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ABSTRACT Chromophoric dissolved organic matter (CDOM) is a crucial component of aquatic environ-
ments. Accurately quantifying the content of CDOM is essential for supporting lake water quality monitoring
and management. In this study, we utilized quasi-analytical algorithms (QAA_v6 and QAA_CDOM) to esti-
mate the CDOM concentration in the intricate freshwater environment of Erhai Lake. This was accomplished
by utilizing in-situ hyperspectral data and water sample measurements. A quasi-analytical algorithm, named
QAA_CDOM_680, was proposed to retrieve CDOMabsorption coefficients from Sentinel-3 satellite images
by optimizing the reference wavelength based on these two algorithms. The root mean square errors (RMSE)
for QAA_V6, QAA_CDOM algorithm, and the new algorithm QAA_CDOM_680 are 0.615, 0.2235, and
0.1935, respectively. The calibration determination coefficients (R2) of the three algorithms are 0.44, 0.51,
and 0.63, respectively. The new algorithm demonstrates a significant improvement in accuracy. The results
of two satellite-ground synchronous inversions indicate that the calibration determination coefficients (R2)
of CDOM absorption coefficients in the Erhai Lake research area are 0.42 and 0.48, respectively. This study
has successfully completed the dynamic quantification monitoring of CDOM in Erhai Lake, contributing to
the preservation of Erhai Lake’s water quality.

INDEX TERMS Chromophoric dissolved organic matter (CDOM), quasi-analytical algorithm (QAA),
Sentinel-3 OLCI, Erhai lake.

I. INTRODUCTION
Dissolved organic matter (DOM) is an important compo-
nent of organic carbon in water bodies, always affecting the
biological activities and material cycles in the aquatic envi-
ronment, and the spatial and temporal dynamics of dissolved
and suspended organic matter in water reflect the cyclical
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changes of carbon in water [1]. Among them, the colored
component of dissolved organic matter (DOM) is referred to
as chromophoric dissolved organic matter (CDOM). CDOM,
commonly referred to as yellow matter or soluble organic
chromophores [2]. CDOM is mainly composed of humic
acid, fulvic acid, etc., and the main sources are soil organic
matter, planktonic algae, and aquatic plant degradation [3].
The main source of CDOM in one class of oceanic waters is
the auto-degradation of phytoplankton. For nearshore waters,
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CDOM is influenced by exogenous inputs; for inland com-
plex waters, it is influenced by both exogenous inputs and
phytoplankton degradation [4]. CDOM is a chromogenic
component of dissolved organic matter in water, exhibiting
strong absorption properties in the ultraviolet and visible
spectra, and it plays a vital role in the carbon cycling pro-
cess within water bodies and measuring the concentration of
dissolved organic carbon (DOC) [5]. High concentrations of
CDOM in the water column limit biologically harmful UV-B
radiation and protect phytoplankton and other light-sensitive
organisms in the water column [2]. At the same time, CDOM
effectively reduces the penetration of effective photosynthetic
radiation in the underwater light field and is an important
indicator of primary productivity [6]. Through conducting
remote sensing monitoring research on key parameters of the
aquatic ecosystem in the Erhai Lake basin, we have achieved
a comprehensive understanding of the dynamic changes in
the region. This enables us to provide scientifically sound
recommendations to local governments, environmental pro-
tection agencies, and urban planning departments, thereby
promoting the sustainable development of the ecological
environment in the area.

Remote sensing platforms are able to generate the spa-
tial distribution of CDOM on a large scale. The spectral
characteristics of CDOM are similar to those of non-algal
particles (NAP), and the CDOM light absorption properties
are not the same as those of phytoplankton [7]. CDOM,
chlorophyll, non-algal particles, and suspended particles all
contribute to changes in the underwater light field, which
subsequently affect the water-leaving radiation detected by
satellite sensors. As a result, remote sensing techniques can
be utilized to estimate CDOM concentrations over large
spatial scales [8]. Currently, some research has been con-
ducted on the inherent optical properties and water color
remote sensing inversion models of Erhai Lake, but most
of them are based on empirical or semi-empirical models.
Chen et al. developed an empirical band ratio algorithm to
determine the optimal band ratio and its empirical function
by using the model ranking method, which was applied to
Landsat-8 images and obtained a good CDOM distribution
and change situation, but the algorithm was limited to spe-
cific research sites [5]. Zhang et al. developed an algorithm
for calculating the CDOM absorption coefficient from the
remotely sensed reflectance Rrs (λ) using empirical and
semi-empirical methods based on MODIS/Aqua satellite
images and sample measured data [9]. Thayapurath et al.
proposed a simple method to determine the slope of changes
in the combined absorption spectra of CDOM and detri-
tus, which improved the accuracy of CDOM inversion [10].
However, these empirical models overlook the influence of
non-algal particles, resulting in uncertainties in experiments.
Currently, research has shifted from empirical models to
physical analytical models, offering a more systematic and
rational approach. For instance, the physical analysis model,
exemplified by the QAA algorithm, allows for the adjustment
of algorithm parameters and reference wavelengths based

on the characteristics of different lake waters. Additionally,
the algorithm can differentiate between CDOM and NAP
absorption coefficients, thereby reducing experimental uncer-
tainties and facilitating its application to various complex
water bodies. The QAA algorithm derived by Lee et al. was
based on the radiative transfer equation, by which remotely
sensed reflectance is inverted to perform absorption and
scattering coefficients [11]. Yang et al., based on the band-
width of the Moderate Resolution Imaging Spectrometer
(MERIS), improved QAA to retrieve the inherent optical
properties of cloudy inland waters. The results show that
the improved performance of the QAA algorithm can be
better applied to the MERIS satellite [12]. Martins et al.
utilized simulated reflectance data from the Thematic Map-
per (TM) sensor to assess empirical models and the QAA
algorithm [13]. Ogashawara et al. successfully retrieved the
spectral shapes of optically active constituents by fine-tuning
the parameters of the QAA algorithm in CDOM-dominated
waters while also maintaining the error margin within a rea-
sonable range [14]. Pitarch and Vanhellemont proposed a
semi-analytical algorithm calledQAA-RGB, the total absorp-
tion coefficient, backscattering coefficient, and diffuse reflec-
tion attenuation coefficient derived from Landsat, Sentinel-2,
and other satellite data exhibit a high degree of agreement
with the measured data [15]. Santiago and Frey compared
the empirical algorithm with several semi-analytical algo-
rithms (including the QAA algorithm, GSM algorithm, and
GSM-A) for CDOM in the Bering Sea, Chukchi Sea, and
West Beaufort Sea within the Arctic region of the Pacific
Ocean, and they found that the inversion accuracy of the QAA
algorithm and GSM-A algorithm was higher [16]. Using
555nm as the reference band of the algorithm, Chen and
Zhang established the inversion model QAA-RGR for the
intrinsic light quantity of the East China Sea water body,
and the algorithm can well retrieve the IOPs of the East
China Sea [17]. Wang et al. proposed a QAA-CJ algorithm
for turbid waters in the Yangtze River Estuary and East
China Sea using 680 nm as a reference wavelength [18].
Zhu et al. developed an extended quasi-analytical algorithm
(QAA-E) aimed at determining absorption coefficients for
colored dissolved organic matter (CDOM) in the Mississippi
and Atchafalaya River plume regions, as well as in the
northern Gulf of Mexico [19]. Zhu and Yu improved the
QAA-E algorithm and proposed a semi-analytic algorithm-
quasi-analytic CDOM algorithm (QAA_CDOM algorithm)
for inverting the CDOMabsorption of (EO-1) Hyperion satel-
lite images [20]. The water quality environment of Erhai Lake
has gradually deteriorated. In some studies, it is feasible to
analyze the composition and source of CDOM in lakes by
fluorescence spectroscopy [21].
The QAA algorithm, proposed by Lee et al. in 2002,

is a semi-analytical method based on the radiation transfer
equation. It utilizes the relationship between remote sens-
ing reflectance and the intrinsic optical properties of water
bodies to retrieve the absorption coefficient of water-colored
matter within the water body [11]. The algorithm consists
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of three semi-analytic models, two analytic models, and
two empirical models. The QAA_v6 algorithm is the fifth
update of the QAA algorithm. Zhu et al. improved the
decomposition mode of the QAA algorithm and proposed
a semi-analytical algorithm, the Quasi-Analytical CDOM
Algorithm (QAA_CDOM), which achieved better inversion
results [20].

Hence, in this study, the physical analysis model QAA
algorithm was employed, and it was applied to the Sentinel-3
OLCI satellite to achieve the inversion of CDOM concentra-
tion in Erhai Lake.

Therefore, the objectives of this study are as follows:
(1) Combining the QAA_v6 algorithmwith QAA_CDOM,

we propose a new algorithm, QAA_CDOM_680, which
optimizes the reference wavelength based on in-situ hyper-
spectral data.

(2) The QAA_CDOM_680 algorithm was applied to
Sentinel-3 OLCI satellite data to generate CDOM concentra-
tion maps for two field experiments conducted in Erhai Lake.
This study aims to provide robust theoretical support and
ensure accuracy for water quality monitoring and protection
efforts in Erhai Lake.

II. STUDY AREA AND DATA
A. STUDY AREA
Erhai Lake, located in Dali Bai Autonomous Prefecture,
Yunnan Province, is the second-largest freshwater lake in
Yunnan Province and the seventh-largest freshwater lake in
China (Figure 1). The lake area of Erhai is about 252 square
kilometers, the water storage capacity reaches 2.95 billion
cubic meters, the average water depth is 10 meters, the length
of the lake is 42 kilometers from north to south, and the width
of the lake is 3-9 kilometers from east to west, the lake starts
from the south end of Eryuan County in the north and stops in
the south of Xiaguan in Dali City [22]. There are 117 rivers of
various sizes distributed around Erhai Lake, mainly includ-
ing the Luo Shi River, Yongan River, Mi Tho River, Xi’er
River, Cangshan Eighteen Streams, etc., of which only one
natural outlet is located in the southwestern part [23]. The
Erhai Lake is the source of drinking water for Dali, the
center city of western Yunnan, and the core of the Cangshan
Erhai National Nature Reserve and Scenic Spot, with various
functions such as regulating the climate, providing water
security for industrial and agricultural life, and maintaining
biodiversity [24].

Erhai Lake, with its unique geographical advantages, has
a low nutrient content and excellent water quality [25].
In recent decades, the increase in organic matter in the water
due to the large influx of anthropogenic and agricultural
pollutants into the lakes has led to increased humification
of the lakes [26]. Phytoplankton grows in lakes, absorbing
large amounts of nutrients and forming new organic mat-
ter as it degrades, exacerbating the eutrophication of
lakes [27].

FIGURE 1. Map of the study area and sampling sites.

TABLE 1. In situ water column measurement times, data and satellite
transit times.

B. IN SITU MEASUREMENT
The ground-test data utilized in this study were gathered
during a field trip to Erhai Lake. Field sampling at Erhai Lake
was conducted on March 5 and June 5, 2023, under selected
clear-sky conditions. Point-by-point sampling was conducted
sequentially at 22 stations, with samples selected from water
bodies with a water surface of approximately 0–0.5m. The
samples were collected from the water body of Erhai Lake.
All samples were collected, preserved in brown glass vials,
and stored at 4 degrees Celsius for further laboratory deter-
mination of CDOM absorption coefficients and other water
column component concentrations. The results are shown in
Table 1.

At each observation point, the AvaField spectrometer
was used for in-situ measurements of the water body.
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TABLE 2. Sentinel-3 band parameters.

The integration time for each observation was set to
0.02 seconds, and the spectral range measured for each curve
was from 350 nm to 2500 nm, with a spectral resolution of
1 nm. A total of 22 representative measurement points were
selected for field observations, and multiple measurements
of the light from the water surface, whiteboard, and sky
were taken at each point. To ensure the accuracy of spectral
measurements, synchronous water sampling was conducted
at each measurement point. The measurements were carried
out between 10 a.m. and 2 p.m. under calm, clear skies.

C. SATELLITE DATA
The main role of the Sentinel-3 series of satellites, as a
vital component of the ESA Copernicus program, is ocean
forecasting and monitoring of the environment and climate.
The binary stars were launched on February 16, 2016 and
April 25, 2018, respectively. The star carries two sensors,
OLCI and SLSTR. The OLCI sensor improves and innovates
on the former AquaSat MERIS sensor by adding six new
bands of information, for a total of 21 bands ranging from
the visible to the near infrared (400 nm–1020 nm). It has
the advantages of wide and narrow bandwidth, while the
operation of the binary star system improves the temporal res-
olution of the images. The Sentinel-3 sensor is the Ocean and
Land Color Instrument (OLCI) used in ENVISAT’s MERIS
to provide data continuity. The OLCI imaging spectrometer is
a heap-scanning instrument with a spatial resolution of 300m,

measuring the Earth’s reflected solar radiation in 21 spectral
bands.

Since the algorithm requires an accuracy of 1nm for the
entered wavelength number and the accuracy of the center
wavelength of certain bands of Sentinel-3 OLCI does not
meet this requirement, this study selects approximate values
to align with the algorithm. Accordingly, bands 3, 4 and 10 of
the satellite are chosen for calculation. Specifically, image
dates of March 8 and June 5, 2023, were selected. The criteria
for selecting these dates were low cloudiness and beingwithin
a week of field sampling. The wavelength bands selected for
satellite data are shown in Table 2.

III. METHODS
A. IMAGE ATMOSPHERIC CORRECTION
To eliminate the effects of atmospheric water vapor, carbon
dioxide, etc., on the reflection of features and the effects
of scattering by atmospheric molecules and aerosols. This
study uses the FLAASH atmospheric correction method in
ENVI 5.6. FLAASH atmospheric corrections use the code of
the MODTRAN4 radiative transfer model, which can handle
any hyperspectral, satellite, and aeronautical data [28], [29].
The first step involves calculating the irradiance reflectance,
denoted as Rt . The FLAASH atmospheric correction model
equations are as follows [30]:

Rt =
1 − ρeS

A

(
L − B

ρe

1 − ρeS
− La

)
(1)
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where L is the total radiant luminance received by the image
element at the sensor; ρe is the average surface reflectance
around the pixel; S is the atmospheric spherical albedo; La is
the atmospheric backscattering radiance; A and B depend on
two coefficients of atmospheric and geometric conditions.
Rrs is corrected by FLAASH atmospheric corrections cal-

culated by removing reflectance from the water surface [31]:

Rrs (λ) =
Rt
π

−
Lr (θ, ϕ)

Ed
(2)

where Lr is the off-water irradiance, which carries informa-
tion about the water column; Ed is the irradiance.

B. DATA PROCESSING
The radiation luminance of the water body, sky and reference
plate is measured at each position using the method of water
surface spectroscopy. Total water spectral radiation measured
above the water surface [31], [32]:

Lsw = Lw + γLsky + Lg + Lwc (3)

where Lsw represents the total signal measured by the instru-
ment; Lw represents the outgoing reflected light scattered
back into the instrument by the water column, which contains
the upward portion of the scattered light from the water
column and the reflected light from the bottom of the water;
γLsky represents the signal of the sky light entering the
observing instrument after reflection at the water surface;
γ is the reflectance of the sky light at the air-water interface;
Lg denotes a solar flare produced by the random reflection of
direct solar light by waves on the water surface; Lwc denotes
information on sea surface whitecaps. The effects of surface
whitecap information on the water column spectrum and the
observation by surveyors. The OLCI image spectral profile
was simulated using measured water reflectance data com-
bined with the relative spectral response (RSR) function of
Sentinel-3 satellites band1–band7 [33].

Rrs (Bi) =

∫ λn
λm
RSR (λ) ∗ Rrs_measured (λ) dλ∫ λn

λm
RSR (λ) dλ

(4)

where Rrs_measured(λ) is the in situ hyperspectral data and
Rrs(Bi) is the simulated remotely sensed reflectance in the
i’th band of Sentinel-3, which is calculated by integrat-
ing Rrs_measured from λm to λn band ranges according
to RSR (λ).

In this study, the raw water samples were filtered through
a 0.45 um MCE filtration membrane as well as a 0.22 um
Millipore membrane, after which the filtrate was poured into
a 10mm cuvette, and the absorbance from 200 nm to 800 nm
was measured using a Shimadzu UV-2600 Spectropho-
tometer with Milli-Q as a reference [34]. The absorption
coefficient aCDOM (λ) of CDOM is calculated as follows:

aCDOM (λ) = 2.303D (λ)
/
l (5)

where λ is the wavelength (nm) and aCDOM (λ) is the absorp-
tion coefficient of CDOM (m−1); D(λ) is the absorbance;

l is the light path (m) [35]. The absorption coefficients at
wavelengths of 400 nm or 440 nm are usually used to express
the concentration of CDOM [36]. It has been shown that
the inversion effect of 443 nm applied to MERIS satellite is
better [37]. Since the OLCI sensor, which is used to provide
data continuity for MERIS, was chosen for this study, the
CDOM absorption coefficient at 443 nm was selected.

C. QAA_CDOM_680 ALGORITHM
The QAA algorithm extends the reference wavelength to
λ0 = 670 nm to target inland lakes with complex optical prop-
erties [11]. Le et al. extended the reference wavelength λ0 to
710 nm for the high-absorbing water body Taihu Lake and
obtained better inversion results [38]. Extending the reference
band to the near-infrared not only facilitates atmospheric
corrections but also avoids the errors associated with the
complexity of remotely sensed reflectance at short wave-
lengths. The QAA_CDOM algorithm changes the dataset
for modeling to accommodate complex inland and nearshore
water bodies. According to Lee’s study, water bodies with
a total absorption coefficient a (443) greater than 0.3 m−1

are considered highly absorbing [11]. The total absorption
coefficient of Erhai Lake is smaller than that of Taihu Lake,
and the reference wavelength should be less than 710 nm.
Taking into account the concurrent availability of both in-situ
hyperspectral data and Sentinel-3 OLCI band data, we have
adjusted the reference wavelength for the inversion of CDOM
concentration in Erhai Lake to the infrared band, specifically
selecting Sentinel-3 OLCI band 10. According to Lee et al.’s
study, to mitigate the effects of atmospheric correction errors
in satellite-borne remote sensing images and the complexity
of inherent optical characteristics at short wavelengths on
the remote sensing reflectance at the reference wavelength,
it is crucial to ensure that the remote sensing reflectance
at the reference wavelength falls within a certain critical
range [39].

The calculation formula is provided as follows:

Rrs (667) = 20 (Rrs (λ0))1.5 (6)

Rrs (667) = 0.9 (Rrs (λ0))1.7 (7)

The Rrs (667) of the Erhai water body is 0.0049 sr−1.
According to Eqs. 6 and 7, the Rrs (667) of Erhai falls within
the critical range of remote sensing reflectance at the three
reference wavelengths. However, it’s noted that the critical
range of 680 nm as the reference wavelength is smaller com-
pared to 681 nm and 682 nm. Therefore, 680 nm is selected
as the reference wavelength for the new algorithm.

The symbols related to the QAA algorithm are shown as
indicated in Table 3.

Basic steps of the QAA_CDOM_680 algorithm:
Step 1: Calculation of remote sensing reflectance below the

water surface rrs (λ):

rrs =
Rrs (λ)

0.52 + 1.7Rrs (λ)
(8)
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TABLE 3. List of notations.

Step 2: When k0 = 6.807 and k1 = 1.186, u (λ) is calculated,
and u (λ) is defined as the following equation:

u (λ) = 1 − exp

(
−k0rrs (λ)k1

0.31 − rrs (λ)

)
(9)

Step 3: The Rrs(670) of Erhai Lake is greater than 0.0015,
calculate a (λ0):

a (λ0) = aw (680) + 0.39
(

Rrs (680)
Rrs (443) + Rrs (490)

)1.14

(10)

Step 4: Calculate bbp(λ) at reference wavelengths:

bbp (λ0) =
u (λ0) ∗ a (λ0)

1 − u (λ0)
− bbw (680) (11)

Step 5: Calculate bbp(443):

bbp (443) = bbp (λ0)

(
λ0

443

)η

(12)

η = y0

(
1 − y1 exp

(
y2
rrs (443)
rrs (680)

))
(13)

where coefficients y0 =2.2, y1 =1.2, y2 =-0.9
Step 6: Calculate the total absorption coefficient a (443) at

a wavelength of 443 nm:

a (443) = (1 − u (λ))
(
bbw (λ) + bbp (λ)

)/
u (λ) (14)

Step 7: Calculate ap(443):

ap (443) = j1bbp (λ0)
j2 (15)

where coefficients j1 = 0.63 and j2 = 0.88;
Step 8: Calculate aCDOM (443):

aCDOM (443) = a (443) − aw(443) − ap(443) (16)

where the pure water absorption coefficient and backscatter-
ing coefficient are the same as in the QAA_v6 algorithm.

D. ALGORITHM SENSITIVITY ANALYSIS AND VALIDATION
According to existing research, optimizing the reference
wavelength is a crucial step in algorithm adjustment. To fur-
ther ascertain the performance enhancement brought by using
680nm as a reference wavelength in the new algorithm, the
sensitivity of the remote sensing reflectance (Rrs) was ana-
lyzed. By introducing relative errors of -10%, -5%, 0%, 5%,
and 10% in Rrs, the absorption coefficients were calculated
for different error ranges.

This study uses an empirical approach to analyze and
evaluate the results of CDOM inversion. First, the remotely
sensed reflectanceRrs is calculated by the QAA_v6 algorithm
to obtain the absorption coefficient of CDOM at wavelength
443 nm, aCDOM (443), and the algorithmic accuracy is veri-
fied for the calculated aCDOM (443) and the original for the
measured aCDOM (443); secondly, the accuracy of the mea-
sured and predicted values is assessed through the coefficient
of determination (R2), root mean square error (RMSE), and
mean absolute error (MAE).

The root mean square error (RMSE) is the arithmetic
square root of the ratio of the sum of the squares of the
differences between the predicted and true values for each
group to the number of groups, n. The RMSE is a measure
of the difference between the predicted and true values for
each group compared to the number of groups, n. The RMSE
is a measure of the difference between the predicted and
true values for each group. The smaller the RMSE value,
the higher the accuracy of the algorithm and the closer the
predicted value is to the true value.

RMSE =

√√√√1
n

n∑
i=1

(
Y estimatedi − Ymeasuredi

)2
(17)

where RMSE represents the root mean square error, n repre-
sents the number of measurement groups, and Yi estimated and
Yimeasured represent the predicted and true values.
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The mean absolute error (MAE) is used to represent the
average of the absolute error between the true value and the
predicted value. The smaller the MAE value, the closer the
predicted value is to the true value.

MAE =
1
n

n∑
i=1

∣∣∣Y estimated
i − Y measured

i

∣∣∣ (18)

where MAE denotes mean absolute error, n denotes the num-
ber of measurement groups, and Yi estimated and Yimeasured

denote predicted and true values.

IV. RESULTS
A. SPECTRAL ANALYSIS
Figure 2 illustrates the reflectance spectrum of the water
column in Erhai Lake in June. The reflectance curve of the
Erhai water body exhibits a general trend of increasing and
then decreasing, interspersed with several peaks and troughs.
In the wavelength range of 400nm to 570nm, the reflectance
increases with wavelength, while it gradually decreases in
the range from 570 nm to 800 nm, with peaks and troughs
observed intermittently within this range.

FIGURE 2. Measured reflectance spectra of the erhai lake surface.

Spectral curves reflect the optical properties of the water
body, and these spectra are typical of freshwater spectral
features. Remote sensing reflectivity of water bodies is lower
in the blue band, influenced by the higher absorption capacity
of algae and CDOM; the spectrum has peaks near 570 nm
and 700 nm. At 570 nm in the blue-green band, due to the
small absorption coefficient of phytoplankton and the effect
of backscattering by non-algal particles, it shows a peaked
condition. In the red-light band, the absorption of chlorophyll
leads to an absorption peak at 670 nm. The peak at 700 nm
is caused by a combination of phytoplankton pigments and
absorption by the water column itself.

The measured water reflectance data is combined with
the spectral response functions of the Sentinel-3 OLCI satel-
lite bands to simulate the spectral profile of the OLCI
imagery. The results show that the values of the simulated
reflectance have a tendency to agree with the in situ spec-
tral measurements, preserving the characteristic properties

of the original reflectance spectra. There are distinct reflec-
tive features around 570 nm and 700 nm, with a gradual
increase in reflectance from 400 nm to 570 nm and a gradual
decrease from 570 nm to 800 nm, with peaks and valleys in
the range and the highest and lowest reflectance values in the
green and near-infrared wavelength bands. The results for the
400-900nm wavelength band are shown in Figure 3.

FIGURE 3. Sentinel-3 simulated band reflectance.

The CDOM absorption spectra for Erhai Lake in June were
calculated using equation (6) mentioned above (Figure 4).
The absorption characteristics of all the sample points are
very similar; the difference between the values is small, with
good consistency: the absorption is stronger at short wave-
lengths, and the absorption coefficient gradually decreases
with the increase in wavelengths, and the value tends to be
close to zero at 700 nm.

FIGURE 4. CDOM absorption spectrum of the erhai lake.

B. SENSITIVITY ANALYSIS AND VALIDATION
Three measured spectral curves of Erhai Lake were selected
for sensitivity analysis, and the three spectral curves were the
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TABLE 4. Inversion values of CDOM after introducing errors in different
spectral curves.

highest reflectance value, the lowest reflectance value, and
the average value. Table 4 shows the inversion values of the
algorithm after introducing errors for reflectivity. After intro-
ducing different errors to the maximum reflectance value, the
maximum difference of the inversion value is 0.0241(m−1),
the maximum difference of the minimum reflectance value
is 0.0057(m−1), and the average difference is 0.00074(m−1).
It can be seen that the new algorithm can still maintain good
robustness in the error sweep.

Application of in situ hyperspectral data Rrs (λ) to
invert was determined to be 11. The validation results of
the QAA_v6 and QAA_CDOM algorithms are shown in
Figure 5. The QAA_v6 algorithm R2 is 0.44, the root
mean square error (RMSE) is 0.615, and the mean absolute
error (MAE) is 0.5653. The QAA_CDOM algorithm R2,
RMSE, and MAE are 0.51, 0.2235, and 0.1728, respectively.
The QAA_CDOM algorithm has improved the accuracy of
inverting the CDOM absorption coefficients of inland lakes
compared to the QAA_v6 algorithm.

The QAA_CDOM algorithm was improved by the anal-
ysis in Chapter 3, and the reference wavelength of the
QAA_CDOM algorithm was optimized to 680 nm. The
QAA_CDOM_680 algorithm R2 is 0.63, RMSE is 0.1935,
and MAE is 0.1699. The root mean square error is
improved by 0.03 compared to the QAA_CDOM algorithm,
and the MAE is improved by 0.0029 compared to the
QAA_CDOM algorithm. The new algorithm has a certain
improvement in ergodic applicability, and the results are
shown in Figure 6. The accuracy validation results of the
aCDOM (443) retrieval algorithms are shown in Table 5.
Three algorithms, QAA_CDOM_680, adjust the correspond-
ing reference wavelength on the basis of the QAA_CDOM
algorithm, and the accuracy is improved; R2 reaches 0.63, the
root mean square error (RMSE) is minimized to 0.1935, and
the mean absolute value error is 0.1699. The QAA_CDOM
algorithm has an R2 of 0.51, a root mean square error of
0.2235, and a mean absolute error of 0.1728. The QAA_v6
algorithm has anR2 of 0.44, a rootmean square error of 0.615,
and a mean absolute error of 0.5653.

The error bars are shown in Figure 7, and the error bars
are set according to the RMSE. Of the three algorithms, the
QAA_v6 algorithm has the largest error, the QAA_CDOM

FIGURE 5. (a) QAA_v6 algorithm accuracy validation, (b) QAA_CDOM
algorithm accuracy validation.

FIGURE 6. QAA_CDOM_680 algorithm accuracy validation.

algorithm has a large deviation from the measured value at
individual points, and the QAA_CDOM_680 algorithm is
relatively stable, with a minimum deviation at every point.
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TABLE 5. Verification of the accuracy of the three algorithms.

FIGURE 7. Error bar analysis of QAA_v6, QAA_CDOM, and
QAA_CDOM_680 algorithms.

C. APPLIED IN ACTUAL SATELITE DATA
The QAA_CDOM_680 algorithm was applied to Sentinel-3
OLCI data for two scenes with less cloud coverage on
March 8, 2023, and June 5, 2023. Due to the high-altitude
nature of

Yunnan province, there is typically higher cloud coverage,
making the availability of Sentinel-3 OLCI image data lim-
ited. Therefore, the image was chosen to be associated with
field sampling over no more than three days. The inversion
results of the algorithm are shown in Figure 8, clearly depict-
ing the gradient distribution of CDOM content in Erhai Lake.

FIGURE 8. Inversion of CDOM absorption coefficients from Sentinel-3
OLCI images. (a) 8 March 2023, inversion results; (b) 5 June 2023,
inversion results.

In terms of spatial distribution, the main feature of
aCDOM (443) in Erhai Lake is higher concentrations along the
entire lake shoreline, relatively lower concentrations in the
lake center, higher concentrations in the northern region, and
lower concentrations in the southern region. The maximum
value observed across the entire lake reaches 1.92 (m−1),
while the minimum value is 0.15 (m−1). It can be seen
that the lake areas with higher CDOM concentrations are
located near the shore and in the northern region. The higher
concentration along the shoreline is mainly due to the surface
runoff from the 18 streams of Cangshan Mountain flowing
into Erhai Lake, which brings in a large amount of organic
matter. The high concentration in the north is mainly due to
the large number of wetland ecosystems in the north, where
dead leaves and branches fall into the lake and the humus
content in the water is high. The lower concentrations in the
southern part of Erhai Lake are better controlled by humans.

Combining the above experimental results, the satellite
inversion results were cross-validated using synchronized
sampling data on March 5 and June 5, 2023, and the results
were determined by the validation model determinations R2,
RMSE, andMAE. The aCDOM (443) satellite inversion valida-
tion results are shown in Table 6. The two-scene data R2 were
0.42 and 0.48, RMSE were 0.2298 and 0.1968, and MAE
were 0.1819 and 0.1617, respectively.

TABLE 6. Evaluation of the accuracy of CDOM concentration inversion
based on the QAA_CDOM_680 algorithm Sentinel-3 OLCI.

V. DISCUSSION
CDOM, as an important factor of beam attenuation in water
bodies, is important to study its remote sensing inversion [40].
However, fewer studies have been conducted on CDOM
relative to chlorophyll a (Chl-a) as well as total suspended
matter (TSM). Most CDOM studies at this stage are based
on empirical or semi-empirical algorithms (methods such
as band ratios), but they are susceptible to the limitations
of the watershed, and therefore there is a need to improve
CDOM inversion methods that are applicable to a wide
range of water body types [38], [41], [42]. The improved
QAA_CDOM_680 algorithm in this study shows a signifi-
cant enhancement in applicability compared to the QAA_v6
and QAA_CDOM algorithms in Erhai Lake. However, fur-
ther research is needed to investigate the practical application
of the QAA_CDOM_680 algorithm in the future.

Since no additional relevant datasets were collected in
this study, accuracy verification was conducted using two
field sampling measurements from Erhai Lake. Comparing
the QAA_CDOM_680 algorithm proposed in this study
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with the previous QAA_v6 and QAA_CDOM algorithms,
it was observed that optimizing the reference wavelength can
enhance the algorithm’s applicability in Erhai Lake. In future
research, we will incorporate different datasets for valida-
tion and comparison. The QAA_CDOM_680 algorithm is
more suitable for the water body of Erhai Lake through
the accuracy analysis. Changing the reference wavelength
of the algorithm for different water bodies is a worth-
while research problem. Therefore, building upon the QAA
algorithm, it is imperative to conduct reasonable optimization
and adjustment of algorithm model parameters and refer-
ence wavelengths for research areas exhibiting diverse water
characteristics. This may involve extending reference wave-
lengths based on specific water areas or different sensors,
as well as fine-tuning algorithm parameters using extensive
field datasets, all aimed at enhancing experimental accuracy.

The study of the QAA algorithm starts with the empiri-
cal and semi-analytical models in the algorithm, while the
decomposition of a (λ) is a worthwhile research direc-
tion [19]. Although the accuracy of the QAA_CDOM_680
inversion in Erhai Lake has improved, there are still some
factors that lead to the uncertainty of the inversion. First, the
QAA_v6 algorithm has step-by-step errors for a (λ) and b (λ),
which accumulate and thus image the inversion accuracy
of CDOM. Usually, in near-shore or inland water bodies,
the QAA algorithm needs to optimize the model parame-
ters according to different study areas, such as adjusting
the reference wavelength, etc., in order to better invert the
intrinsic optical quantity of the water body. The second is
the separation algorithm for the total absorption coefficient.
Further collection of a lot of water samples from different
regions is needed to improve the accuracy of the algorithm
and the calibration of the bio-optical model. The separation
algorithm of QAA_CDOMwas used and not improved in this
experiment.

Currently, remote sensing technology has been widely
used in water quality parameter inversion studies, but it is
still difficult to reach the precision stage. Satellite inversion
needs to take into account the effects of clouds and atmo-
spheric corrections. Atmospheric correction is a key process
in image-based CDOM estimation, and it largely determines
a model’s input data (Rrs). Modeling algorithms applied to
remotely sensed imagery and atmospheric correction is an
issue that needs to be addressed squarely. Only by con-
tinuously improving the atmospheric correction model can
we obtain more accurate remote sensing reflectance on the
water surface, reduce the experimental inversion error, and
improve the experimental inversion accuracy. At the same
time, the influence of clouds cannot be ignored, and it is of
great significance to break through the limitation of clouds
and combine MODIS, Landsat-8, or Sentinel-2 multi-source
remote sensing data to make long-term observations for the
study of organic matter concentration.

In this study, a novel algorithm, QAA_CDOM_680, based
on in-situ hyperspectral data adjustment, was used to evaluate

its accuracy and applicability in Erhai Lake through two
field measurements. Satellite-ground synchronous inversion
results indicate the algorithm’s strong suitability for Erhai
Lake. However, this research did not conduct qualitative
and quantitative analyses of Erhai CDOM over an extended
period using the new algorithm. Given the long-term fluctu-
ating environmental conditions of Erhai Lake, the efficacy of
the algorithm may be influenced by optimizing the reference
wavelength across different datasets over time. Thus, con-
tinuous attention should be given to the algorithm’s stability
for long-term series monitoring. Adjustments to correspond-
ing parameters may be necessary to uphold the algorithm’s
accuracy and reliability as temporal conditions evolve.

VI. CONCLUSION
In this study, we compared and analyzed the QAA_v6
algorithm and the QAA_CDOM algorithm based on
spectral data measured in the field and combined with
Sentinel-3 OLCI data. Building upon these two algorithms,
we developed a new QAA_CDOM_680 inversion algorithm.
Additionally, we thoroughly examined and discussed the
applicability of this algorithm in the context of Erhai Lake.
The main conclusions are as follows:

1) Comparing the three QAA algorithms, it is evident
that the QAA_v6 algorithm (R2

= 0.44, RMSE = 0.615)
exhibits lower applicability in Erhai Lake. Conversely, when
applied to modeling the nearshore water body dataset,
the QAA_CDOM algorithm demonstrates higher accuracy
(R2

= 0.51) and improved applicability compared to
other algorithms, with a lower root mean square error
(RMSE = 0.2235). By adjusting the reference wavelengths
based on the latter, the QAA_CDOM_680 algorithm achieves
an R2 of 0.61 and reduces the RMSE to 0.2136, signifi-
cantly enhancing the accuracy of the algorithm in inverting
the intrinsic optical quantities of the water body in Erhai
Lake and potentially other inland lakes as well. Moreover,
sensitivity analysis of the algorithm indicates a certain level
of robustness.

2) The results of the inverse performances of the
Sentinel-3 OLCI images of the two views: R2 were
0.42 and 0.48, the root mean square errors (RMSE) were
0.2298 and 0.1968, and the mean absolute errors (MAE)
were 0.1819 and 0.1617. The accuracy verification results
demonstrate the stability of the Sentinel-3 inversion outcomes
for Erhai Lake. In terms of the spatial distribution, the Erhai
lake shore is high and the lake center is low, and the north is
high and the south is low. The results of this study provide
algorithmic support for the remote sensing monitoring and
analysis of the Erhai CDOM.
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