroNet has its own embedded custom layer to compute
Mel Spectrograms of each input data so audio input data can
directly be fed and processed by SpectroNet.

The CNN architecture used in this model is a modified
version of DenseNet, inspired by the works done in
reference [22]. The RNN architecture used in this model
is Long Short Term Memory (LSTM). The choice of Mel
Spectrogram, DenseNet, LSTM, and hybrid CNN-RNN
architecture are discussed in the next paragraph.

Mel Spectrogram is chosen as the audio feature extraction
method and is implemented as a custom layer in the model.
This is done because Mel Spectrogram is one of the most
common audio feature extraction, especially for speech data.
The Mel Spectrogram parameters chosen for this work are
shown in Table 4.

TABLE 4. Parameters of mel spectrogram.

The hybrid CNN-LSTM model is used to overcome the
limitations that CNNs andRNNs havewhen classifying audio
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data. CNNs have the limitations of only learning spatial
data, thus they have more layers to perform accurately when
classifying speech Spectrograms [23]. Meanwhile, RNNs
have the limitations of not learning the local information
from speech Spectrograms [22]. In SpectroNet, the CNN
model used is DenseNet, because it has feedforward layer
connections that can help reduce the need for a deeper
model [12]. The RNN model used in SpectroNet is LSTM,
which is chosen because of its ability to combat the vanishing
gradient problem that the original RNN has [53].

SpectroNet consists of an input audio layer, a Mel
Spectrogram layer, a DenseNet with two Dense blocks,
an LSTM network, a Fully Connected Network, and a
softmax layer to output the prediction class. In detail, the
layers of the proposed SpectroNet are shown in Table 3, while
the block diagram of SpectroNet is shown in Figure 10.

FIGURE 10. The proposed SpectroNet block diagram.

In Figure 10, SpectroNet uses 2 dense blocks. Each
dense block consists of a batch normalization layer, a ReLu
activation function, and two convolutional layers. And, each
transition layer consists of a batch normalization layer,
a ReLu activation function, a convolutional layer, and an
average pooling layer.

The dense block and transition layer diagram are shown
in Figure 11. A dense block consists of a sequence of
BN-ReLu-Conv block and is ended by a convolution layer,

while a transition layer consists of a sequence of BN-ReLu-
Conv block, and is ended by an average pooling layer. The
sequence of the BN-ReLu-Conv block stands for a batch
norm layer, a ReLu activation function, and a convolution
layer. The sequence of these layers is important because each
layer has its own purpose. The batch Norm layer normalizes
each batch of the input data before the nonlinearity activation
function(ReLu) is applied. This is done to improve training
stability and add regularization to the model. The ReLU
Activation function gives nonlinearity to the data, making
it easier for the convolution layer to extract its feature,
and reduce the chance of overfitting. Lastly, the closing
convolution layer and the average pooling layer are added as
additional feature extraction and dimensionality reduction.

B. HARDWARE AND SOFTWARE SPECIFICATION
There are two hardware platforms that are used in this work.
They are a Personal Computer (PC) and a GPU Board Jetson
Xavier NX. The PC is used to create, train, validate, and
test the SpectroNet using the dataset. Furthermore, the Jetson
Xavier NX is used to implement the SpectroNet, optimize it
using TensorRT, and perform a real-time inference using real
human voice. The hardware specifications of the PC and the
Jetson Xavier NX are shown in Table 5 and 6, respectively.

TABLE 5. Hardware specification of the PC used to implement
SpectroNet.

TABLE 6. Hardware specification of jetson xavier NX.

In Table 5, the PC also has a GPU installed, this means that
TensorFlow can be run on this PC in GPU-optimized mode.
In Table 6, Jetson Xavier NX has a 6-core Arm CPU, 8GB
RAM, and NVIDIA Volta GPU.

SpectroNet is implemented in both the PC and the Jetson
Xavier using Python programming language. However, the
TensorFlow version used in PC and Jetson Xavier is
different. The PC uses the Windows 10 Operating System,
so the maximum TensorFlow version that supports GPU
optimization is 2.10.0. And, the Jetson Xavier NX uses
Jetpack 5.1.2 TensorFlow version. Therefore, the maximum
TensorFlow version that supports GPUoptimization is 2.12.0.
The recapitulation of the software specification of the PC
and Jetson Xavier implementation is shown in Table 7 and 8,
respectively.
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FIGURE 11. Dense block diagram and transition layer diagram.

C. DATASET
The dataset that is used to train, validate, and test the model
is the Google Speech Commands dataset [26]. From that
dataset, 10 words (out of 24 commandwords) are chosen. The
spoken words are ‘‘go’’, ‘‘on’’, ‘‘off’’, ‘‘yes’’, ‘‘no’’, ‘‘up’’,
‘‘down’’, ‘‘left’’, ‘‘right’’, and ‘‘stop’’. From this selected
10 words, a total of 38,546 speech data is used. These data are
then separated into 80% training data, 10% validation data,
and 10% test data.

TABLE 7. Software specification of the PC used to implement SpectroNet.

TABLE 8. Software specification of jetson xavier NX.

D. BLOCK DIAGRAM OF THE SYSTEM
The work done in this paper can be explained by a block
diagram, which can be seen in Figure 12. In Figure 12,
a Jetson Xavier NX is used as the embedded device
chosen to implement SpectroNet. A microphone is con-
nected to the Jetson Xavier NX via a USB sound-
card. 10 LEDs are connected to the GPIO port of
the Jetson Xavier NX to indicate the output of the
system.

The real implemented system also can be seen in Figure 12.
In Figure 12, the system consists of a Jetson Xavier NX,
a VGA Cable to output display to an external monitor, a USB
sound card to provide an audio peripheral, a headset to
provide audio Input and Output, and a set of LED as the class
indicator.

FIGURE 12. Implemented system for the proposed SpectroNet.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this paper, we divide the experiments into two phases.
The first is deep learning model design. The second is deep
learning model optimization using TensorRT. In the design
phase, we design SpectroNet. It is trained, validated, and
tested using a subset of Google Speech Commands Dataset
v2. In this phase, the training accuracy, validation accuracy,
training loss, validation loss, as well as the execution time
of the corresponding metric will be observed. To further
highlight the performance of SpectroNet, we trained several
other deep learning models with various architectures and
compared their performance. In the implementation phase,
the trained SpectroNet model is implemented in the Jetson
Xavier NX, and then the performance of the implemented
model will be tested using a subset of Google Speech
Commands Dataset v2. The testing accuracy, as well as
the inference time of the system, will be observed. Finally,
in the optimization phase, SpectroNet is optimized using the
TensorRT library to speed up the inference time. The testing
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FIGURE 13. Training loss vs epoch plot for various deep learning models.

FIGURE 14. Training accuracy vs epoch plot for various deep learning models.

accuracy, as well as the inference time, will be observed in
this phase.

A. DEEP LEARNING MODEL DESIGN
As stated in the opening of this section, the objective of this
phase is to create a low-complexity CNN-LSTMmodel to do
Keyword Spotting on the Google Speech Commands Dataset
v2. To achieve this, SpectroNet was created. To further
assess the performance of SpectroNet, we select several
Deep Learning for Keyword Spotting models and train them
with our dataset using as similar parameters as possible
to the parameters stated in their respective papers. The
models are AlexNet, which is the CNN model that we
previously proposed in [54], SBNet, which is a CNN model
that was created for environmental sound classification and
is proposed in [55], DSCNN, a CNN model which uses
depthwise separable convolution layer which is proposed
in [56], and C1G2BiLSTM, a CNN-LSTM model proposed
in [23]. They are all trained using the parameters stated in
Table 9. The training phase is done using the PC.

TABLE 9. Training parameters used to train the deep learning models.

In Table 9, all of the models are trained using the same
parameters. All models are trained using Adam Optimizer
with an initial learning rate of 0.001. The loss function used
is Sparse Categorical Crossentropy, to match the class label
that uses integer coding instead of one hot encoding. The
data is batched with 64 batch size. Finally, all the models are
trained for 100 epochs maximum, but validation patience of
10 epochs is set to avoid overfitting the model.

Table 10 shows the final result of the training and validation
phase of each model. In Table 10, the training accuracy
of each model reaches above 90% and their training loss
is below 0.2. This indicates that all the models have good
accuracy. However, there are overfitting problems. DSCNN
has suffered the most from the overfitting problem, while
AlexNet has suffered the least from the overfitting problem.
The proposed model, SpectroNet, has the second lowest
overfitting percentage of 2.84 %, only lost to AlexNet with
2.29% overfit.

In terms of the training epoch needed, all of the
models never reach the maximum training epoch of 100%.
AlexNet uses the least training epoch of 22 epochs, while
C1G2BiLSTM uses the most training epoch of 36 epochs.
The proposed model, which is SpectroNet, needs 27 epochs
to complete training. This number is second least, being only
more than AlexNet.

Figures 13, 14, 15, and 16 show the loss vs epoch and
accuracy vs epoch of the Deep Learning Models during
the training and validation processes. Figure 13 shows the
training loss vs epoch plot while Figure 14 shows the training
accuracy vs epoch plot. Figure 15 shows the validation loss
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FIGURE 15. Validation loss vs epoch plot for various deep learning models.

FIGURE 16. Validation accuracy vs epoch plot for various deep learning models.

TABLE 10. Training and validation result of each deep learning model.

TABLE 11. Model performance comparison of various deep learning
models and SpectroNet.

vs epoch plot and Figure 16 shows the validation accuracy vs
epoch plot. In Figures 13 and 14, the training accuracy and
loss of C1G2BiLSTM take the longest time to reach good
value, while the training accuracy and loss of SpectroNet take
the shortest time to reach good value. This also translates to
their validation loss and accuracy. Moreover, the validation
loss and accuracy of SpectroNet and AlexNet are not stable
as depicted in Figures 15 and 16. However, training themwith
a lower initial learning rate, for example, an initial learning
rate of 0.0001 increases their training time significantly while
not improving their performance significantly.

After the training and validation phases are done, a testing
phase is performed on each of the Deep Learning models.

The test is done using Jetson Xavier NX. In this phase, Test
Accuracy, along with Inference time, and total parameters
needed in the model are compared. The comparison can be
seen in Table 11.
As in Table 11, AlexNet has the best accuracy, while

DSCNN has the worst accuracy. In terms of latency,
DSCNN is the fastest model, while AlexNet has the biggest
latency or inference time. This corresponds to their total
number of parameters, with DSCNN having the least number
of parameters and AlexNet having the most number of
parameters.

Overall, AlexNet is the best-performing model, since it
has the highest accuracy, fastest training time (in epoch),
and least overfitting percentage. This further increases the
superiority of AlexNet in image recognition problems for
voiceMel Spectrogram images. However, AlexNet has a very
high complexity. It has almost 60M total parameters and has
themost latency. This makes AlexNet unsuitable for real-time
keyword-spotting applications.

In contrast to AlexNet, DSCNN is the least complexmodel.
It needs the least amount of total parameters and the least
latency. However, It doesn’t have a good performance in
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terms of accuracy. The accuracy of DSCNN, especially its test
accuracy, is very low, making it unreliable for the Keyword
Spotting system.

Therefore, we select SpectroNet as the model for our
real-time Keyword Spotting system. This selection is based
on its good accuracy and low complexity. With 99.847%
fewer parameters than AlexNet, it can achieve comparable
accuracy, while having 28.57% less latency.

SpectroNet can perform with such high accuracy while
having a low number of parameters because of its good
feature extraction method. The DenseNet effectively limits
the depth of the CNN needed to extract spatial data. It also
uses one-dimensional convolution to avoid convolution along
the time axis, thus it reduces the total number of parameters
and avoids losing any temporal data that can be extracted
using LSTM.

B. SPECTRONET OPTIMIZATION USING TENSORRT
To further optimize the performance of SpectroNet, further
optimization technique needs to be applied. In this paper,
TensorRT will be used to further optimize the SpectroNet.
Optimization is performed using FP-32 and FP-16 precision.
The summary of the optimization process is shown in
Table 12.

TABLE 12. Optimization summary.

As shown in Table 12, TensorRT converts 52.57% of the
total operation performed in SpectroNet when FP32 precision
is used, and 53.97% of the total operation performed in
SpectroNet when FP16 precision is used. This indicates
that TensorRT has successfully converted more than 50% of
the total operations performed in SpectroNet. Furthermore,
TensorRT manages to reduce the total number of operations
needed in SpectroNet from 369 to 365 operations when FP16
precision is used.

After the optimization is complete, the optimized model is
tested using a real human voice. Each word is tested 10 times
by the model, so there are a total of 100 real human voices
tested. Model accuracy and inference time are observed. A
comparison of optimization results is shown in Table 13.

In Table 13, the accuracy of the model slightly drops
after optimization, but the performance drop is insignificant.
Despite the performance drop, the inference time decreases
quite significantly. FP32 optimization gives 10% speedup
and FP16 optimization gives 14.75% speedup from the
non-optimized model. This makes the FP16 optimization
the best option for optimizing SpectroNet in Jetson Xavier
NX. However, the downside of using FP16 precision is
longer build time, as shown in Table 12, where FP16
precision needs approximately 66.29% more time to com-
plete building the model. Finally, the real-time demo is

demonstrated in a video that can be seen using this link
https://youtu.be/1jDInCVdyvU.

TABLE 13. Optimization result comparation.

VI. CONCLUSION
In this paper, we have successfully created an efficient
deep-learning architecture called SpectroNet. SpectroNet
reaches 93% real-time accuracy after being trained using a
subset of the Google Speech Commands v2 dataset. This is
a good performance considering it only uses around 70%
less trainable parameters than other common deep learning
architecture, making it a good choice for real-time implemen-
tation of Keyword Spotting systems. To improve the real-time
performance of the network, a model optimization technique
will be applied.

TensorRT is used in this paper to optimize the model. FP32
and FP16 precision is chosen as the data precision used in
the optimization process. TensorRT successfully optimizes
the model by speeding up the inference time by 10% if FP32
precision mode is used and 14.75% if FP16 precision mode is
used. However, there is a slight accuracy drop of 0.33% after
optimization. This drop is insignificant and the optimization
process is considered successful and worth it. Compared to
other software-implemented networks, optimized SpectroNet
with FP16 precision has 40%-50% less inference time.

For future works, a specific topic may be chosen to be
implemented using SpectroNet in Jetson Xavier NX. For
example, a smart house system and music player can be good
topic options. When applying this system to a certain topic,
issues such as dataset creation and noise robustness should
be addressed. Moreover, implementations in other platforms
such as FPGA and IC are also very interesting to be explored.
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