
Received 7 February 2024, accepted 12 March 2024, date of publication 21 March 2024, date of current version 28 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380479

A GPU-Based Ising Machine With a
Multi-Spin-Flip Capability for
Constrained Combinatorial
Optimization
SATORU JIMBO 1, (Graduate Student Member, IEEE), TATSUHIKO SHIRAI 2, (Member, IEEE),
NOZOMU TOGAWA 2, (Member, IEEE), MASATO MOTOMURA 1, (Fellow, IEEE),
AND KAZUSHI KAWAMURA 1, (Member, IEEE)
1Tokyo Institute of Technology, Yokohama 226-8502, Japan
2Department of Computer Science and Communications Engineering, Waseda University, Tokyo 169-8555, Japan

Corresponding author: Satoru Jimbo (jimbo.satoru@artic.iir.titech.ac.jp)

This work was supported in part by JST CREST JPMJCR18K3, in part by JST CREST JPMJCR19K4, and in part by JSPS KAKENHI
under Grant JP23H05489.

ABSTRACT Ising machines are domain-specific computers that solve combinatorial optimization
problems (COPs). They utilize an Ising model to represent a COP and search for the optimal spin
configuration of the Ising model to solve the COP. Most Ising machines are based on simulated annealing
(SA) and update the spin configuration according to single-spin-flip Markov Chain Monte Carlo methods.
However, supporting a multi-spin flip is important to enhance the search performance of SA-based Ising
machines when constrained COPs are solved. In this paper, we extend the merge method, which was
introduced to provide a multi-spin-flip capability for SA-based Ising machines, and formulate it as a series
of matrix multiplications that can be executed on a graphics processing unit (GPU) efficiently. We then
construct a GPU-based Ising machine that implements the GPU-oriented merge method together with an
extended SA algorithm. We finally demonstrate its superiority over the state-of-the-art GPU-based Ising
machine for quadratic knapsack problems.

INDEX TERMS Constrained combinatorial optimization, graphics processing unit (GPU), Ising machine,
Ising model, multi-spin flip, simulated annealing (SA).

I. INTRODUCTION
Ising machines [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14] have attracted attention in
various industry fields as efficient solvers for combinatorial
optimization problems (COPs). They utilize an Isingmodel to
represent COPs [15], [16], [17]. The Isingmodel has a system
energy called Hamiltonian as a function of binary variables
called spins; each spin takes either+1 or−1. Solving a COP
corresponds to finding the ground state (i.e., the optimal spin
configuration that minimizes the system energy).

The associate editor coordinating the review of this manuscript and

approving it for publication was Shih-Wei Lin .

Various Ising machines [3], [4], [5], [6], [7], [8], [9], [10],
[11] have been developed so far. Most of them are based on
simulated annealing (SA) that updates the spin configuration
according to single-spin-flip Markov Chain Monte Carlo
(MCMC) methods; i.e, a next candidate spin configuration
is generated by a single-spin-flip operation that changes a
spin value from +1 to −1 or from −1 to +1. SA-based
Ising machines implement the single-spin-flip operations
on application specific integrated circuit (ASIC) [3], [9] or
graphics processing unit (GPU) [11] to accelerate the ground-
state search.

However, the single-spin-flip operations are not suitable
for solving constrained COPs such as knapsack problem,

43660

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0005-6710-8897
https://orcid.org/0000-0001-7375-4119
https://orcid.org/0000-0003-3400-3587
https://orcid.org/0000-0003-1543-1252
https://orcid.org/0000-0002-0795-2974
https://orcid.org/0000-0003-1343-0838

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

traveling salesman problem, etc. When a constrained COP
is converted into an Ising model, the Hamiltonian is
constructed such that the feasible solutions (FSs), i.e., the
solutions satisfying the constraints, have lower energy than
the infeasible solutions (IFSs). Since a multi-spin flip is
always necessary to make transitions among FSs, passing
IFSs in the search process is inevitable as long as single-
spin-flip MCMCmethods are adopted. Nevertheless, making
a transition to an IFS causes significant energy increase,
and hence is difficult to be accepted in the latter half of
annealing. Therefore, enabling direct transitions among FSs
without passing IFSs should be a mandatory requirement
to enhance the search performance of SA-based Ising
machines.

Some studies have introduced a multi-spin-flip operation
into Ising-machine hardware; such Ising machines are clas-
sified into two types. The first type [10] updates a specified
set of spins simultaneously and induces a transition within
the subspace of FSs. However, introducing this mechanism
into Ising-machine hardware makes it specialized for some
COPs, and hence limits the applicability. The second type [4],
[6] updates the spin configuration according to multi-spin-
flip MCMC methods. However, this type of Ising machines
is difficult to induce a direct transition between two FSs since
the methods decide to flip each spin according to the energy
difference caused by its single flip. For these reasons, it is
challenging and important to develop an Ising machine with
a multi-spin-flip capability that meets the three requirements
below:

(i) The Ising machine does not require any operations
specialized for limited COPs.

(ii) The Ising machine decides to flip multiple spins
according to the energy difference caused by the multi-
spin flip.

(iii) The Ising machine is efficiently realized on parallel
computing platforms such as ASIC or GPU.

In recent years, the merge method [18] was proposed
to provide a multi-spin-flip capability for SA-based Ising
machines. It can engineer a multi-spin flip using single-spin-
flip MCMC methods by temporarily generating Hamiltonian
H ′ that is deformed from the original Hamiltonian H . For
example, when a single spin i in H ′ describes multiple spins
1, 2, and 3 in H , a single-spin flip of spin i is equivalent to
the three-spin flip; i.e., their spin values σ1, σ2, and σ3 are
simultaneously changed to −σ1, −σ2, and −σ3, respectively.
Note that the merge method meets requirements (i) and (ii)
since H ′ keeps the Ising-model format and the single-spin
flip in H ′ is evaluated by the energy difference of the
corresponding multi-spin flip in H . However, requirement
(iii) is not met since it sequentially constructs H ′, and thus
is unsuitable for the implementation onto parallel computing
platforms. Furthermore, the previous work implemented this
method on a CPU outside an Ising machine, which incurs
a large computation cost for data transfer between the CPU
and the Ising machine. For truly evaluating the benefit of the

merge method, integrating it with Ising-machine hardware is
necessary.

This paper proposes a GPU-based Ising machine with a
GPU-oriented merge method that meets all the requirements
(i), (ii), and (iii). GPU is a powerful computing platform
to realize Ising machines [6], [11], [12], [13]. The main
contributions of this paper are summarized as follows:
• We propose a GPU-oriented merge method. Its main
body is a series of matrix multiplications, which can be
executed on a GPU efficiently. In the proposed merge
method, we newly introduce a merging matrix that gives
the relation between H and H ′.

• We extend the proposed merge method for replica
parallel execution. The merging matrix is decomposed
into two matrices: one is shared among all replicas and
the other is a diagonal matrix (i.e., unnecessary to store
the off-diagonal elements). As a result, we can save the
memory to store multiple merging matrices.

• We develop a GPU-based Ising machine that inte-
grates the proposed merge method into an extended
SA algorithm. The experimental results for quadratic
knapsack problems (QKPs) demonstrate its superiority
over the state-of-the-art GPU-based Ising machine.

The rest of this paper is organized as follows. In Section II,
we review the merge method. In Section III, we first show
an obstacle to implement the merge method on a GPU and
then propose a GPU-oriented merge method. The proposed
merge method is further extended in Section IV for replica
parallel execution on a GPU. In Section V, we show the
experimental results for QKPs and verify the effectiveness
of our GPU-based Ising machine with the proposed merge
method. This paper is finally wrapped up in Section VI.

II. BACKGROUND KNOWLEDGE
This section introduces SA-based Ising machines utilized for
solving COPs. Then, we review the merge method to improve
the search performance of SA-based Ising machines.

A. SA-BASED ISING MACHINE
When a COP is solved on an Ising machine, the Ising model
provides a unified way to represent the problem. The Hamil-
tonian H for an N -spin Ising model is defined as a function
of the spin configuration σ = {σi|σi ∈ {+1,−1}}Ni=1:

H (σ) = −
1
2

∑
i̸=j

Jijσiσj −
∑
i

hiσi, (1)

where Jij ∈ R and hi ∈ R are the interaction between spins
i and j and the bias on spin i, respectively. The interactions
are symmetric (i.e., Jij = Jji), and the diagonal elements
are set to 0 (i.e., Jii = 0). A set of the interactions J ∈
RN×N and the biases h ∈ RN represents a COP. The spin
configuration σ that makes the system energy (i.e., the value
of H) minimum corresponds to the optimal solution of the
COP. Efficient Ising-model formulations of COPs have been
discussed in [15] and [16].

VOLUME 12, 2024 43661

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

SA-based Ising machines [3], [9], [11] iteratively update
the spin configuration according to single-spin-flip MCMC
methods such that the next configuration is generated by
flipping one spin. In the search process, the spin-flip
probability is controlled with a hyperparameter T (> 0)
called pseudo temperature; the value of T is initially set
to be large for aggressively flipping spins and is gradually
decreased for finally fixing the spin configuration. The finite
temperature helps the spin configuration escape from local
optimal solutions. However, a multi-spin flip capability is
required to efficiently solve constrained COPs on SA-based
Ising machines, as explained in Section I.

B. MERGE METHOD
1) OVERVIEW
The merge method [18] engineers a multi-spin flip on
SA-based Ising machines by deforming the Hamiltonian H .
In thismethod, one ormore spins aremerged into another spin
to describe multiple spins using a single spin. When spin i is
merged into spin j, a flip of spin i is synchronized with a flip
of spin j, resulting in the two-spin flip. Here, spin i is called
a merged spin, and spin j is called the destination of spin i; a
spin not merged into another spin is called an unmerged spin.
The deformed Hamiltonian H ′ keeps the Ising-model format
(i.e., (1)) and has different interactions J ′ and biases h′ from
the original Hamiltonian H (see the specific form of J ′ and
h′ in (3) and (4)):

H ′(σ ′) = −
1
2

∑
i̸=j

J ′ijσiσj −
∑
i

h′iσi, (2)

where σ ′ is a subset of σ and consists of unmerged spins
only. Utilizing the mechanism where a single-spin flip in H ′

is equivalent to a multi-spin flip in H , the merge method
potentially enables direct transitions among FSs.

Fig. 1 shows the annealing computation flow with the
merge method. In the main loop on an Ising machine, each
spin is sequentially and iteratively updated according to
the flip probability calculated from the local field and the
pseudo temperature. The merge method integrates merge
process and demerge process into this computation flow as
a sub-loop. Here, the number of iterations of the sub-loop is
denoted by merge interval IM. First, in the merge process,
a deformed Hamiltonian H ′ is generated from H and σ .
Then, spins in σ ′ are updated on the Ising machine using the
deformed Hamiltonian H ′. Finally, in the demerge process,
the complete spin configuration σ is recovered from the
output spin configuration σ ′.

The merge process generates two vectorsm = {mi}Ni=1 and
s = {si}Ni=1 to construct the deformed Hamiltonian H ′. mi
takes a value from the set of integers {1, 2, · · · ,N } so that
mmi = mi is satisfied. Spin i is an unmerged spin if mi = i
and is a merged spin if mi = j (j ̸= i); in the latter case, spin
j is the destination of spin i. si takes a value of +1 or −1 and
is given by si = σiσmi . When spin i is merged into spin j, si
takes+1 if σi = σj, otherwise si takes−1. On the other hand,

FIGURE 1. Annealing computation flow w/ and w/o the merge
method [18]. Up arrow in open circle and down arrow in filled circle
indicate the spin values of +1 and −1, respectively.

Algorithm 1Merge Process
Input: σ , J , h, Pmerge
Output: m, s, σ ′, J ′, h′

1: σ ′← σ , J ′← J , and h′← h
2: mi← i and si← 1 for 1 ≤ i ≤ N
3: for i = 1 to N do
4: Generate a random number rand ∈ [0, 1)
5: if rand < Pmerge then
6: Randomly select an unmerged spin j (j ̸= i)

for 1 ≤ j ≤ N
7: mi← j and si← σiσj
8: σ ′← σ ′\{σi}

9: J ′← update_interactions(J ′, i, j, si)
10: h′← update_biases(h′, i, j, si)
11: end if
12: end for
13: for i = 1 to N do
14: while mmi ̸= mi do
15: si← smisi
16: mi← mmi
17: end while
18: end for

when spin i is an unmerged spin, si always takes +1. Then,
the interactions and the biases ofH ′ are respectively given as:

J ′ij =


N∑
k=1

N∑
l=1

skslJklδmk ,iδml ,j : i ̸= j

0 : i = j,

(3)

h′i =
N∑
k=1

skhkδmk ,i, (4)

43662 VOLUME 12, 2024

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

FIGURE 2. A demonstration of the merge process using a 5-spin Ising model with a spin configuration {σ1, σ2, σ3, σ4, σ5} = {−1,−1, −1, +1, +1}. In this
example, spin 1 is merged into spin 4, and then spin 4 is merged into spin 5.

where δi,j denotes the Kronecker delta. The demerge process
recovers σ by σi = siσmi for 1 ≤ i ≤ N .

2) ALGORITHM OF MERGE PROCESS
Algorithm 1 shows a merge process to assign mi and
si from the current spin configuration σ . It sequentially
attempts to merge spin i into a randomly selected unmerged
spin j with probability Pmerge (lines 3–12). Here, Pmerge is
a hyperparameter called merge probability to control the
number of merged spins. The interactions connected to spin
j and the bias on spin j are updated when spin i is merged
into spin j (lines 9–10). After completing the sequential merge
attempt for all spins, si and mi are updated for merged spins
to satisfy mmi = mi (lines 13–18).

Algorithm 2 shows the update functions of J ′ and h′ in
Algorithm 1. For a given merged spin i and its destination
spin j, the interactions connected to spin j and the bias on
spin j are updated in lines 4–5 and 12, respectively. Then, the
interactions connected to spin i and the bias on spin i are set
to 0 in lines 7 and 13, respectively, since they do not exist in
the deformed Hamiltonian H ′.
Fig. 2 demonstrates Algorithm 1 when a 5-spin Ising

model with {σ1, σ2, σ3, σ4, σ5} = {−1,−1,−1,+1,+1} is
given. In this example, spin 1 is merged into spin 4, and then
spin 4 is merged into spin 5. When spin 1 is merged into spin
4, we obtain m1 = 4 and s1 = σ1σ4 = −1. After that,
the interactions connected to spin 4 are updated using those
connected to spin 1, and the bias on spin 4 is updated using
that on spin 1. Spin 4 is merged into spin 5 in the same way;

Algorithm 2 Functions to Update J ′ and h′

1: function update_interactions(J ′, i, j, si)
2: for k = 1 to N do
3: if k ̸= j then
4: J ′kj← J ′kj + siJ

′
ki

5: J ′jk ← J ′jk + siJ
′
ik

6: end if
7: J ′ki← 0 and J ′ik ← 0
8: end for
9: return J ′

10: end function
11: function update_biases(h′, i, j, si)
12: h′j← h′j + sih

′
i

13: h′i← 0
14: return h′

15: end function

we obtain m4 = 5 and s4 = σ4σ5 = +1. Finally, s1 and
m1 are updated to s1 = −1 and m1 = 5 to satisfy mmi = mi.
We also demonstrate using Fig. 2 that a single-spin flip in

H ′ is equivalent to a multi-spin flip in H . In this example, the
original Hamiltonian H is a function of {σ1, σ2, σ3, σ4, σ5},
and the spin configuration is {−1,−1,−1,+1,+1} (see the
leftmost panel). On the other hand, the deformedHamiltonian
H ′ is a function of {σ2, σ3, σ5}, and the spin configuration
is {−1,−1,+1} (see the rightmost panel). When spin 5 in
H ′ is flipped (i.e., the spin value changes from +1 to −1),
the system energy changes from H ′({−1,−1,+1}) = 12 to

VOLUME 12, 2024 43663

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

H ′({−1,−1,−1}) = −12; thus, the energy decreases by
−24 as a result of the single-spin flip. In the original Hamilto-
nian, the energy changes from H ({−1,−1,−1,+1,+1}) =
18 to H ({+1,−1,−1,−1,−1}) = −6 when spins 1, 4, and
5 are flipped simultaneously; i.e., the single-spin flip in H ′

decreases the same energy as the three-spin flip in H . In this
way, the merge method captures the energy difference caused
by a multi-spin flip on SA-based Ising machines.

III. GPU-ORIENTED MERGE METHOD
The previous work [18] has demonstrated that the merge
method improves the search performance of SA-based Ising
machines when constrained COPs are solved. However, it is
necessary to integrate the merge method with Ising-machine
hardware for truly evaluating its benefit. In this section,
we first discuss the obstacle to implement the merge method
onto parallel computing platforms. Then, we propose an
extended merge method that can be executed on a GPU
efficiently.

A. PROBLEM AND MOTIVATION
We need to integrate the merge method with an Ising machine
so that its processing time can be comparable to the annealing
computation time. Ising machines accelerate the annealing
computation by exploring parallel operations. However, the
merge method is difficult to accelerate on parallel computing
platforms since the merge process (i.e., Algorithm 1) is a
sequential process; interactions updated in a single merge
attempt are dependent on the subsequent attempt, as shown
in Fig. 2.

In Algorithm 1, assigning mi and si can be separated from
updating interactions and biases; i.e., the algorithm can be
rewritten as follows:

1) Assignmi and si for all spins using the spin configuration
σ and merge probability Pmerge.

2) Generate the interactions J ′ and the biases h′ from
the original Hamiltonian (i.e., J and h) using m and s
obtained in step 1.

It should be noted that we can execute step 1 in parallel for all
spins by first arranging spins into two groups, merged spins
and unmerged spins, and then assigning the destination of
each merged spin.

However, it is challenging to eliminate the sequential
process in step 2. Modern GPUs process matrix multiplica-
tions quite efficiently since they have mixed-precision matrix
multiplication units called Tensor Cores. Therefore, in the
next section, we formulate step 2 as a series of matrix
multiplications to execute it on a GPU efficiently.

B. FORMULATION
This section newly presents a theorem to generate a deformed
Hamiltonian (i.e., J ′ and h′) with matrix multiplications.
Theorem 1: Set a merging matrix M by (5) such that the

k-th column keeps mk and sk by storing the value sk at the

FIGURE 3. Change in the interaction J ′

ij between two unmerged spins i
and j through the merge process. Interactions finally merged into Jij are
classified into three groups: (a) {Jkj |k ∈ Xi } (yellow edges), (b) {Jil |l ∈ Xj }
(blue edges), and (c) {Jkl |k ∈ Xi , l ∈ Xj } (red edges). The interactions
{Jkk′ |k, k ′ ∈ (Xi ∪ {i }), k ̸= k ′} and {Jll ′ |l, l ′ ∈ (Xj ∪ {j}), l ̸= l ′} (gray edges)
are left out in the merge process.

mk -th row and padding 0 for the remaining rows.

M = {Mik}
N×N , Mik =

{
sk : mk = i
0 : Otherwise.

(5)

Then, J ′ij = (MJMT)ij for i ̸= j and h′i = (hMT)i.
Proof 1: The interaction J ′ij between two unmerged spins i

and j after completing the merge process is first explored. Let
Xi be the set of spins merged into spin i; i.e., a spin k ∈ Xi
satisfies mk = i. As illustrated in Fig. 3, interactions merged
into Jij are classified into three groups: (a) j and k ∈ Xi, (b)
i and l ∈ Xj, and (c) k ∈ Xi and l ∈ Xj. On the basis of this
grouping, the interaction J ′ij in (3) is calculated as follows:

J ′ij = Jij +
∑
k∈Xi

skJkj +
∑
l∈Xj

slJil +
∑
k∈Xi

∑
l∈Xj

skslJkl, (6)

where the second, third, and fourth terms in the right-hand
side correspond to groups (a), (b), and (c), respectively. Also,
the bias h′i after completing the merge process (i.e., (4)) is
calculated as follows:

h′i = hi +
∑
k∈Xi

skhk . (7)

Then, J̃
′
:= MJMT and h̃

′
:= hMT must satisfy the

following conditions:

(i) J̃
′
is a symmetric matrix.

(ii) J̃ ′ij = J ′ij in (6) holds for unmerged spins i and j, and
J̃ ′kj = 0, J̃ ′il = 0, and J̃ ′kl = 0 hold for merged spins
k ∈ Xi and l ∈ Xj.

(iii) h̃′i = h′i in (7) holds for an unmerged spin i, and
h̃′k = 0 holds for a merged spin k ∈ Xi.

43664 VOLUME 12, 2024

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

As for condition (i), an off-diagonal element J̃ ′ij is
transformed into J̃ ′ji as follows:

J̃ ′ij = (MJMT)ij =
N∑
b=1

(
N∑
a=1

MiaJab

)
Mjb

=

N∑
a=1

(
N∑
b=1

MjbJba

)
Mia = (MJMT)ji = J̃ ′ji. (8)

The above transformation uses the symmetric property of the
original interactions (i.e., Jab = Jba).

As for conditions (ii) and (iii), it is necessary to consider
each row of the merging matrix M . The i-th row has at least
one non-zero element and is given by:

Mik =


sk : k ∈ Xi
1 : k = i
0 : Otherwise.

(9)

Similarly, the j-th row is given by:

Mjl =


sl : l ∈ Xj
1 : l = j
0 : Otherwise.

(10)

From (9) and (10), J̃ ′ij = (MJMT)ij and h̃′i = (hMT)i are
respectively transformed as follows:

J̃ ′ij =
N∑
b=1

(
N∑
a=1

MiaJab

)
Mjb

=

N∑
b=1

Jib +∑
k∈Xi

skJkb

Mjb

=

Jij +∑
k∈Xi

skJkj

 (11)

+

∑
l∈Xj

Jil +∑
k∈Xi

skJkl

 sl

= Jij +
∑
k∈Xi

skJkj +
∑
l∈Xj

slJil

+

∑
k∈Xi

∑
l∈Xj

skslJkl,

h̃′i =
N∑
a=1

haMia = hi +
∑
k∈Xi

skhk . (12)

On the other hand, all the elements in the k and l-th rows are
0 since mk = i (̸= k) and ml = j (̸= l) indicate that no spins
are merged into spins k ∈ Xi and l ∈ Xj.

J̃ ′kj =
N∑
b=1

(
N∑
a=1

MkaJab

)
Mjb, (13)

J̃ ′il =
N∑
b=1

(
N∑
a=1

MiaJab

)
Mlb, (14)

J̃ ′kl =
N∑
b=1

(
N∑
a=1

MkaJab

)
Mlb, (15)

h̃′k =
N∑
a=1

Mkaha. (16)

Equations from (13) to (16) show that J̃ ′kj = 0, J̃ ′il = 0, J̃ ′kl =
0, and h̃′k = 0 hold since all the underlined values are 0. Thus,
conditions (ii) and (iii) are satisfied.

Since all the conditions are satisfied, J ′ij = (MJMT)ij for
i ̸= j and h′i = (hMT)i. □
Theorem 1 enables generating the interactions J ′ and

the biases h′ of the deformed Hamiltonian with matrix
multiplications only. In other words, we can efficiently
execute step 2 of the two-stage merge process on Tensor
Cores.

Now, we revisit the example shown in Fig. 2 and confirm
thatMJMT and hMT give J ′ and h′, respectively. Since spins
1 and 4 are merged into spin 5 in this example, m and s are
given by:

m =
[
5 2 3 5 5

]
,

s =
[
−1 +1 +1 +1 +1

]
.

Thus, the merging matrixM is constructed as follows:

M =


0 0 0 0 0
0 +1 0 0 0
0 0 +1 0 0
0 0 0 0 0
−1 0 0 +1 +1

 .

Note that, as mentioned earlier, the row vectors for unmerged
spins (i.e., 2, 3, and 5) have one or more non-zero elements.
Using the merging matrixM , we obtain

MJMT
=


0 0 0 0 0
0 0 2 0 4
0 2 0 0 1
0 0 0 0 0
0 4 1 0 −12

 ,

hMT
=
[
0 −3 5 0 −7

]
.

The interaction matrix MJMT is the same as J ′ in Fig. 2
except for a diagonal element (i.e., (MJMT)55). Since the
deformed Hamiltonian H ′ only depends on the off-diagonal
elements of J ′ (see (2)),MJMT is equivalent to J ′. Also, the
bias vector hMT is the same as h′ in Fig. 2.
Moreover, a minor modification to Theorem 1 can correct

the diagonal elements to zeros as follows:
Corollary 2:

J ′ = MJ∗MT, (17)

where

J∗ = {J∗ij }
N×N , J∗ij =

{
0 : mi = mj
Jij : Otherwise.

(18)

VOLUME 12, 2024 43665

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

Proof 2: Equation (11) shows that non-zero values of a
diagonal element J ′ii arise due to the two types of interactions;
one is those between spins i and k ∈ Xi, and the other is
those between two different spins in Xi. Note that mk = i is
only satisfied for spins k = i or k ∈ Xi. Thus, we can make
J ′ii = 0 by preparing a masked interaction matrix J∗ instead
of J . More explicitly,

J ′ii = (MJ∗MT)ii

=

N∑
b=1

(
N∑
a=1

MiaJ∗ab

)
Mib

= 2
∑
k∈Xi

skJ∗ki +
∑
k∈Xi

∑
k ′∈Xi

sksk ′J
∗

kk ′

= 0. (19)

As demonstrated in Fig. 3, the above two types of interactions
are left out in the merge process. This means that the masked
interactions in (18) do not affect the off-diagonal elements of
J ′ calculated by (11), and thus J ′ = MJ∗MT. □
Also, the demerge process, i.e., σi = siσmi (1 ≤ i ≤ N),

is formulated using the merging matrixM as follows:
Corollary 3: Set a spin configuration σ̃ by:

σ̃ = {σ̃i}
N , σ̃i =

{
σi : mi = i
X : Otherwise,

(20)

where X shows a don’t care value. Then, the spin configura-
tion σ is recovered by σ̃M , i.e., σ = σ̃M
Proof 3: The i-th element of σ̃M is given by:

(σ̃M)i =
N∑
a=1

σ̃aMai. (21)

From the definition of M in (5), the i-th column of M has
only one non-zero element si at the mi-th row; i.e., Mai = si
if a = mi, otherwiseMai = 0. Then,

(σ̃M)i = siσ̃mi . (22)

Moreover, σ̃mi = σmi holds because mmi = mi. Thus,
(σ̃M)i = siσmi = σi. □

IV. GPU-BASED ISING MACHINE WITH MERGE METHOD
This section constructs a GPU-based Ising machine with the
merge method proposed in Section III. When an annealing
algorithm is implemented on a GPU, preparing replicas is an
effective way to enhance the execution efficiency. However,
integrating the proposed merge method with the replica
parallel execution results in large memory consumption.
In this section, we first discuss the memory issue, and then
propose a decomposition method for saving the memory.

A. MEMORY ISSUE
When a GPU-based Ising machine is developed, preparing
multiple replicas that search for multiple solutions in parallel
is a major strategy to fully utilize computing resources on a
GPU [12], [13]. This replica parallel execution reduces the

required time per a single solution. Let R be the number of
replicas. The spin vector σ is extended to an R × N matrix
represented by:

σ ∗ =


σ (1)

σ (2)

...

σ (R)

 ,

where σ (r) (r = 1, 2, . . . ,R) shows the spin configuration of
the r-th replica.

In this work, we focus on parallel-trial SA (PSA) [9], one
of the SA-based annealing algorithms. It inspects all spins in
parallel, and then selects one spin from spin-flip candidates.
In the replica parallel execution of PSA, the calculation of
local fields on R × N spins at every Monte Carlo (MC) step
is the most computationally expensive part. The local fields
ĥ
(r)

of the r-th replica are given by:

ĥ
(r)
= σ (r)J + h. (23)

When the proposed merge method is integrated into PSA
with multiple replicas, an individual merging matrix M (r) is
required for every replica; this is because the merging matrix
is constructed using the current spin configuration. In other
words, O(RN 2) memory space is required to store merging
matrices. As a result, the number of replicas is strictly limited
due to the memory capacity of a GPU, making it difficult to
enhance the execution efficiency. Therefore, we should take
measures to reduce memory consumption.

B. MERGING MATRIX DECOMPOSITION
One approach for reducing memory consumption is to share
some information among replicas. If replicas share the
combination of merged spins and their destinations, we can
make the vector m common in all replicas. However, even
in this case, the vector s must be kept in each replica
individually, preventing the merging matrix M from being
shared among replicas. In order to resolve this situation,
we propose a new theorem to decompose the merging
matrixM :
Theorem 4: Set two N × N matrices L and D by (24)

and (25), respectively.

L = {Lik}N×N , Lik =

{
1 : mk = i
0 : Otherwise,

(24)

D = diag(s). (25)

Then,M = LD.
Proof 4: From (5) and (24), Mik = Liksk holds. Then,

(LD)ik =
N∑
a=1

LiaDak = LikDkk = Liksk . (26)

Thus,Mik = (LD)ik . □
Theorem 4 separates m and s by L and D, respectively.

As a result, the matrix L can be shared among all replicas by

43666 VOLUME 12, 2024

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

introducing the assumption that the combination of merged
spins and their destinations is shared among replicas. Here,
spin i is a merged spin when Lii = 0, whereas an unmerged
spin when Lii = 1. Although the matrix D remains required
for individual replicas, we need to store the diagonal elements
only. Therefore, the memory space is reduced to O(N 2) +
O(RN) by this matrix decomposition.

C. MERGE PSA
In this section, we propose an algorithm, Merge PSA, where
the merge method is integrated into PSA with multiple
replicas. After that, we explain how to implement this
algorithm on a GPU.

1) ALGORITHM
In Merge PSA, the local-field calculation of the r-th replica
is extended to:

ĥ
(r)
= σ̃ (r)J ′(r) + h′(r), (27)

where J ′(r) and h′(r) are the deformed interaction matrix and
bias vector of the r-th replica, respectively, and σ̃ (r) is a
spin configuration given by (20). Here, it is necessary to
use (17) to obtain J ′(r) since the diagonal elements of J ′(r)

affect the values in ĥ
(r)
. This means that we need to calculate

the masked interaction matrix J∗ given by (18) in the merge
process. Note that J∗ can be calculated as follows:
Corollary 5:

J∗ = J − J ⊙ (LTL), (28)

where ⊙ is Hadamard product.
Proof 5: An element (LTL)ij gives the inner product of the

i-th and the j-th column vectors in L. It becomes 1 only when
mi = mj, otherwise it becomes 0:

(LTL)ij =
N∑
a=1

LaiLaj =

{
1 : mi = mj
0 : Otherwise

(29)

since the i-th (j-th) column of L has only one element with
value 1 at the mi-th (mj-th) row. Comparing (29) with (18)
implies that J∗ = J − J ⊙ (LTL). □

As a result, (27) is rewritten as follows:

ĥ
(r)
= σ̃ (r)M (r)J∗

(
M (r)

)T
+ h

(
M (r)

)T
= σ (r)J∗

(
LD(r)

)T
+ h

(
LD(r)

)T
= σ (r)J∗D(r)LT + hD(r)LT, (30)

where we have used σ (r)
= σ̃ (r)M (r) in Corollary 3.

Algorithm 3 shows Merge PSA; the two-stage merge
process in Section III-A and the demerge process are
introduced into PSA. The merge process first generates L and
D(r) in the first stage (line 3). Then, in the second stage, the
merge process generates J ′(r) and h′(r) to calculate the local
fields in (30), which is explicitly given as follows:

Algorithm 3Merge PSA for a Single Replica (r)

Input: σ (r), J , h, Pmerge, S, IM, T (s)
Output: σ (r)

1: for s = 1 to S do
2: if s mod IM = 1 then
3: (L,D(r))← generate(σ (r), Pmerge)
4: h′(r)← hD(r)LT

5: J∗← J − J ⊙ (LTL)
6: end if
7: ĥ

(r)
← σ (r)J∗D(r)LT + h′(r)

8: for i = 1 to N do
9: pi←

1

1+ exp
(
2ĥ(r)i σ

(r)
i /T (s)

)
10: Generate a random number rand ∈ [0, 1)
11: fi← (pi > rand) & (Lii = 1)
12: end for
13: if ∃i, fi = True then
14: Randomly select a spin j with fj = True
15: for k = 1 to N do
16: σ

(r)
k ← (−2× Ljk + 1)× σ

(r)
k

17: end for
18: end if
19: end for

• The second term of (30) is calculated in advance (line 4)
since R bias vectors (i.e., h′(r) for 1 ≤ r ≤ R) consume
only O(RN) memory space.

• The masked interaction matrix J∗ is calculated in
advance (line 5). J∗ is shared among all replicas, and
thus consumes only O(N 2) memory space.

The demerge process is executed with a single-spin-flip
operation in PSA (lines 13–18); in lines 15–17, all spins with
Ljk = 1 (i.e., mk = j) are flipped, meaning that merged spins
k ∈ Xj are flipped simultaneously with an unmerged spin j.
Note that we need to remove merged spins (i.e., spins k with
Lkk = 0) from spin-flip candidates in PSA, as in line 11.

Algorithm 4 shows the function to generate L and D(r) in
Algorithm 3. This algorithm arranges all N spins into two
groups, merged spins and unmerged spins, in lines 3–8. Lii is
set to 1 for an unmerged spin i (line 6), whereas it remains
0 if spin i is selected as a merged spin. For an unmerged spin
i, D(r)

ii = s(r)i = +1. Then, the destination of each merged
spin is assigned in lines 9–14. For a merged spin k (i.e., spin
k with Lkk = 0), an unmerged spin i (i.e., spin i with Lii = 1)
is randomly selected (line 11) and is set as the destination by
Lik = 1 and D(r)

kk = s(r)k = σ
(r)
k σ

(r)
i (line 12).

2) GPU IMPLEMENTATION
Algorithm 3 is implemented on a GPU to execute R replicas
in parallel. This implementation stores the matrix D(r) in the
form of:

D∗ = {D∗ri}
R×N

, D∗ri = D(r)
ii . (31)

VOLUME 12, 2024 43667

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

Algorithm 4 A Function to Generate L and D

1: function generate(σ (r),Pmerge)
2: Lik ← 0 and D(r)

ik ← 0 for 1 ≤ i, k ≤ N
3: for i = 1 to N do
4: Generate a random number rand ∈ [0, 1)
5: if rand ≥ Pmerge then
6: Lii← 1, D(r)

ii ←+1
7: end if
8: end for
9: for k = 1 to N do

10: if Lkk = 0 then
11: Randomly select a spin i with Lii = 1
12: Lik ← 1, D(r)

kk ← σ
(r)
k σ

(r)
i

13: end if
14: end for
15: return L,D(r)

16: end function

FIGURE 4. Matrix operations in (32).

FIGURE 5. Matrix operations in (33).

Then, as functions of σ ∗ and D∗, h′(r) in line 4 and ĥ
(r)

in
line 7 are calculated across all replicas as follows:

h′(r)i =

((
h⊙ D∗

)
LT
)
ri

, (32)

ĥ(r)i =
(((

σ ∗J∗
)
⊙ D∗

)
LT
)
ri
+ h′(r)i . (33)

Figs. 4 and 5 illustrate the matrix operations in (32) and (33),
respectively. In (32), the bias vector h is broadcast to the
R × N matrix, and then is multiplied by the matrix D∗

element-wise; this element-wise multiplication corresponds
to hD(r) for 1 ≤ r ≤ R. After that, the resulting matrix
is multiplied by the matrix LT. In (33), the spin matrix σ ∗

is multiplied by the matrix J∗, and then is multiplied by the

TABLE 1. Specification of eight QKP instances [19] used in this paper.

matrix D∗ element-wise to obtain σ (r)J∗D(r) for 1 ≤ r ≤ R.
Finally, the resulting matrix is multiplied by the matrix LT,
and then the deformed bias matrix given by (32) is added to
it.

The matrix operations in (32) and (33) are classified into
two types; one is matrix multiplication between a R × N
matrix and a N × N matrix, and the other is element-wise
multiplication or addition between two R× N matrices. The
former type has O(RN 2) computational complexity, being
processed on Tensor Cores. On the other hand, the latter type
is executed on general-purpose parallel computing units, and
its computational complexity is O(RN). Furthermore, line 3
and lines 8–12 in Algorithm 3 have O(RN) computational
complexity, and thus are classified into the latter type.

V. EXPERIMENTAL RESULTS
In order to evaluate the performance of Merge PSA,
we developed GPU-implemented Merge PSA (GiMP) and
GPU-implemented PSA (GiP), and solved several QKP
instances provided in [19]. In this evaluation, we used
CUDA® and cuBLAS on NVIDIA® TITAN RTX™ as a
GPU, AMD EPYC™7542 as a CPU, Ubuntu 18.04 LTS
as an operating system. Moreover, we solved the same
QKP instances using a state-of-the-art GPU-based Ising
machine [11] to compare the results with GiMP; in this
section, this GPU-based Ising machine is labeled as ‘‘Ising
machine’’ for simplicity.

A. SETUP
1) ISING-MODEL FORMULATION OF QKP
QKP is one of the COPs, which packs items into a knapsack
with a capacity c and maximizes the total profit P brought by
the packed items. In the K items given in this problem, item i
has weight wi and profit pii. Also, unlike the basic knapsack
problem, QKP gives profit pij (i ̸= j) that is added to the
total profit P when items i and j are both packed into the
knapsack. In this experiment, we selected eight instances in
a QKP benchmark suite [19] considering the distribution of
three factors (the number of items K , capacity c, and the rate
of non-zero values in {pij|1 ≤ i < j ≤ K }) that characterize
QKP; their specification is summarized in Table 1.

A QKP is formulated as a quadratic unconstrained binary
optimization (QUBO) problem [18]. In this formulation, K
binary variables x = {xi|xi ∈ {1, 0}}Ki=1 are used, where xi

43668 VOLUME 12, 2024

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

shows whether item i is packed into the knapsack (‘‘1’’) or
not (‘‘0’’). Solving the QKP is finding a configuration x that
maximizes the total profit P given by:

P =
K∑
i=1

K∑
j=i

pijxixj, (34)

while satisfying the capacity constraint given by:

W =
K∑
i=1

wixi ≤ c. (35)

Based on the objective function (34) and the constraint (35),
the energy function HQUBO is defined by:

HQUBO = −P+ A

{
W −

(
c−

wmax∑
d=1

yd

)}2

, (36)

where A is a constraint coefficient and wmax is the maximum
weight of all K items. Equation (36) introduces auxiliary
binary variables {yd }

wmax
d=1 to represent the inequality (35) in

the energy function. As a result, K + wmax binary variables
are required to formulate a QKP as a QUBO problem. Note
that (36) is transformed into (1) when a QKP is solved on
GiMP, GiP, or Ising machine.

2) EXPERIMENTAL CONDITIONS
In order to compare GiMP, GiP, and Ising machine, we evalu-
ate their performance from the perspective of solution quality
and execution time. Since they search for solutions according
to stochastic processes, the performance evaluation is based
on k (≫ 1) solutions and time to obtain the k solutions as
follows:

For k solutions obtained in ttotal seconds, FSs that satisfy
the capacity constraint (35) are extracted; here, kFS denotes
the number of extracted solutions. Then, the performance is
evaluated using the effective time t ′ and the average residual
energy 1H in (37) and (38), respectively:

t ′ =
ttotal
kFS

[s], (37)

1H =

∑kFS
r=1(H

(r)
− Hopt)

kFS
, (38)

where H (r) is equivalent to the total profit P derived from
the r-th replica, and Hopt is the optimal total profit recorded
in [19]. By utilizing (37) and (38), we can study the
correlation between the time to obtain a FS and its average
quality. Now, how to obtain k solutions by GiMP/GiP and
Ising machine is explained in the following:

GiMP and GiP can specify the number of replicas R and
the number of MC steps S. Then, we obtained k solutions by
selecting the top-k (k ≤ R). In this experiment, we varied S
as shown in Table 2, whereas we fixed R to 128. Referring to
the previous work [20], [21], we used the pseudo temperature
scheduling given by:

T (s) = Tinit ×
(
Tfin
Tinit

) s−1
S−1

, (39)

TABLE 2. Parameter settings used in GiMP and GiP.

TABLE 3. Merge interval IM used in GiMP.

and set Tinit and Tfin as shown in Table 2. In GiMP, we also
need to specify the merge probability Pmerge and the merge
interval IM. We varied IM for each S as in Table 3, whereas
we set Pmerge = 0.7. For every QKP instance and every
parameter set, we conducted the following procedure:
1) Initialize the constraint coefficient A in (36) to 5.
2) Run GiMP (or GiP) and obtain R = 128 solutions.
3) Extract FSs and calculate the FS rate.
4) IncreaseA by 5 and return to step 2 if the FS rate is below

0.9; otherwise, exit.

As for Ising machine, on the other hand, we only specify
the approximate annealing time tapp and the maximum
number of solutions Rmax output from it. In this exper-
iment, we assumed three settings for tapp: 0.1, 1, and
10 seconds. Note that we can also run Ising machine
without specifying Rmax. Given a QKP instance and a setting
of tapp, we conducted the following procedure to obtain
k solutions:
1) Initialize the constraint coefficient A in (36) to 5.
2) Run Isingmachine 20 timeswithout specifyingRmax and

estimate the number of solutions Rest expected to obtain
in a single run. When we have obtained Rtotal solutions
in this step, Rest is calculated by ⌊Rtotal/20⌋.

3) Calculate the FS rate based on Rtotal solutions.
4) Specify Rmax to 1.
5) Run Ising machine 20 times with specifying Rmax and

obtain k (≈ 20× Rmax) solutions.
6) Increase Rmax by 1R and repeat step 5 as long as

Rmax < Rest is satisfied. 1R = 1 if Rmax ≤ 10;
otherwise, 1R = 5.

7) IncreaseA by 5 and return to step 2 if the FS rate is below
0.9; otherwise, exit.

B. RESULTS
Experimental results when eight QKP instances are solved
by GiMP (□), GiP (◦), and Ising machine (△) are shown
in Fig. 6. The horizontal and the vertical axes of each figure
are the effective time t ′ calculated by (37) and the average
residual energy 1H calculated by (38), respectively. Small t ′

means that a large number of FSs are obtained in a short time,

VOLUME 12, 2024 43669

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

FIGURE 6. Experimental results when eight QKP instances [19] are solved by GiMP (□), GiP (◦), and Ising machine (△).

whereas small1H indicates that many high-quality solutions
are obtained. We expect that increasing the effective time
improves the average residual energy. The results in Fig. 6
demonstrate that GiMP, GiP, and Ising machine follow this
trend regardless of the three factors in QKP. Also, GiMP
outperforms the others in all the instances. In particular,
the superiority is observed in the region where the effective
time is small; i.e., GiMP can find relatively high-quality FSs

quickly. Furthermore, GiMP finds the optimal solutions for
some problem instances (see Figs. 6a, 6b, and 6c).

In Fig. 7, the dependence of the merge interval IM on the
performance of GiMP is evaluated. As mentioned earlier,
we should evaluate the performance based on the effective
time and the average residual energy. We solved the instance
r_300_50_1 by GiMP while varying IM ∈ {5, 10, 100}. It is
apparent that using a small IM tends to increase the execution

43670 VOLUME 12, 2024

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

FIGURE 7. Relationship between the effective time and the average
residual energy while varying the merge interval IM of GiMP. The QKP
instance used in this evaluation is r_300_50_1.

time because the frequency of the merge process increases.
However, the results of IM = 5 and 10 show a similar trend
with respect to the performance. This means that GiMP with
IM = 5 obtains high-quality FSs with fewer MC steps than
that with IM = 10. Also, the result of IM = 100 is inferior to
the others. Since the merge fixes the combination of merged
spins and their destinations, we need to use a relatively small
IM and try various combinations.

C. DISCUSSION
In this section, we discuss the performance differences
between GiMP and the others.

First, we compare the results of GiMP and GiP in Fig. 6.
We can find that the merge method has a significant effect
on the performance. The Ising-model formulation of QKP
implies that GiP tends to avoid packing more items than the
knapsack capacity since the energy is always increased by
this operation. On the other hand, GiMP can keep searching
for solutions without violating the capacity constraint. This
is because GiMP can flip multiple spins to pack and unpack
several items simultaneously.

Next, we compare the results of GiMP and Ising machine
in Fig. 6. We can observe large differences in the region
where the effective time is small. This means that GiMP can
find relatively high-quality FSs even in a short time. As the
effective time increases, the solution quality is improved
both in GiMP and Ising machine, making the differences
small.

D. SCALABILITY OF GIMP
In this section, we study the impact of the number of spins
N and the number of replicas R on the execution time of
GiMP.

First, we evaluate the dependence of the execution time per
replica on the number of replicas R at each N . We prepared
three Ising models with N = 800, N = 2000, and N = 8000,
and run GiMP while varying R in the range of 24 to 29.
We set the number of MC steps S and the merge interval

FIGURE 8. Relationship between the number of replicas and the
execution time per replica. In this experiment, we ran GiMP with the
number of MC steps S = 105 for Ising models with 800, 2000, and
8000 spins.

FIGURE 9. Relationship between the number of spins and the execution
time.

IM to 105 and 10, respectively. Fig. 8 shows the result.
In all three models with 800 spins (□), 2000 spins (◦),
and 8000 spins (1), the required time per a single solution
decreases as the number of replicas R increases. More
specifically, the execution efficiency is improved about
10 times by increasing R from 24 to 29. When solving a
constrained COP, we usually need to obtain a lot of solutions
beyond the required number since we must remove infeasible
solutions. The scalability of GiMP offers a great advantage in
such a situation.

Next, we evaluate the dependence of the execution time on
the number of spins N . We added seven Ising models with
N = 128, 256, 512, 1024, 3000, 5000, 7000 and ran GiMP
for ten Ising models. We assumed R = 512, S = 105, and
IM = 10 in this evaluation. The result is shown in Fig. 9 with
the blue dots (•). In the range of N < 1000, the execution
time varies proportionally to N (see the dotted line in Fig. 9),
whereas it follows a proportion to the square of N for N >

1000 (see the dashed line in Fig. 9). We can explain why the
scaling changes beyond a border (i.e., beyond N = 1000 in
this case) as follows. As discussed in Section IV-C2, GiMP
has O(RN) and O(RN 2) computation processes. For small
N , the O(RN) process dominantly contributes the execution
time. However, the weight of the O(RN 2) process grows as

VOLUME 12, 2024 43671

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

N increases. Note that the border depends on both R and the
specification of GPU used to implement GiMP.

VI. CONCLUSION
The recently-proposed merge method is an important tech-
nique to enhance the search performance of SA-based Ising
machines. However, its sequential process was an obstacle
to integrate it into existing Ising-machine hardware. In order
to overcome this obstacle, this paper newly proposed the
GPU-oriented merge method by formulating the merge
method as a series ofmatrixmultiplications using themerging
matrix. Then, we developed Merge PSA by integrating the
proposed merge method into replica parallel execution of
PSA. Finally, Merge PSA was implemented on a GPU and
evaluated for QKP instances. Compared to the state-of-the-
art GPU-based Ising machine, our proposed Ising machine
demonstrated the superiority because high-quality FSs could
be obtained in a shorter time. Moreover, we confirmed that
the replica parallel execution effectively reduces the time per
a single solution.

In this paper, we constructed the merging matrix such that
merged spins and their destinations are selected at random.
On the other hand, the previous work [18] has demonstrated
that putting restrictions on the selection further enhances the
search performance for some types of constrained COPs.
In the future, we will introduce such restrictions into our
GPU-oriented merge method by modifying the generation
process of the matrix L, and verify our method for a wider
range of constrained COPs.

REFERENCES
[1] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze,

N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, and
E. M. Chapple, ‘‘Quantum annealing with manufactured spins,’’ Nature,
vol. 473, pp. 194–198, May 2011.

[2] C.McGeoch and P. Farré, ‘‘Advantage processor overview,’’ D-Wave Syst.,
Burnaby, BC, Canada, Tech. Rep., 14-1058A-A, 2022.

[3] K. Kawamura, J. Yu, D. Okonogi, S. Jimbo, G. Inoue, A. Hyodo,
A. L. García-Arias, K. Ando, B. H. Fukushima-Kimura, R. Yasudo,
T. V. Chu, and M. Motomura, ‘‘Amorphica: 4-replica 512 fully connected
spin 336 MHz metamorphic annealer with programmable optimization
strategy and compressed-spin-transfer multi-chip extension,’’ in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2023,
pp. 42–43.

[4] K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto,
M. Yamaoka, H. Teramoto, A. Sakai, S. Takamaeda-Yamazaki, and
M. Motomura, ‘‘STATICA: A 512-spin 0.25M-weight annealing processor
with an all-spin-updates-at-once architecture for combinatorial optimiza-
tion with complete spin–spin interactions,’’ IEEE J. Solid-State Circuits,
vol. 56, no. 1, pp. 165–178, Jan. 2021.

[5] T. Takemoto, K. Yamamoto, C. Yoshimura, M. Hayashi, M. Tada, H. Saito,
M. Mashimo, and M. Yamaoka, ‘‘A 144Kb annealing system composed of
9×16Kb annealing processor chips with scalable chip-to-chip connections
for large-scale combinatorial optimization problems,’’ in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 64–65.

[6] T. Okuyama, T. Sonobe, K.-I. Kawarabayashi, and M. Yamaoka,
‘‘Binary optimization by momentum annealing,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 100, no. 1, pp. 1–9,
Jul. 2019.

[7] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and
H. Mizuno, ‘‘A 20K-spin Ising chip to solve combinatorial optimization
problems with CMOS annealing,’’ IEEE J. Solid-State Circuits, vol. 51,
no. 1, pp. 303–309, Jan. 2016.

[8] Y. Su, T. T. Kim, and B. Kim, ‘‘FlexSpin: A scalable CMOS Ising
machine with 256 flexible spin processing elements for solving complex
combinatorial optimization problems,’’ in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, vol. 65, Feb. 2022, pp. 1–3.

[9] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and
H. G. Katzgraber, ‘‘Physics-inspired optimization for quadratic uncon-
strained problems using a digital annealer,’’ Frontiers Phys., vol. 7, p. 48,
Apr. 2019.

[10] M. Bagherbeik, P. Ashtari, S. F. Mousavi, K. Kanda, H. Tamura, and
A. Sheikholeslami, ‘‘A permutational Boltzmann machine with parallel
tempering for solving combinatorial optimization problems,’’ in Proc. Int.
Conf. Parallel Problem Solving Nature, 2020, pp. 317–331.

[11] Fixstars Amplify AE. Accessed: Apr. 1, 2023. [Online]. Available:
https://amplify.fixstars.com/en/engine

[12] H.Goto, K. Endo,M. Suzuki, Y. Sakai, T. Kanao, Y.Hamakawa, R. Hidaka,
M. Yamasaki, and K. Tatsumura, ‘‘High-performance combinatorial
optimization based on classical mechanics,’’ Sci. Adv., vol. 7, no. 6,
pp. 1–9, Feb. 2021.

[13] H. Goto, K. Tatsumura, and A. R. Dixon, ‘‘Combinatorial optimization by
simulating adiabatic bifurcations in nonlinear Hamiltonian systems,’’ Sci.
Adv., vol. 5, no. 4, pp. 1–8, Apr. 2019.

[14] N. Mohseni, P. L. Mcmahon, and T. Byrnes, ‘‘Ising machines as hardware
solvers of combinatorial optimization problems,’’Nature Rev. Phys., vol. 4,
no. 6, pp. 363–379, May 2022.

[15] A. Lucas, ‘‘Ising formulations of many NP problems,’’ Frontiers Phys.,
vol. 2, no. 5, pp. 1–15, 2014.

[16] F. Glover, G. Kochenberger, and Y. Du, ‘‘A tutorial on formulating and
using QUBO models,’’ 2018, arXiv:1811.11538.

[17] T. Shirai and N. Togawa, ‘‘Spin-variable reduction method for handling
linear equality constraints in Ising machines,’’ IEEE Trans. Comput.,
vol. 72, no. 8, pp. 2151–2164, Aug. 2023.

[18] T. Shirai and N. Togawa, ‘‘Multi-spin-flip engineering in an Ising
machine,’’ IEEE Trans. Comput., vol. 72, no. 3, pp. 759–771, Mar. 2023.

[19] A. Billionnet and E. Soutif. (2005). (QKP) Instances. [Online]. Available:
https://cedric.cnam.fr/~soutif/QKP/

[20] K. Tamura, T. Shirai, H. Katsura, S. Tanaka, and N. Togawa, ‘‘Performance
comparison of typical binary-integer encodings in an Isingmachine,’’ IEEE
Access, vol. 9, pp. 81032–81039, 2021.

[21] S. Jimbo, D. Okonogi, K. Ando, T. V. Chu, J. Yu, M. Motomura, and
K. Kawamura, ‘‘A hybrid integer encoding method for obtaining high-
quality solutions of quadratic knapsack problems on solid-state annealers,’’
IEICE Trans. Inf. Syst., vol. 105, no. 12, pp. 2019–2031, 2022.

SATORU JIMBO (Graduate Student Member,
IEEE) received the B.E. degree in mechanics from
TohokuUniversity, in 2021, and theM.E. degree in
information and communication engineering from
Tokyo Institute of Technology, in 2023, where he is
currently pursuing the Ph.D. degree. His research
interest includes Ising computing.

TATSUHIKO SHIRAI (Member, IEEE) received
the B.Sci., M.Sci., and Dr.Sci. degrees from The
University of Tokyo, in 2011, 2013, and 2016,
respectively. Currently, he is an Assistant Profes-
sor with the Department of Computer Science and
Communications Engineering,Waseda University.
His research interests include quantum dynamics,
statistical mechanics, and computational science.
He is a member of JPS.

43672 VOLUME 12, 2024

S. Jimbo et al.: GPU-Based Ising Machine With a Multi-Spin-Flip Capability

NOZOMU TOGAWA (Member, IEEE) received
the B.Eng., M.Eng., and Dr.Eng. degrees from
Waseda University, in 1992, 1994, and 1997,
respectively, all in electrical engineering. Cur-
rently, he is a Professor with the Department
of Computer Science and Communications Engi-
neering, Waseda University. His research interests
include VLSI design, graph theory, and compu-
tational geometry. He is a member of IEICE and
IPSJ.

MASATO MOTOMURA (Fellow, IEEE) received
B.S., M.S., and Dr.Eng. from Kyoto University,
Kyoto, Japan, in 1985, 1987, and 1996, respec-
tively. In 1987, he joined NEC Central Research
Laboratories, Kawasaki, Japan, working on vari-
ous hardware architectures, including approximate
text search engines, multi-threaded on-chip paral-
lel processors, computing-in-memory chips, and
reconfigurable systems. From 2001 to 2008, he
was with NEC Electronics, Kawasaki, Japan,

where he led the research and business development of the dynamically
reconfigurable processor (DRP) he invented. He was also a Visiting
Researcher at the MIT Laboratory for Computer Science, Cambridge,
USA, from 1991 to 1992 and a Group Manager of architecture-circuits
interdisciplinary research in NEC central laboratory from 2008 to 2011,
respectively. In 2011, he changed his position from industry to academia
and became a Professor at Hokkaido University, Sapporo, Japan, to
cultivate solid-state circuit research activities with younger generations.
Later he became a Professor at Tokyo Institute of Technology (TokyoTech),
Yokohama, Japan, in 2019, where he established and has been leading
the artificially intelligent computing (ArtIC) research unit. Since 2011, he
has been actively working on reconfigurable and parallel architectures for
deep neural networks, machine learning, annealing machines, and general
intelligent/domain-specific computing. His group has published ‘‘AI chip’’
papers almost every year at ISSCC and symposium on VLSI since 2017. He
is a member of IEICE, IPSJ, JSAI, and EAJ. He received the IEEE JSSC
Annual Best Paper Award in 1992, the IPSJ Annual Best Paper Award in
1999, and the IEICE Achievement Award in 2011, respectively. He was also
awarded Ichimura Academic Award and Yamasaki Award in 2022 for his
leadership in developing and productizing DRP technology (a series of DRP-
based microcontroller products are now produced by Renesas Electronics),
as well as the accumulation of AI-chip achievements in recent years. He is a
2022 IEEE Fellow (SSCS) for contributions to memory-logic integration of
reconfigurable chip architecture.

KAZUSHI KAWAMURA (Member, IEEE)
received the B.Eng., M.Eng., and Dr.Eng. degrees
from Waseda University, in 2012, 2013, and
2016, respectively, all in computer science.
From 2018 to 2019, he was an Assistant Pro-
fessor with the Department of Communications
and Computer Engineering, Waseda University.
Currently, he is a Specially Appointed Assis-
tant Professor with the Institute of Innovative
Research, Tokyo Institute of Technology. His

research interests include Ising computing and LSI design methodologies.
He is a member of IEICE and IPSJ.

VOLUME 12, 2024 43673

