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ABSTRACT Battery technology used in Electric Vehicles has recently drawn numerous researchers’
attention. Monitoring of battery condition, especially the state of charge, is necessary to ensure the safe
and reliable operation of the battery. Even though researchers have proposed numerous SOC estimation
techniques, exploration is still required to find a suitable technique that can adapt versatile lithium-ion
battery chemistries. Deep learning (DL) is a well-known machine learning strategy that has been shown
to outperform many other approaches for SOC estimation in recent studies. However, choosing the right
hyperparameters and appropriate use of suitable input parameters is crucial to get the best performance out
of DL models. Currently, researchers use well-established heuristics approaches to choose hyperparameters
by manual tuning or using thorough search techniques like grid search and random search. This leads
the models to be inefficient and less accurate. This paper suggests a methodical, automated procedure for
choosing hyperparameters using a Bayesian optimisation algorithm. In addition to that, average voltage and
average current are used as the important input parameters along with battery parameters (current, voltage
and temperature) for accurate SOC prediction as they involve the past and present history of voltages and
load conditions, respectively. The proposed methods are validated and tested for varying hidden neuron
count with four different datasets involving different temperatures, namely, -10◦C, 0◦C, 10◦C and 25◦C.
The findings demonstrate that, for all three RNN types (LSTM, GRU and BiLSTM), the ideal configuration
yields SOC estimations with less than 2% root mean square and 5% maximum error. Among the three,
BiLSTM with 70 hidden neurons estimates SOC with reduced estimation error compared to other methods.
By utilizing the suggested approach, battery management systems that monitor the condition of batteries in
various environmental circumstances can become more reliable.

INDEX TERMS Electric vehicle, battery management system, state of charge, long short term memory,
gated recurrent unit, bilayer LSTM.

I. INTRODUCTION
Countries create energy-saving and emission-reduction tech-
nology to reduce carbon dioxide emissions and environ-
mental repercussions like climate change, sea level rise,
greenhouse effect, and biodiversity loss. COP26 in Glasgow,
UK, addressed these energy crisis challenges. Government
leaders from several countries, business people, and groups
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focused on 100% zero-emission vehicles met to develop prin-
ciples to accomplish the Paris Agreement goals by 2040 [1].
In [2], the researcher states that car electrification and renew-
able energy sources are promising solutions to the energy
crisis and 40% GHGE reduction. In 2021, EV sales reached
6.75 million units, up 108% from 2020, since they minimize
car emissions and store renewable energy [3].

Current energy storage methods in transportation include
lithium-ion, nickel-cobalt, lead acid, and nickel-cadmium
batteries [4]. Lithium-ion batteries are preferred for their
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higher specific power, energy density, longevity, and lower
self-discharge rate [5]. Lithium-ion batteries have NMC,
NCA, LFP, LCO, LMO, and LTO chemical compositions.
Li-ion battery characteristics are compared in Figure 1.
The figure demonstrates that nickel cobalt aluminium oxide
(NCA) batteries have the best specific energy and power.
Reduced manufacturing cost is a key factor in Li-ion battery
adoption across industries. Although Li-ion batteries have
many benefits, they need a safe operating zone. Since Li-ion
batteries use a charge transfer reaction to store energy, regular
use of the battery causes problems with degradation. These
problems include the loss of active materials and lithium
inventory, the formation and breakdown of Solid Electrolyte
Interface film, and a deposit of metallic lithium in the anode.
Thus, exceeding lithium-ion battery packs’ tolerance will
damage them and make them dangerous [6]
ABMS is a software and hardware controller that improves

battery life and performance. Figure 2 depicts BMS schemat-
ically. Estimating the State of Charge, State of Health, cell
balance, charge and discharge control, and thermal and power
flow management are essential battery management system
activities. SOC estimate is crucial among all the functions [7].
SOC is defined as a ratio of the battery’s remaining capac-
ity to the rated capacity at a specific condition by the US
Advanced Battery Consortium (USABC) [8].
Due to their unique diffusion method and complex elec-

trochemical reaction, Li-ion batteries’ rated capacity will not
match the manufacturer’s rating. The battery’s rated capacity
will also change with age, temperature, and environmental
conditions. Along with manufacturing faults, potentiomet-
ric, amperometric, and conductometric sensor limitations
affect SOC estimation [9]. Numerous methods, including the
Open Circuit Voltage method, the Ampere Hour method,
model-based methods, filter-based methods, observer-based
methods, and data-based methods, have been presented for
the purpose of providing an accurate assessment of voltage
over current (SOC).

The estimation of SOC is critical in BMS. Because of
their recursive nature, many articles proposing SOC esti-
mates use Kalman filter-based algorithms [10], [11], [12].
The main disadvantage of Kalman filter-based approaches is
that they necessitate precise battery modelling and param-
eter identification. Because ML approaches do not impose
chemical or electrical models, they provide an alternative to
precise SOC prediction in light of the significant challenges
associated with battery modelling [13]. Most of the ML
methods use SVM and ANN. However, these methods have
certain limitations that reduce SOC estimating performance.
The manual construction of characteristics from raw signal
data at the input data level requires a lot of labour and
skill. Despite their limited analytical capability and inability
to handle high-dimensional data, shallow learning architec-
tures are used at the model scale [14]. Through the use of
multi-layer nonlinear transformations, deep learning has the
potential to construct deep neural networks (DNNs), which
possess the ability to hierarchically extract complicated

FIGURE 1. Application Comparison of lithium-ion batteries preferred
for EV.

feature information from input data. In order to automatically
extract the internal representation from the input signal and
estimate LiB SOC, a DNN-based end-to-end estimator is
able to perform automatically. Recent years have seen the
development of a multitude of DNN-based SOC estimate
approaches, including LSTM, GRU, and BiLSTM [15], [16],
[17], [18]. A major advantage of RNN-based SOC estimate
methods over conventional approaches is: No requirement
for operating-characteristic battery models. Self-learning its
weight and bias eliminate the need for hand engineering and
parametrization.

One of the major concerns of the data-driven method is the
selection of model hyperparameters, namely, learning rate,
number of hidden units, hidden neurons, batch size, epochs,
activation function and dropout rate. The inappropriate selec-
tion of hyperparameters leads to a reduction in prediction
accuracy [19]. Researchers employ a trial-and-error approach
for hyperparameter selection. Training computation demands
make empirical hyperparameter selection for deep learning
models time-consuming and difficult. The search space for
DL hyperparameters is exponentially large, making trial-and-
error evaluation challenging and time-consuming [20]. The
model’s performance is also influenced by the input param-
eters used for training. Existing research has concentrated
on computing the SOC; nevertheless, it is still necessary to
discover which input attributes are more important in the
calculation of the SOC [21].
Hence, in this paper, the Bayesian optimisation algorithm

is introduced for hyperparameter tuning of RNN algorithms
(LSTM, BiLSTM and GRU), thereby overcoming the draw-
back of the trial and error approach. The impact of variation
in the hidden neuron in the estimation accuracy is anal-
ysed for LSTM, BiLSTM and GRU. Along with the battery
input parameters (current, voltage and temperature), in this
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FIGURE 2. Functions of Battery Management System in Electrical Vehicle System.

FIGURE 3. Classification of data-driven SOC estimation methods [4].

proposed work, average voltage and average current are also
considered as the input parameters for SOC estimation. Since
the average voltage is the average of present and past volt-
ages, it can providemore information about the previous SOC
condition. Similarly, average current can provide information

regarding the present and past load connected to the battery.
The significant contribution of the paper is
• Three deep learning algorithms (LSTM, GRU and
BiLSM) with varied numbers of hidden neurons
are examined, and their architectures and principles
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TABLE 1. Parameter comparison of the proposed method with existing literature.

FIGURE 4. LSTM Structure [17], [36].

FIGURE 5. GRU Structure [19], [26].

are described to elucidate their benefits for SOC
estimation.

• Bayesian optimization algorithm-based hyperparameter
tuning technique is proposed to compensate for the flaw

FIGURE 6. Figure BiLSTM architecture [36].

of manually establishing the network parameters and
helps determine the best network parameters to increase
network performance.

• To verify the proposed model’s accuracy at various oper-
ating temperatures (−10◦C, 0◦C, 10◦C and 25◦C), the
data set obtained from Hamilton’s McMaster Univer-
sity is used. The RMSE of the model obtained during
training and testing is compared with each other and
found that BiLSTM has better performance compared
to LSTM and GRU for the selected input parame-
ters (voltage, current, temperature, average temperature
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FIGURE 7. Flowchart of SOC estimation using DL algorithms.

FIGURE 8. RMSE and Loss function of LSTM-based network trained with 30-neuron.

and average current) under varying numbers of hidden
neurons.

II. LITERATURE REVIEW
Over the past decades, numerous SOC estimation tech-
niques have been proposed. The coulomb counting approach
and the lookup table method are the strategies that are
considered to be conventional techniques. However, both
methods have their limitations in serving as the better option
for the SOC estimation in EVs [22], [23]. To overcome
these drawbacks, numerousmodel-based, observer-based and
filter-based approaches have been proposed. The Kalman
filter is one of the filter-based techniques that has become
more important for determining the battery’s SOC and
SOH. Despite the fact that these methods demonstrate the

nonlinear features of the battery, the need for battery mod-
elling increases the time and computing complexity [24].

In modern times, data-based SOC estimation techniques
have been highly preferred by researchers for accurate SOC
prediction. The recent data-driven methods applied for the
SOC estimation technique are shown in Figure 3. Since SOC
estimation approaches based on deep learning (LSTM, GRU,
DNN, BiLSTM) can directly map sampled battery opera-
tional signals (e.g., current and voltage) to SOC and eliminate
the necessity of laborious battery modelling or feature engi-
neering, researchers are carrying out intense research in this
field [14].

In [16], the LSTM with 500 hidden units is proposed for
SOC estimation. The model was validated using a public
dataset and obtained reduced estimation error at varying oper-
ating conditions. LSTM combined with UKF was proposed
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FIGURE 9. RMSE and training time of LSTM network with 30, 50, 70 and 100 hidden neuron.

in [25], which reduces the noise and improves estimation
accuracy. In [26], the researcher proposed SOC estimation
using GRU, which estimates with the reduced MAE of
0.86%. GRU contains 1000 hidden units connected to an FC
layer with 50 nodes. The researcher validated the proposed
model using two different public datasets. In this work, the
researcher utilized a trial-and-error approach to find the opti-
mal parameter.

Similarly, in [20], CNN-GRU-based SOC estimation was
proposed. In this work also trial and error approach is
used to find the optimal hyperparameter. BiLSTM, BiGRU,
and stacked LSTM-based SOC estimation have also been
proposed to estimate SOC accurately [27]. Many research
articles have also been proposed that focus on the devel-
opment of algorithms for optimal hyperparameter selec-
tion of RNN. The researchers have used the Ensemble
algorithm [18], Particle Swarm optimisation algorithm [28],
genetic algorithm [29], Momentum-based optimizer [30]
and Nesterov optimizer [31] for the optimal hyperparameter
selection. However, the major limitation of these methods is
that the hyperparameter selection is based on selection heuris-
tics. Hence, in the proposed work, the Bayesian optimisation
technique is used for the optimal selection of hyperparam-
eters that provide increased flexibility and a unified model
capable of predicting SOC more accurately under varying
ambient temperatures.

The estimation of SOC based on DL algorithms not only
depends on the optimal hyperparameter selection but also the
correlation of input parameters with the output SOC. From
Table 1, it is observed that most of the researchers have
considered only battery voltage, current and temperature as
the input parameters for the estimation of SOC. Though these
methods have shown encouraging results, there is still room
for development as these models have only taken into account
a portion of the variables that could influence predictions and
have not taken environmental factors into account. In [37],

the effect of auxiliary loads like heating and air conditioning
should have been taken into account. Numerous studies [21]
discovered that an electric vehicle’s energy consumption is
influenced by various factors, including traffic, road ele-
vation, auxiliary loads, wind direction and speed, ambient
temperature, and the starting battery’s level of charge. The
past and present voltage also act as an important factor for
accurate SOC estimation. Therefore, for accurate calculation
of SOC, the impact of all these elements can be considered.
To fill this research gap, along with battery voltage, current
and temperature, average voltage and average current are
used as an input parameter for accurate SOC estimation in
this study. In the future, the study will be elaborated by
considering various environmental and road conditions as the
input parameter for estimation.

III. OVERVIEW OF DEEP LEARNING ALGORITHM
DL algorithms are highly preferred in various disciplines
of EV applications, namely in energy management, predic-
tion of charging demand, estimation of SOH [12], vehicle
detection [38], [39], [40], [41], cell balancing [5], thermal
management, and so on. In this section, three types of RNN,
namely LSTM, GRU and BiLSTM, applied for the estimation
of SOC of EV battery is discussed.

A. LONG SHORT-TERM MEMORY
The existing RNN cannot handle lengthy input sequences due
to explosion problems and the gradient vanishing problem.
Therefore, an advanced gated RNN known as an LSTM is
proposed to handle extended input sequences. Although the
core modules or units of the LSTM and RNN networks are
composed differently, they share the same topological struc-
ture. Figure 4 depicts the architecture of the LSTM network.
Mapping input sequences to output sequences allows it to
characterize nonlinear dynamic systems. The gating system
that regulates neural information processing is added inside
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FIGURE 10. a. Predicted and targeted SOC of LSTM network with 30 hidden neurons obtained during
testing. b: Predicted and target SOC of LSTM network with 50 hidden neurons obtained during testing.
c: Predicted and target SOC of LSTM network with 70 hidden neurons obtained during testing.
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FIGURE 10. (Continued.) d. Predicted and target SOC of LSTM network with 100 hidden neurons
obtained during testing.

each LSTM unit, which otherwise has the same input and
output as the RNN unit. The old and new states are combined
linearly to form the network’s state, with some old states still
existing and flowing. RNN, on the other hand, updates and
replaces the state value entirely at each time step. The input,
forget, and output gates are the three gates that make up an
LSTM. Three gates regulate the information in the cell at
time step t: the forget gate f (t) manages the cell state and
decides whether to remove information from the cell state.
The input gate i(t) updates the state value and decides whether
data should be written to the cell state. The final output gate
o(t) generates cell state c(t) and determines which data is
transmitted as the hidden state output. The candidate state
g (t) is used to decide what information is written to the cell
state. The expression for various gates of LSTM has been
stated in expressions 1 to 7. The hidden state h (t) is intended
to encode a type of characterization of the data from the
previous time step, whereas the cell state c(t) is intended to
encode an aggregate of the data from all previously processed
time steps. The output of each cell in LSTM is generated
through output state y (t) .σ represents the sigmoidal activa-
tion function. The model input weights (Wxi, Wxf , and Wxo),
recurrent weights (Whi, Whf ,andWho), and biases (bi, bf , and
bo) are represented by the LSTM parameter matrices.

Input gate i (t) = σ (Wxixt +Whiht−1 + bi) (1)

Forget gate f (t) = σ
(
Wxf xt +Whf ht−1 + bf

)
(2)

Candidate gate g (t) = σ
(
Wxgxt +Whght−1 + bg

)
(3)

Output gate o (t) = σ (Wxoxt +Whoht−1 + bo) (4)

Cell state c (t) = (f (t) .c (t − 1))+ (i (t) .g (t)) (5)

Hidden state h (t) = o (t) .(σc (t)) (6)

Output state y (t) = σ (Wy (h (t))+ by (7)

B. GATED RECURRENT UNIT
Li et al. proposed the Gated Recurrent Unit (GRU) in 2014
[26]. GRU can achieve long-term sequential dependence and
a straightforward internal structure in all enhanced RNNs.
While the LSTM-based RNN model has demonstrated the
highest level of performance across various machine learning
tasks, its gating mechanism has resulted in significant com-
plexity. In contrast to the LSTM-basedmodel, theGRU-based
model requires less memory and is more effective at elim-
inating gradients due to its simpler structure and fewer
parameters. Figure 5 depicts the GRU structure.
z(t) is defined as an ‘‘update gate’’ that scales the value into

[0, 1]. The amount of new input that should be used to update
the hidden state is decided by the update gate. The ‘‘reset
gate’’ is denoted by the symbol r(t). It resembles the LSTM
forget gate. Reset vector ‘‘r’’ specifies the extent to which the
prior hidden state ought to be forgotten. Candidates’ hidden
state determines the historical data stored. It is usually known
as the GRU cell’s memory component and was estimated
from the reset gate. The expression for various gates and
states of GRU is given from equations 8 and 12. These include
the following: x(t) is the current hidden layer node’s input.
h(t) is the current hidden state, and h(t-1)is the output of the
previously hidden layer node. GRU cell output y (t) depen-
dents on updated hidden state h (t). The model input weights
(Wxr , Wxz, and Wxg), recurrent weights (Whr , Whz,and Whg),
and biases (br and bz) are represented by the GRU parameter
matrices. σ Represents the sigmoidal activation function.

Reset gate r (t) = σ (Wxrxt +Whrht−1 + br ) (8)

Update gate z (t) = σ (Wxzxt +Whzht−1 + bz) (9)

Candidate state g (t) = σ
(
Wxgxt + bg

)
+ (W hght−1.r (t))

(10)
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FIGURE 11. a. RMSE between predicted and target SOC of LSTM for varied hidden neuron and temperature. b.
Max Error between predicted and target SOC of LSTM for varied hidden neuron and temperature.

Hidden state h (t) = ((1− z (t)).g (t))+ (z (t) .h (t − 1))

(11)

Output y (t) = σ (Wy (h (t))+ by (12)

C. BILAYERED LSTM
The term Bidirectional LSTM, also known as BiLSTM,
refers to a sequence model that has two LSTM layers:
one for forward-processing input and another for backward-
processing input [36]. Two unidirectional LSTMs comprise
the bidirectional LSTM architecture, which processes the
sequence forward and backward. The BiLSTM structure is
shown in Figure 6. This architecture could see two distinct
LSTM networks, one receiving the token sequence in its
original order and the other inverted. The final output is the
sum of the probabilities from each LSTM network, each
producing a probability vector as its output. The expressions

regarding forward LSTM are stated in expressions 13 to 18,
for the backward LSTM from 19 to 24 and the final output
gate is given in expression 25. The calculations are similar to
LSTM. The hidden state output of forward LSTM

−−→
h (t) and

backward LSTM
←−−
h (t) together calculates the BiLSTM cell

output y (t).
Forward LSTM

Input gate = σ
(
−→
Wxixt +

−→
Whi
−−→
ht−1 +

−→
bi

)
(13)

Forget gate
−−→
f (t) = σ

(
−→
Wxf xt +

−→
Whf
−−→
ht−1 +

−→
bf

)
(14)

Candidate state
−−→
g (t) = σ

(
−→
Wxgxt +

−→
Whg
−−→
ht−1 +

−→
bg

)
(15)

Output gate
−−→
o (t) = σ

(
−→
Wxoxt +

−→
Who
−−→
ht−1 +

−→
bo

)
(16)

Cell state
−−→
c (t) = (

−−→
f (t).
−−−−−→
c (t − 1))+ (

−→
i (t).
−−→
g (t)) (17)

Hidden state
−−→
h (t) =

−−→
o (t).(σ

−−→
c (t)) (18)
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FIGURE 12. RMSE and loss function of GRU-based network trained with 30 neuron.

FIGURE 13. RMSE and training time of GRU network with 30, 50, 70 and 100 hidden neuron.

Backward LSTM

Input gate
←−
ı(t) = σ

(
←−
Wxlxt +

←−
Whl
←−−
ht−1 +

←−
bl

)
(19)

Forget gate
←−
f (t) = σ

(
←−
Wxf xt +

←−
Whf
←−−
ht−1 +

←−
bf

)
(20)

Candidate state
←−
g(t) = σ

(
←−
Wxgxt +

←−
Whg
←−−
ht−1 +

←−
bg

)
(21)

Output gate
←−
o(t) = σ

(
←−
Wxoxt +

←−
Who
←−−
ht−1 +

←−
bo

)
(22)

Cell state
←−
c(t) = (

←−
f (t) ·

←−−−−
c(t − 1))+ (

←−
l(t).
←−
g(t)) (23)

Hidden state
←−
h(t) =

←−
o(t) · (σ

←−
c(t)) (24)

Output state y(t) = σ
(
Wy
−→
h(t),
←−
h(t)

)
+ by (25)

D. HYPERPARAMETERS’ ROLE IN THE DL ALGORITHM
Hyperparameter tuning, sometimes referred to as hyperpa-
rameter optimisation, is the process of determining which
hyperparameters are optimal to utilize. The model is opti-
mized via the application of optimisation parameters. The
most important hyperparameters of DL algorithms are learn-
ing rate, number of hidden neurons, hidden units, batch size,
dropout rate, epochs, optimizer and activation function.
• Learning rate: The optimizer’s step size during each
training iteration is controlled by this hyperparameter.
An excessively high learning rate can cause instability
and divergence, whereas an excessively modest learning
rate might cause sluggish convergence.
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FIGURE 14. a. Predicted and target SOC of GRU network with 30 hidden neurons obtained during testing. b: Predicted
and target SOC of GRU network with 50 hidden neurons obtained during testing. c: Predicted and target SOC of GRU
network with 70 hidden neurons obtained during testing.
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FIGURE 14. (Continued.) d. Predicted and target SOC of GRU network with 100 hidden neurons obtained during testing.

• Epochs: The number of times the model is trained using
the whole training dataset is indicated by this hyperpa-
rameter. Although adding more epochs can enhance the
model’s performance, if done carelessly, it could result
in overfitting.

• Number of layers: This hyperparameter establishes the
model’s depth, which can greatly affect its intricacy and
capacity for learning.

• Number of layers: The hyperparameter that controls the
model’s width and affects its ability to depict intricate
relationships in the data is the number of nodes per layer.

• Activation function: By adding nonlinearity to the
model, this hyperparameter enables the model to learn
intricate decision limits. Rectified Linear Unit (ReLU),
sigmoid, and tanh are examples of common activation
functions.

• Dropout rate: A dropout layer must be present in con-
junction with each LSTM layer. This layer lessens the
sensitivity to particular weights of the individual neu-
rons by avoiding randomly chosen neurons, which helps
prevent overfitting during training. Dropout layers can
be applied to input layers but not output layers, as this
could cause issues with the model’s output and the error
computation. Twenty per cent is a good place to start,
but the dropout rate should be kept low (up to fifty per
cent). It is commonly acknowledged that a 20% value
is the optimal balance between mitigating the risk of
overfitting and maintaining model accuracy.

IV. DATASET PREPARATION AND SELECTION OF
HYPERPARAMETER
The data for training and testing is obtained from Hamilton’s
McMaster University. In an eight cubic foot thermal cham-
ber, a brand-new 3Ah LG HG2 cell was tested using a
75 amp, 5-volt Digatron Firing Circuits Universal Battery

Tester channel, which provided voltage and current accu-
racy within 0.1% of full scale. The training data is a single
sequence of experimental data taken during a driving cycle in
which the battery-powered electric vehicle was at 25 degrees
Celsius. Around 6 lakh data is used for testing, and 39000 for
validation. Four experimental data sequences, at four distinct
temperatures, −10◦C, 0◦C, ten ◦C and 25◦C, consisting of
around 30000 data in each set, obtained during driving cycles
are included in the test data.

The selection of hyperparameters, namely the number
of hidden neurons, hidden layers, learning rate, activation
function and so on, plays a major role in the perfor-
mance of RNN. An increase in hyperparameters leads to
an exponential increase in the search space. In addition,
each hyperparameter influences the other, and hence, the
negotiation of these parameters may lead to suboptimal solu-
tions. Conventionally, grid search and random search are
the methods used for hyperparameter tuning. However, due
to their vast space usage, high time consumption to train
a single model and computationally expensive nature, they
are not highly preferred. Hence probabilistic model, namely
Bayesian Optimization (BO), is preferred for hyperparameter
tuning.

In contrast to GS and RS, BO bases its determination of
future evaluation points on the outcomes of past assessments.
A surrogate model and an acquisition function are two essen-
tial elements that BO employs to identify the subsequent
hyper-parameter configuration. All currently observed points
are to be fitted into the objective function by the surro-
gate model. The acquisition function balances the trade-off
between exploration and exploitation to select the usage of
various points after getting the prediction distribution of the
probabilistic surrogate model. The variants of the Bayesian
optimizer are the tree-structured Parzen estimator and the
Gaussian Process estimator. In the proposed work BO-GP
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FIGURE 15. a. RMSE between predicted and target SOC of GRU for varied hidden neuron and temperature. b: Max
Error between predicted and target SOC of GRU for varied hidden neuron and temperature.

is used due to their ability to reduce the mean square error
during estimation.

Twenty random searches and ten iterations of Bayesian
optimization are used in this instance. Upon optimization,
0.001 and 0.2 are the determined learning and dropout rates.
The effect of variation in the number of hidden neurons in
the DL algorithm is considered for analysis in this work. The
various other parameter set during the algorithm’s execution
is listed in Table 2.

V. EXPERIMENTAL RESULT AND DISCUSSION
From the theoretical analysis, it is found that RNN algorithms
(LSTM, GRU and BiLSTM) can be best suitable for per-
forming SOC estimation compared to other SOC estimation
algorithms. The experiment is conducted in Matlab Software
installed in a single PC system. The proposed architecture
includes a single Sequence input layer, an RNN layer, two

TABLE 2. Training parameters of DL algorithms.

fully connected layers, and a clippedRelu layer followed by a
regression layer. In this research, various parameter settings
for SOC estimation are constructed, and the effects of varying
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FIGURE 16. RMSE and Loss function of BiLSTM network trained with 30-neuron.

FIGURE 17. RMSE and training time of BiLSTM network with 30, 50, 70 and 100 hidden neuron.

hidden layer neuron numbers on the model are specifically
discussed to investigate the effects of these settings on the
model estimation performance.

Following the establishment of the structure, the network
has to be trained. Prior to training, the input data set is
normalized using min-max normalization function to scale
the input values between 0 and 1. This process is followed
by the implementation of Bayesian optimisation network.
To optimize the DL networks during training process, the
Adam optimization algorithm is used. In the proposed work,
the number of input features is 5, and the output response
is 1. The Tanh function is used as the state activation func-
tion, and the sigmoid function is used as the gate activation

function. To prevent the exploding of the gradient, the value
of the gradient threshold is set to be one and to avoid the
padding of sequence; the minimum batch size is maintained
to be 1. Mean Square Error is selected as the loss function.
The general architecture of the proposed DL algorithms for
SOC estimation using LSTM is shown in Figure 7.

A. LSTM-BASED SOC ESTIMATION
The performance of the proposed LSTM network for estimat-
ing SOC is analyzed through performance matrices, namely
RMSE and loss function (MSE). Initially, the proposed net-
work is trained with 30 hidden neurons. The obtained training
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FIGURE 18. a. Predicted and target SOC of BiLSTM network with 30 hidden neurons obtained during testing.
b. Predicted and target SOC of BiLSTM network with 50 hidden neurons obtained during testing. c. Predicted and
target SOC of BiLSTM network with 70 hidden neurons obtained during testing.
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FIGURE 18. (Continued.) d. Predicted and target SOC of BiLSTM network with 100 hidden neurons obtained
during testing.

results are plotted in figure 8. The obtained RMSE during
training is 0.024, and the training time is 7 minutes. The num-
ber of hidden neurons is varied and analyzed to analyse the
proposed network’s performance in varied hyperparameter
tuning environments. The number of hidden neurons varies
from 30, 50, 70 and 100.

The RMSE value of obtained networks and their corre-
sponding training time are shown in Figure 9. The figure
shows that the number of hidden layer neurons increases, and
estimation accuracy increases. Compared to the other models,
estimation accuracy is maximum when the number of hidden
layer neurons is 70; it begins to decline when the number of
hidden layer neurons reaches 100. To prove the generalization
of the network, the trained networks are tested with four
different data sets obtained at varied temperatures (−10 ◦C,
0 ◦C, 10 ◦C and 25 ◦C) consisting of nearly 30000 data in
each set.

The estimated outcomes of the model, based on the quan-
tity of various hidden neurons at (−10 ◦C, 0 ◦C, 10 ◦C,
and 25 ◦C, respectively), are shown in figures 10a to 10d.
Figures 11a and 11b show the associated errors. Furthermore,
the figure shows that, at room temperature, the curve repre-
senting the estimation results is relatively smooth; however,
the degree of fitting with the actual measurement curve is
relatively poor, resulting in low estimation accuracy at higher
or lower temperatures, particularly near the end of the dis-
charge, the curve representing the model estimation result
is relatively steep, but the overall degree of fitting with the
actual measurement curve is appropriate.

B. GRU-BASED SOC ESTIMATION
GRU-RNN network model comprises a sequence input layer,
a GRU network layer, a fully connected layer with neurons,

a clippedRelu layer and a regression output layer, as illus-
trated in Figure 7. The battery SOC at the moment is the
output of the GRU network model, which takes current,
voltage, average current, average voltage and temperature
measurement signals as inputs. The nonlinear relationship
between inputs and SOC was found in the training set. The
leaky ReLU layer provided an execution threshold. Any input
value less than zero was primarily multiplied by a fixed factor
coefficient.
Like LSTM, Different GRU models with varying numbers

of hidden neurons (30, 50, 70, and 100) are built in this
proposed work. There is a maximum epoch of 250 and a
validation frequency of 30. The RMSE and loss function
acquired during the GRU model’s 30-hidden neuron training
are shown in Figures 12 respectively.
Figures 13 display the RMSE value of the developed

networks along with the corresponding training time. It is
evident from the figure that as the quantity of hidden layer
neurons rises, so does the estimation accuracy.When there are
50 hidden layer neurons, estimation accuracy is at its highest
compared to the other models; it starts to decrease when there
are 100 hidden layer neurons. The more hidden units there
are, the longer it takes to analyze the data.
Figures 14a to 14d show the discrepancy between the

trained network’s predicted and targeted SOC after testing it
using four distinct data sets. Plots of the RMSE and MAE
for test data at four distinct temperatures are shown in Fig-
ures 15a and 15b. The figure indicates that at lower RMSE
and MAE values, there is a higher chance of an accurate
SOC prediction. Furthermore, the figure shows that, at room
temperature, the curve representing the estimation results is
relatively smooth; however, the degree of fitting with the
actual measurement curve is relatively poor, resulting in low
estimation accuracy at higher or lower temperatures.
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FIGURE 19. a. RMSE between predicted and target SOC of BiLSTM for varied hidden neuron and temperature. b. Max
Error between predicted and target SOC of BiLSTM for varied hidden neuron and temperature.

C. BILSTM-BASED SOC ESTIMATION
SOC estimation using bidirectional long short-term memory
(Bi-LSTM) has been performed. The forward and backward
temporal dependencies of battery sequential data can be cap-
tured by the bidirectional LSTM, in contrast to the standard
unidirectional LSTM. The state is not shared by two LSTMs
moving in opposite directions. The forward LSTM’s output
state is exclusively transmitted to the forward LSTM, while
the backward LSTM’s output state is exclusively transmitted
to the backward LSTM. It is not possible to connect the for-
ward and backward LSTMs directly. At every time step, the
input sequence is passed to the forward and backward LSTM
layers, respectively, and the corresponding states are used to
generate the outputs. The two outputs are then combined and
integrated into the final output by connecting to the output
layer.

STM before training the model are:
• Data normalization: preprocessing Data to avid the scale
that influences the indicators. In the proposed work,
data normalization is carried out through the zero-centre
normalization technique.

• Building the model: As with LSTM, BiLSTM also
includes a sequence input layer, clipped Relu layer, fully
connected layer BiLSTM layer and regression layer.

• Selection of Optimizer: Adam optimizer is selected to
prevent the gradient from explosion.

• The Selection of hyperparameters includes the number
of hidden layers, hidden neurons, hidden units, epochs,
batch size, iteration count, validation frequency and
Dropout rate.

In BiLSTM, the width of the layer is determined by the
number of neurons that are present in the hidden layer. The
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TABLE 3. Overall performance comparison of the proposed algorithm during training and testing.

TABLE 4. Performance comparison of the proposed method with the existing literature.

work that is being proposed comprises the construction of
various BiLSTM models, each of which is comprised of
two hidden layers that contain a different number of hidden
neurons (30, 50, 70, and 100). With a validation frequency
of thirty, the maximum epoch that can be used is set to be
250. The root mean square error (RMSE) and loss function
found during the training of the BiLSTM model with thirty

hidden neurons are depicted in Figure 16. Figure 17 illustrates
the amount of time that the models need to complete their
training, as well as the related root mean square error (RMSE)
for various hidden neurons. The picture makes it abundantly
clear that the estimation accuracy improves in proportion to
the number of neurons in the hidden layer. As compared to
the other models, the estimation accuracy reaches its highest
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point at fifty and seventy neurons in the hidden layer, and it
starts to decrease at one hundred neurons in the hidden layer.

The difference between the anticipated and targeted SOC
is given in Figures 18a to 18d. This evaluation was performed
on the trained network using four distinct data sets. The
RMSE and MAE charts for the test data are displayed in
Figures 19a and 19b. These plots are displayed at four dif-
ferent temperatures. The image illustrates that the probability
of making an accurate prediction of the SOC increases as
the RMSE and MAE values decrease. In addition, the picture
illustrates that the curve that corresponds to the estimation
findings is generally smooth when the temperature is at room
temperature. However, when the temperature is lower, the
degree of fitting with the actual measurement curve is rather
bad, which results in a low estimation accuracy.

The overall performance comparison of the proposed
Bayesian-optimized deep learning methods is shown in
Table 3. From the table, the significant observations can be
concluded that

1. The estimation accuracy is high at the room tempera-
ture but gets reduced when the temperature becomes
very low. This is due to the nonlinear characteristics of
the battery.

2. The number of neurons should be manageable, as they
lead to overfitting and underfitting problems. Hence,
70 hidden neuron counts give the best performance in
the proposed work compared to 30 and 100 neurons.

Table 4 presents the results of a comparison between the
suggested method and the one that is currently in use. Upon
examination of the table, it is evident that the deep learning
algorithms that have been suggested and optimized using the
Bayesian algorithm have a greater level of accuracy. When
compared to Bayesian-optimized LSTM and GRU, the per-
formance of BiLSTM in comparison is superior.

VI. CONCLUSION
This paper proposes a Bayesian-optimized deep learning
method for SOC estimation. From the experimental results,
it is found that the performance of DL algorithms increases
with the selection of optimal hyperparameters. The proposed
work offers several contributions. Initially, the proposed
approach can estimate the SOC of the battery without having
prior knowledge of the battery model and the requirement of
filters and observers.

Secondly, the employment of a Bayesian optimisation
algorithm for the selection of optimal hyperparameters
reduces the estimation error and increases the system
efficiency.

Finally, the performance of the proposed work is analysed
for varying numbers of hidden neurons. The data set for
analysis was obtained from Hamilton’s McMaster Univer-
sity and maps the relationship of input parameters (current,
voltage, temperature, average voltage, average current and
temperature) to the output SOC. The experimental analysis is
carried out in MATLAB software. The suggested techniques
undergo validation and testing on four distinct datasets at
four distinct temperature ranges: −10◦C, 0◦C, 10◦C, and

25◦C. The results show that the optimal design produces
SOC estimations with less than 2% root mean square and
5% maximum error for all three types of RNNs (LSTM,
GRU and BiLSTM). Out of the three, BiLSTM estimates
SOC with less estimation error than the other two approaches
since each fully connected layer has seventy hidden neurons.
(RMSE= 0.12%&MaxE= 1.327% at 0 ◦C;RMSE= 0.16%
at 10 ◦C; MaxE = 0.822% at 25 ◦C; RMSE = 0.15% at
25 ◦C; MaxE = 0.933% at −10 ◦C; RMSE = 0.12% &
MaxE = 1.156%). The experimental results show that the
estimation accuracy is high at room temperature but gets
reduced when the temperature becomes very low. This is due
to the nonlinear characteristics of the battery. Estimation of
SOCwith varied hidden neurons is analyzed, and it was found
that the number of the neurons should neither be too small
nor too high as they lead to overfitting problems. Hence,
70 hidden neuron counts give the best performance in the
proposed work compared to 30 and 100 neurons.

In future work, numerous input parameters for the accurate
estimation of SOC by considering environmental conditions,
wind speed, vehicle velocity, and road conditions and apply-
ing attention mechanisms to select the input parameters that
providemore information regarding output SOCwill be done.
The selected input parameters will be validated using DL
algorithms, and their performance will be compared to the
estimation made by graph convolutional networks.
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