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ABSTRACT Authenticating digital images poses a significant challenge due to the widespread use of
image forgery techniques, including copy-move forgery. Copy-move forgery involves copying and pasting
portions of an image within the same image while applying geometric transformations to make the forged
image appear genuine. Furthermore, additional processing techniques such as additive noise scaling, JPEG
compression, and rotation can be employed to further conceal evidence of forgery. These factors contribute
to the complexity of detecting and verifying the authenticity of digital images. The proposed work uses a
combination of the CenSurE keypoint detection and a CNN architecture to detect and localize copy-move
forgery in digital images. The use of CNN architecture allows the algorithm to update its learning via
training data repeatedly, making it a data-driven approach. By combining keypoints with CNN features,
the proposed approach can enhance the detection of copy-move forgery even in the presence of attacks
such as geometrical transformations, scale, and rotation. Additionally, the proposed approach can effectively
handle post-processing operations such as JPEG compression, additive noise, image blur, colour reduction,
brightness change, and contrast adjustment. One important aspect of the proposed approach is its ability
to handle images with different textures, including smooth and self-similar structural images with dense
textures. The proposed approach can produce stable results in images with various attacks, making it a
functional and reliable tool for detecting copy-move forgery in a diverse range of forged images. The
proposed approach represents an important contribution to the field of multimedia forensics, providing an
effective and reliable means of detecting and localizing copy-move forgery in digital images.

INDEX TERMS CenSurE detector, copy-move, CNN forgery, deep learning, digital image forgery, hybrid
approach, image forgery detection, image duplication, image keypoint, multimedia forensics.

I. INTRODUCTION
In recent years, the significance of digital data, especially
in the form of images, has grown immensely in information
sharing. The accessibility of budget-friendly digital cameras
has simplified image capture. The impact of social net-
working platforms is substantial, with individuals frequently
sharing and forwarding images. This turns every user into a
potential source of digital content.

Furthermore, the prevalence of user-friendly image editing
software empowers both beginners and experts to craft
plausible modifications. These alterations might range from
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harmless modifications for amusement to more insidious
image manipulations aimed at deception [1]. This reality
introduces doubt into the credibility of digital images. The
situation becomes particularly critical when these digital
images are employed for specific purposes such as news
dissemination, research publications, and legal proceedings.

Recent years have witnessed the role of digital data in the
form of images for providing information. The availability
of low-cost digital camera-enabled devices made it easy
to capture images. Statistics show that the use of social
networking sites has influenced people very seriously. Now
people go online and upload their pictures while they forward
pictures uploaded by others. This makes every user a probable
source of digital information.
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The accessibility of simplistic image-modifying software
is advantageous for both novices and experts, enabling them
to create authentic modifications. These tweaks range from
minor alterations made for entertainment to substantial image
manipulation carried out maliciously [2]. This fact poses
uncertainty in the authenticity of the digital image. When
these digital images are used for specific purposes like news
broadcasts, research journals, and the court of law, this
problem becomes more critical.

One prevalent form of image forgery involves inserting
a portion of the image within the same image, a technique
termed copy-move forgery. This manipulation entails copy-
ing a segment of the original image and pasting it elsewhere
within the image [3]. Illustrative examples of images
exhibiting copy-move forgery from the Coverage, MICC-
F600, and CASIA II datasets are depicted in Figure (1).

Copy-move forgery detection involves two primary
approaches: keypoint-based and block-based. The keypoint-
based approach emphasizes the identification of regions with
high entropy in an image, which encompasses elements
like edges, blobs, and corners, commonly referred to as
keypoints [4]. These keypoints are selected based on their
uniqueness and robustness, enabling effective detection of
copy-move forgery even in the presence of various image
processes. Conversely, the block-based approach divides the
image into various shapes of blocks, such as squares, circles,
or rectangles [5]. Features are derived from each block,
and a comparison is performed block-by-block to identify
similarities indicating copy-move forgery. Additionally, deep
learning models have also been employed for copy-move
forgery detection, offering new possibilities and improved
performance in this field.

Deep Neural Networks (DNN) have demonstrated their
effectiveness in learning hierarchical representations from
input data, making them highly versatile in various appli-
cations, including image classification and speech recogni-
tion [6]. Researchers have leveraged the automatic feature
learning capability of DNN for image forgery detection.
By utilizing pre-trained neural networks, real-time compre-
hensive forgery detection approaches can be developed [7].
Deep learning approaches excel at detecting copy-move
forgeries by autonomously acquiring distinct features from
images, allowing for the precise recognition of even minor
changes with enhanced accuracy, robustness, and speed when
compared to traditional techniques, thus enhancing security
and precision in diverse applications [2].

A. MOTIVATION
Despite numerous advancements, we observed that current
copy-move forgery detection methods in image forensics still
possess certain limitations.

Our analysis revealed that distinct approaches have diverse
capabilities in identifying copy-move forgery. Block-based
approaches have excellent detection performance in straight-
forward copy-move and copy-move with post-processing

scenarios such as JPEG compression. However, they
encounter difficulties when faced with complex post-
processing techniques like geometric transformation [5], [8],
[9]. Conversely, keypoint-based approaches exhibit better
resistance to geometric alterations but are susceptible to
the influence of image texture. Smoother images yield
fewer keypoints, while denser textures result in more
keypoints [10], [11]. However, achieving the appropriate
equilibrium is crucial; an insufficient number of keypoints
renders the detection of manipulation difficult, whereas an
excessive number of keypoints hampers the identification of
copy-move areas.

Complex image attacks, such as extensive rotation and
combined attacks involving scale, rotation, and JPEG com-
pression, are frequently employed to conceal the traces of
forgery [12]. However, the detection of these sophisticated
forgery techniques has been largely neglected by researchers,
with only a limited number of studies addressing this specific
direction. This highlights the need for more comprehensive
research and methodologies to effectively detect and mitigate
the impact of these complex image attacks in forgery
detection.

The accuracy of forgery detection is significantly influ-
enced by the texture of an image. It has been observed that
image features can be significantly influenced by the texture
present in the image [13]. However, only a limited number of
researchers have explored and addressed the diverse nature
of image textures, indicating a gap in understanding and
addressing this important aspect of forgery detection.

B. CONTRIBUTION
To overcome the limitations of the existing approaches as
mentioned in Section (I-A), we propose a novel approach
that combines the CNN architecture and CenSurE keypoint
detector for copy-move forgery detection. The CNN archi-
tecture allows us to learn and extract meaningful features
from the image, enabling efficient detection of copy-move
forgery. Simultaneously, the CenSurE keypoint detector is
employed to capture structural information within the image.
By merging the strengths of both approaches, our proposed
method seeks to enhance the accuracy of copy-move forgery
detection. Several key advantages of the proposed approach
include:

• Our proposed approach introduces a two-channel model
that combines a CNN architecture with a CenSurE
keypoint detector for improved copy-move forgery
detection.

• For boundary prediction of the forged region, we use
the residual refinement stage. The decision is further
optimized with the help of the softmax layer.

• In addition to widely recognized attacks like noise
addition, JPEG compression, rotation, and scaling, our
proposed approach possesses the capability to detect
a forgery in images subjected to novel attacks such
as image blur, color reduction, brightness change, and
contrast adjustment. These less-explored attacks are
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FIGURE 1. Some example images depicting copy-move forgery here the first row consists of an authentic image and the second row consists
forged image.

frequently employed to conceal the location of forgery
or camouflage the forged regions. By addressing these
novel attacks, our proposed method becomes crucial in
achieving comprehensive and effective forgery detection
in digital images.

• The proposed approach is capable of detecting and
localizing complex image attacks, including extensive
rotation and combined attacks involving scale, rotation,
and JPEG compression. These sophisticated attack
techniques are commonly used to obscure the evidence
of forgery.

• By leveraging the advantages of CNN, including its
ability to learn statistical features and adaptive feature
learning, we aim to address forgery in images with
diverse textures, such as smooth, coarse and structural
textures.

The structure of this paper is as follows: In Section II,
we discussed the Related work. In Section III, we discuss the
basics of image feature extraction. In Section IV, we discuss
the proposed CNN-based fusion approach. In Section V,
we discuss the proposed algorithm for the detection of
forgery. In Section VI, we discuss the dataset and evaluation
metric. In Section VII, we discussed experiments and results.
In Section VIII we draw a conclusion.

II. RELATED WORK
In the field of image forensics, forgery detection methods can
be broadly categorized as passive or active. Active methods
involve embedding digital information such as watermarks
or signatures into images to protect their integrity, but they
require prior embedding using specialized equipment. Con-
versely, passive methods do not depend on prior knowledge
and instead analyze the inherent characteristics of the images
to ascertain their authenticity. Passive methods are practical
ways to handle forgery and have received significant attention
from researchers.

Among passive methods, detection approaches of
copy-move image forgery can be categorized into keypoint-
based, block-based, and deep learning-based approaches.

Block-based approaches divide the image into blocks for
comparison, while keypoint-based approaches focus on
identifying unique points of interest. Deep learning-based
methods utilize deep neural networks to learn and extract
features for copy-move forgery detection. These different
approaches within the passive category offer diverse
strategies to detect a copy-move forgery in digital images.

A. BLOCK-BASED
Several researchers have explored a block-based approach for
detecting copy-move forgery. Some of these studies include;
Babu and Rao [14] have employed a combination of different
versions of LBP local ternary pattern (LTeP), local phase
quantization (LPQ), and local Gabor binary pattern. The
features of LBP are used to train the classifier model and
SVM is used for the classification of copy-move forgery veri-
fication. Diwan et.al [12] introduced an LPP-based approach
for copy-move forgery detection. Their block-based method
demonstrates effectiveness for both post-processed and
original images. Hosny et al. [15] presented a sub-sampled
image method using QPCETMs, incorporating the Sobel
operator to identify edges and eliminate small regions, yet
its effectiveness might be limited for images with smooth
or dense textures. Gani and Qadir [16] utilized Cellular
Automata on individual DCT block features within the image,
but the method’s time complexity is notably high.

The algorithm for block-based copy-move forgery detec-
tion compares blocks of the image to identify similar regions
that may indicate copy-move forgery. This approach fails
to detect forgery when the copied region is geometrically
transformed, such as rotated, scaled, or flipped. This is
because the transformed region may not match exactly with
any of the blocks in the image [17]. Therefore, a different
approach is needed to detect geometrically transformed copy-
move forgery.

B. KEYPOINT-BASED
The keypoint-based approach can be used as an alternative
when a block-based approach fails to detect copy-move
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forgeries [18]. The keypoint-based approach depends on
identifying and matching distinctive keypoints, which are
regions of an image with unique visual features, instead of
using fixed-size blocks.

Researchers have employed a variety of keypoint-based
forgery detection techniques in the past. Kumar and
Meenpal [19] utilized a silent keypoint section approach with
SIFT features along with KAZE image keypoint features
for the detection of copy-move forgery. Lee et al. [20]
Proposed a copy-move detection methodology that utilizes a
rotation-invariant characteristic and high-frequency wavelet
coefficients. This approach uses a correlation module
and a reduced mask decoder module. Venugopalan and
Gopakumar [21] employed SIFT keypoint with DBSCAN
for the clustering of the extracted keypoints. Additionally,
they used Hu invariant moment for getting for identification
of similar regions in copy-move images. Wang et al. [22]
utilize simple linear iterative clustering (SLIC) and the K-
multiple-means (KMM) for feature extraction alongwith Fast
Quaternion Generic Polar Complex Exponential Transform
(FQGPCET) and the texture features based on the Gray-level
co-occurrence matrix (GLCM) to enhance the robust feature
extraction for copy-move forgery detection.

Keypoints are usually detected by finding areas in the
image that have high-contrast changes in texture or color. The
count of keypoints detected in an image is influenced by its
texture. In the case of smooth images, there may be fewer
keypoints available for detection compared to images with
more textured regions. This can lead to a lower detection rate
for keypoint-based approaches for smooth images [10].

C. DEEP LEARNING-BASED
Both keypoint-based and block-based approaches have their
strengths and weaknesses, and the choice of approach
depends on the specific requirements of the application and
the complexity of the forgery. However, it is important to note
that simply extracting features of blocks and keypoints may
not be enough to provide a foolproof forgery detection result.
In addition to the feature extraction process, an effective
feature selection process and classification techniques are
also necessary for accurate forgery detection.

In recent years, deep learning-based approaches have
demonstrated significant potential due to their capacity to
autonomously learn intricate features and deliver precise
predictions [23]. These approaches have been used for
copy-move forgery detection and have shown improved
performance compared to traditional methods.

Deep learning-based approaches have been used for
copy-move forgery detection by researchers. Some of them
are; Xiong et al. [24] have used a multiscale fusion network
model for copy-move forgery detection and localization.
Zhang et al. [25] have used CNN and transformer-based
generative adversarial networks for feature extraction and
copy-move forgery detection. Kaur et al. [26] have used
contrast-limited adaptive histogram equalization with CNN

to make a deep neural network that effectively detects copy-
move forgery. Zhu et al. [27] have proposed end-to-end AR-
Net along with deep matching to capture context information
fully. Kuznetsov et al. [28] have used an optimized tailored
CNN base classifier for copy-move forgery detection.

III. BASICS OF IMAGE FEATURE EXTRACTION
As discussed in section II image feature extraction process
is the most decisive step in copy-move forgery detection. The
result of forgery is highly dependent on the image features we
are extracting and processing. We are focusing on two types
of image features first is local and global keypoint features
and second image statistical features extracted by neural
networks. In this section, we will discuss briefly the keypoint
the CenSurE detector, FREAK descriptor, and Convolutional
Neural Network (CNN).

A. KEYPOINT DETECTOR AND DESCRIPTOR
Keypoints are often described by a set of descriptors that cap-
ture the local image information around the keypoint. There
are many methods for detecting keypoints in images, such
as Speeded-Up Robust Features (SURF), Scale-Invariant
Feature Transform (SIFT), the Harris corner detector, and
CenSurE (Center Surround Extrema). Each method has its
advantages and disadvantages, depending on the application
and the characteristics of the images.

To achieve efficient copy-move forgery detection, the
keypoints should possess a sparsity, repeatability, and
distinctiveness to optimize matching accuracy [29]. The
repeatability of a detector, quantifying the consistency of
detected regions across images, is crucial in this context.
It’s a measure based solely on feature geometry, defined as
the ratio between simultaneously detected points in a pair of
images [10]. We understand that we need a combination of
the detector (of the keypoints in the image) and descriptor (of
similarity) to successfully detect and localize various types
of copy-move forgery. Diwan et al. [10] have done a detailed
experiment on the various combinations of detectors and
descriptors to determine the best response for repeatability,
geometric transformation, and other post-processing attacks.
It has been found that the CenSurE detector and FREAK
descriptor give the best responses for the different images.
CenSurE Keypoint Detector: CenSurE (Center Surround

Extremas) is a keypoint detector that was introduced by
Agrawal et al. [30]. The detector is based on the idea
that keypoints in an image are regions where the intensity
variation is significant with respect to the surrounding pixels.

CenSurE operates by convolving an image with a filter
bank that consists of two filters: a center filter and a surround
filter. The center filter is designed to respond to edges and
the surrounding filter is designed to suppress the responses
of the center filter in homogeneous regions. The output of the
convolution is then thresholded to obtain the keypoints.

The CenSurE detector has three main steps, which include:

• Detecting edges involves filtering out weaker responses
and computing the response to a bilevel LoG.
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• Detecting local extrema usingHarrismeasure, which has
a strong corner response.

• Calculating features at various scales and then identify-
ing significant points across all locations and scales to
identify large-scale features.

CenSurE is using a box filter where the size of the inner box
is (2n+1)×(2n+1) and the size of the outer box is (4n+1)×
(4n + 1). Haar wavelet of seven scales is applied on the box
filters with different block size e.g. n = [1, 2, 3, 4, 5, 6, 7].
Seven filter responses are calculated for every pixel in the
image. After that, non-maximal suppression is computed for
each scale. A response is suppressed when it is higher (in the
case of maxima) or lower (in the case of minima) than its
neighboring responses in a local area across different scales.
Pixels pointed as either maxima or minima within this area
are considered feature point locations.

Let I be the input image, and let Gc and Gs be the center
and surround filters, respectively. The response of CenSurE
at a pixel (x,y) is defined as:

C(x, y) = Max[(I ∗ Gc)(x, y) ∗ R((I ∗ Gs)(x, y))]

Here ∗ denotes the convolution operation and R() thresh-
olding function and max() returns the maximum value of its
arguments.

The center filter Gc can be defined as a derivative of
the Gaussian filter, which responds to edges in the image.
The surround filter Gs can be defined as a box filter, which
suppresses the responses of the center filter in homogeneous
regions. The threshold function R() is:

R(x) = 1 i f |x | > T, 0 otherwise (1)

where T is a threshold value that is determined empirically.
The thresholding function is used to suppress responses that
are not significant with respect to the surrounding pixels.

CenSurE can be effectively calculated using integral
images, which allows for robust and quick detection of
keypoints. Hence, image features detected by CenSurE give
higher accuracy in copy-move forgery detection.

One advantage of CenSurE is its computational efficiency.
The convolution operation can be efficiently implemented
using integral images, which makes it much faster than other
keypoint detectors like SIFT and SURF. Moreover, CenSurE
is relatively robust to changes in image scale and rotation.
CenSurE can be employed in the field of image forensics
to identify instances of copy-move forgery within digital
images. It is done by identifying regions of the image that
have been duplicated.
FREAK Descriptors: Image keypoint descriptors are com-

pact representations of the local image information around
specific keypoints. FREAK (Fast Retina Keypoint) [31] is a
binary feature descriptor that is used for efficient and robust
keypoint matching in computer vision applications. FREAK
is based on the Retina keypoint detector, which detects
keypoints in images by finding the local extrema of the
Laplacian of the Gaussian function. FREAK then computes

a binary descriptor for each keypoint by analyzing the
intensity patterns around the keypoint. The binary descriptor
is generated using a combination of binary tests that compare
pairs of pixels around the keypoint.

FREAK employs a sample pattern based on the char-
acteristics of the human retina, the FREAK descriptor is
distinctive. In concentric rings with various radii around a
keypoint, it chooses a collection of point pairs (sampling
points) at random. The intensity difference between these
point pairs is then calculated. The binary string that makes
up the descriptor is created using these intensity differences.
The process is repeated for multiple radii and orientations
to capture information at different scales and orientations.
The binary string F is constructed through a sequence of
one-bit Differences of Gaussian (DoG), as demonstrated in
Equation (2). ∑

0⩽n⩽M

2nT (Pn) = F. (2)

The receptive field pair is represented as Pn , while
M signifies the descriptor’s size, which can be configured as
needed.

T (Pn) =

{
1=if I (Pr1

n )−I (Pr2
n )>0

0=Otherwise

}
(3)

Every pair of the receptive fields undergoes smoothing by a
Gaussian filter as represented Eq. (3). I (Pr1

n ) is first field of
pair Pn .

FREAK is constructed through intensity comparisons
of 512 sampling pairs. This involves randomly selecting
two circles and then identifying pairs that yield more
informative results. For each pair, if the intensity of the
first point exceeds that of the second, a ‘1’ is recorded;
otherwise, a ‘0’ is recorded in the corresponding descriptor
bit. Performance can be tuned by modifying Gaussian kernel
sizes or allowing receptive fields to overlap. Overlaps capture
more information, enhancing performance. Moreover, pixels
are averaged and concentrated around the keypoint, resulting
in a more precise description of the keypoint.

B. CNN ARCHITECTURE AND IMAGE FEATURE
EXTRACTION
CNNs, belonging to the Deep Neural Networks category,
excel at recognizing, classifying, and analyzing visual
features in images. In the context of CNN, the term
‘Convolution’ signifies a mathematical operation where two
functions undergo multiplication to generate a third function,
portraying how one function’s structure is altered by the other.
In more straightforward words, this operation involves matrix
multiplication of image representations, producing an output
that aids in feature extraction from the image.

Two prevailing parts of CNN architecture are:
• A convolution tool extracts and isolates unique image
features during a process known as feature extraction,
enabling their distinct identification and subsequent
analysis.
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• A fully connected layer relies on the features that were
extracted in earlier stages to forecast the class of the
image using the results from the convolution process.

Convolution Neural Network: CNN architecture consists
of multiple cascaded convolution layers which end with a
layer that is fully connected as represented in Figure (4). CNN
mainly has input, output, and hidden layers. The hidden layers
consist of ReLU, pooling, and fully connected layers. Here
every layer performs a definite function of transforming its
input into a distinct representation..

The very first layer is the input layer which is the
convolution layer that applies convolution operation to the
input. The main goal of this layer is to use filters or kernels
to extract features from the input image by applying them
to the image by sliding pixel-by-pixel. Element-wise matrix
multiplication is done between the image and the kernel and
summation follows thereafter. This sum contributes to the
creation of a feature map. Ultimately, an array known as a
feature map or activation map of the image is generated.
This accumulation leads to the formation of a feature map,
culminating in the generation of an array termed as a feature
map or activation map for the image.

Next is the pooling layer that combines the outputs of the
convolution layers. It primarily reduces the spatial dimension
of the previous convolution layer output before passing it
to the next convolution layer. Pooling primarily aids in
extracting distinct and refined features. Additionally, it serves
to diminish variance and computational complexity. Max-
pooling is effective in capturing basic features such as edges
and points. We need detailed low-level image features hence
we are using max pooing for proposed copy-move forgery
detection.

Following the convolution and pooling stages, fully
connected layers comprise the final phase of the CNN
architecture. The fully connected layer encompasses neurons,
weights, and biases, facilitating connections between distinct
layers. Typically positioned before the output layer, these
layers constitute the concluding sections of a CNN archi-
tecture. After undergoing prior layer processing, the input
image is transformed into a flattened format and directed
toward the fully connected layer. This flattened vector is
then subjected to additional fully connected layers, where
mathematical functions are frequently applied. This stage
marks the commencement of the classification process.

The purpose of using the CNN network is that it learns
image features automatically and accurately in training the
model through adaptive learning. VGG16 is good for finding
image copy-move parts because it can understand underlying
details in the texture of the image. The deep convolutional
layers of VGG16 excel at extracting hierarchical features,
a crucial aspect for tasks like image tampering detection that
necessitate a profound understanding of patterns and textures.
We used VGG16 [32] for feature extraction of the test image.
In VGG16 network architecture multiple 3 × 3 sized filters
are applied in the convolution layer and 2 × 2 sized filter
is applied in the pooling layer. It has its apparent advantage

as the multiple small-sized layers increase the depth of the
CNN, eventually resulting in more detailed learning and
less computational cost [33]. This ensures the extraction of
representative features even in the case of images with low
textures and very smooth structures.

IV. PROPOSED CNN-BASED FUSION APPROACH
Accurate and efficient feature extraction is a prime requisite
in the copy-move forgery detection problem. CNN is
especially known for learning image features in an adaptive
manner when working on a large dataset. Multiple layers
in CNN can learn detailed image features and automatically
detect similar features present in them. In this novel approach
we took advantage of two different types of feature extraction
and final detection is suggested based on the output of the
fusion of both CenSurE keypoint and CNN architecture. This
can be achieved by a proposed two-channel network: The
CenSurE branch (Channel-1) and CNN branch (Channel-2).
The schematic of this approach is shown in Figure (2).

A. CHANNEL-1
The Channel-1 of Figure (2) is doing the keypoint-based
copy-move forgery detection in this model. In this channel,
we are using the CenSurE detector, which gives rotation
and scale-invariant keypoints, and the FREAK descriptor,
which has geometrical invariant features. Keypoint-based
copy-move forgery detection is done on this channel of the
model.

In the proposed keypoint-based channel, attention was paid
to getting image features that are invariant to geometrical
transformations like scale and rotation, as well as getting
stable keypoints. Stable keypoints can be extracted by
creating an image pyramid, but this method suffers from
poor localization of scaled features at higher levels of
the pyramid. To address this, the CenSurE detector was
employed, generating features that encompass all pixels of
the image across various scales.

Once the keypoints are detected using the chosen detector,
the repeatability rate is calculated to determine how many
of the detected regions in one image are also present in
another image. This is important for detecting the same
features despite variations in angle or other transformations.
To eliminate outliers and improve detection and localization,
a threshold is set for different textured images with different
ranges of keypoints. Once the keypoints are detected,
the nature of the geometrical transformation between the
copied and moved regions is determined. Subsequently, the
coordinate data of both copied and moved regions are used
for an affine homographic matrix preparation. Homography,
rotation, and scaling calculations are done using homographic
matrix decomposition, while translation is determined by
identifying the centroid of the cluster.

Figure (3) shows the framework of Channel-1. Consid-
ering the targeted image (I) we are detecting a set of
keypoints (X = x1, x2, . . . xi ) and then finding descriptor
f1, f2, .. fi for each keypoint. The similarity between the
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FIGURE 2. Proposed CNN-CenSurE based copy-move forgery detection framework.

FIGURE 3. Framework of Channel-1.

two keypoints is determined by matching the descriptor
of the corresponding keypoints. The matching process
involves the nearest neighborhood search applied to the
keypoints. For this, the Euclidean distance between two
descriptors is utilized. A global threshold is set to assess
the distance between descriptors. Given the high-dimensional
feature space, certain descriptors need to be notably more
discriminative. Thus, we calculate the ratio between the
two closest neighbors and compare it with the threshold.
A similarity vector S = d1, d2, . . . dn − 1 of the keypoint
is defined. This similarity vector represents the descriptor
with the shortest distance concerning other descriptors. The
2NN (2)-nearest neighbour) test must satisfy for keypoints
matching, and for this ratio between the distance 1 (d1) and
distance 2 (d2) must be higher than the threshold (T).

d1
d2

> T ,where T ∈ 1, 0 (4)

Outliers can affect the estimation of the forged region,
so it is essential to remove them. The Random Sample
Consensus algorithm RANSAC is used for this purpose.
In RANSAC, a set of matched points is chosen randomly
to estimate the homography. Then, the remaining keypoints
are transformed and their spatial distance is evaluated
with respect to their matched points. An outlier is iden-
tified when the distance of points surpasses a predefined
threshold.

B. CHANNEL-2
Figure (4) shows the framework of channel-2. In the CNN
channel, the input image is passed through several convolu-
tion layers to capture the spatial and temporal dependencies
in the images. We are using VGG16 and at first, we are giving
input matrix to the network. It starts with the application of
two convolution layers having 64 channels of 3 × 3 sized
filters and max-pooling of stride (2,2). This combination is
repeated twice. Then three convolution layers of 256 channels
of 3 × 3 sized filters and the same max-pooling layers are

FIGURE 4. Framework of Channel-2.
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applied. ReLU activation is summoned after each layer to
drop all the negative values before it enters the next layer.
The output of a convolution is passed to the set of two dance
layers and then to the softmax layer of two units.

The self-correlation module is used for computing feature
similarity. Pooling is also used for the collection of useful
statistics about the feature. We are extracting the image
feature ( f I

b ) of size (16 × 16x512) from the CNN channel.
We are applying deconvolution so that we can restore the
original size of the image before applying further steps.
Following a sequence of layers of type hidden and pooling,
the data proceeds through several fully connected layers
where the classification task is conducted. A binary classifier
is employed to predict the mask image. This mask is
generated using Inception and Bilinearuppool2D one after
another same as done in [34] and produces tensor d I

b with
the dimension (256× 256× 6). Ultimately, within the output
layer, the error is computed and subsequently backpropagated
through the network to adjust the filter weights. This
iterative process of feed-forward and backpropagation aims
to minimize the error and train the network.

f I
b = f I

b |ir , ic|where, ir , jc ∈ [0 . . . .15] (5)

To get similarities between the copy-move regions, the
similarity score is calculated by getting self-correlation
between regions. Matched regions are located by the
Max Pooling stage by collating meaningful statistics about
regions.

C. FUSION CLASSIFIER
The two inputs to our fusion network are defined as follows:
input A and input B. These inputs to the fusion network are
the output of the two channels (256 × 256 × 6). The output
filter dimension is six because of the last inception network,
which concatenates three convolution 2D responses with two
output filters (i.e., 2 × 3 = 6). BN-Inception net is used
for combining the output of the two channels. Two more
fully connected layers follow the above step. The first layer
consists of two nodes, followed by a ReLU activation, but just
one nodewith a linear activation is present in the second layer.
The multi-input model builds the final step, and it defines the
objectives of the model which are:

1) To Accept two inputs and
2) To define the output.

V. PROPOSED ALGORITHM FOR DETECTION OF FORGERY
The proposed approach for copy-move forgery detection
utilizes a CNN architecture and CenSurE keypoint detection
to extract features from the input image. The FREAK
binary descriptor and Agglomerative Hierarchical Clustering
algorithm are used to identify and match keypoints. Copy-
move forged regions are identified as similar patches using
a feature classifier. The training process requires a large
number of images for diverse sample selection, and a
single-class classifier is used to classify whether an image is

forged or authentic. The functional steps of this approach are
described in Algorithm (1).

Algorithm 1 CNN-CenSurE Based Copy-Move Forgery
Detection
1: Input image (copy-move forgery image).
2: Input Image X to Key-point feature extraction (Channel-

1)
3: Clustering of the Key-point
4: Feature matching and classification
5: Generate Binary classifier mask (output of channel-1)
6: Input image X to CNN feature extractor (Channel-2)
7: Compute self-co-relation for feature similarity
8: Percentile pooling is done to get statistics for matched

patches
9: The four convolution layers consist of 16,32,64, and

128 kernels respectively. Each of these four convolution
layers is followed by a pooling layer which reduces by a
factor.

10: A dropout layers are added in between which switched
off the neurons to find the path

11: Percentile pooling Binary classifier Mask is generated
(output of channel-2)

12: Binary mask features from both Channel are taken to
Fusion Copy-move perdition

13: Fuse feature using the BN-Inception
14: Predict the mask using a Conv2Dwith one filter followed

by the softmax activation

1) Input Image: The first step in the algorithm is to provide
an input image to both the CNN channel and the
CenSurE detector channel.

2) CenSurE Detector Channel: The CenSurE detector
channel identifies the keypoints in the input image.
CenSurE stands for Center Surround Extrema. This
algorithm identifies keypoints based on the scale-space
extrema detection approach. The output of the CenSurE
detector channel is a set of keypoints.

3) Feature Descriptor: The FREAK descriptor is used to
create a binary descriptor for each keypoint identified
in the previous step. This descriptor is used to match
the keypoints in the next step.

4) Keypoint Matching: Agglomerative Hierarchical Clus-
tering (AHC) is used to match the keypoints identified
in step 3. The AHC algorithm undergoes iterations
across keypoints, generating a collection of matched
points. Singular points are excluded, and the remaining
points are earmarked for subsequent processing.

5) Homographic Matrix Decomposition: Homographic
matrix decomposition is applied to address high-level
scale and rotation in the matched keypoints.

6) CNN Channel: The CNN channel extracts image
features from the input image. The architecture of the
CNN is designed to extract features that are useful for
detecting copy-move forgeries. The output of the CNN
channel is a feature map.
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7) Copy-Move Forgery Classification: Copy-move forged
regions are classified as similar patches using a feature
classifier. The feature classifier is trained on diverse
image samples, and it classifies each image as either
authentic or forged.

The proposed CenSurE-FREAK keypoint-channel and
CNN feature extraction-channel approach for copy-move
forgery detection involves two main steps. The initial stage
involves subjecting the input image to the CenSurE keypoint
detector, aiming to detect keypoints and their respective
descriptors. Subsequently, a matching operation is executed
among the descriptor vectors of keypoints to detect analogous
patches within the test image. In the second step, the input
image is processed by the CNN architecture to extract
image features. The convolution layer extracts edges, and
the pooling layer reduces the dimensionality and extracts
the dominant features of the image. Finally, the outputs of
both channels are combined in the Fusion Classifier stage
to include the benefits of both approaches, make the final
decision of copy-move forgery, and localize the copy-move
forged region. The fusion classifier outputs a superset of
all the features of the image, which is helpful in detecting
copy-move forgery in a variety of images.

The procedure of training VGG16 for copy-move forgery
detection entails a methodical approach to endow the model
with the capability to differentiate between genuine and
altered areas within images. The initial pivotal stage involves
creating a dataset that consists of photos containing authentic
content as well as examples of copy-move forgeries. The
dataset must be meticulously annotated to ensure precise and
reliable ground truth information regarding the locations and
characteristics of the forgeries.We have images with rotation,
flipping, scaling, andmodifications in brightness and contrast
that improve the model’s capacity to generalize across a wide
range of forgery variants.

The training procedure involves exposing the model to the
curated dataset, wherein it acquires the ability to differentiate
between genuine and altered regions. The performance of the
model is assessed on a validation set to guarantee that it can
effectively apply to new and unexplored data. Refinement
can be carried out by utilising the outcomes of the validation
process to make adjustments to hyperparameters or modify
the architecture. Subsequent evaluation on an independent
test set is conducted to examine the accuracy, precision,
recall, and F1-score of the model for detecting copy-move
forgery

VI. DATASET AND EVALUATION METRIC
To assess the strength and efficacy of our forgery detec-
tion method across different types of copy-move forgery,
we performed extensive experiments using a diverse range
of images. These experiments involved the utilization of
seven well-known open-source datasets, allowing us to
thoroughly evaluate the performance and robustness of our
approach.

A. DATASET USED
We have used seven open source datasets CMFD [35], GRIP
[36], CoMoFoD [37], MICC-F600 [38], MICC-F220 [38],
COVERAGE [39] and CASIA-II [40]. Table (1) provides
an overview of the dataset details, while Table 2) presents
specific information on the different levels of attacks found in
CMFD and CoMoFoD datasets. Additionally, Table (3) lists
the details of the datasets used for both training and testing
purposes. Further elaboration on all seven datasets is provided
below.

1) CMFD: The CMFD dataset consists of 48 authentic
images with different textures. These images are
affected by copy-move forgery with translation, rota-
tion, scaling, and their combined effect. The translation
is a simple copy-move without any angle rotation
or scale change. All the forged and original images
are processed with different types of post-processing
operations like JPEG compression and additive Gaus-
sian noise. As discussed in Table (2), this dataset has
nine levels of JPEG compression from 100 to 20 and
five levels of additive noise. The combination attack
setup consisted of a 2◦ rotation, 1% scaling, and JPEG
compression at a level of 80. The subsequent setups
involved increasing the rotation and scaling while
decreasing the JPEG quality, resulting in combinations
of (4◦, 3%, 75), (6◦, 5%, 70), and (8◦, 7%, 65).

2) GRIP: The GRIP dataset consists of 80 original and
80 forged images with corresponding ground truth
images. It has a wide range of textures in images like
smooth, coarse, and self-similar structural images of
the monuments. Diversity in the textural property of
the image makes this dataset challenging. Note that we
have used primary images of GRIP dataset that has only
simple copy-move images without any post-processing
and geometrical transformation attacks.

3) CoMoFoD: The CoMoFoD dataset consists of
200 base images, with forged images in each of
the following categories: translation, rotation, scaling,
combination, and distortion. Furthermore, all forged
images undergo post-processing operations including
JPEG compression, additive noise, brightness change,
color reduction, contrast enhancement, and image blur.

4) MICC-F220: The MICC-F220 dataset consists of
110 original and 110 forged images. The manipulation
of copy-move is done by translation, rotation, scaling,
or any combination of these three processes. Post-
processing like JPEG compression or additive Gaus-
sian noise is applied to images to hide traces of forgery.
This dataset has single and multiple copy-move forged
images.

5) MICC-F600: The MICC-F600 dataset comprises a
total of 600 images, with 440 being original and
160 being forged images. The forged images are gen-
erated using copy-move forgery techniques, involving
manipulations such as translation, rotation, scaling,
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TABLE 1. Details of the dataset used to collect images for experimental work.

TABLE 2. Details of the range of different attacks applied on copy-move
forged images.

or a combination of these processes. Furthermore,
post-processing techniques like JPEG compression and
AWGN are applied to the forged images.

6) Coverage:The Coverage dataset contains 100 original,
forged, and ground truth images with a similar
object. This dataset consists of images from indoors
and outdoors. Six different types of manipulations
are applied to these images. These operations are
translation, rotation, scaling, illumination change, free
form, and any combination of these five. Also, it has
20 images with a combination of different copy-move
forgeries.

7) CASIA-II: The CASIA-II dataset has a total of
7491 images and 5123 forged images. Out of all
images, 3274 images are copy-move forged images,
with various manipulation and post-processing. This
dataset has images with translation, rotation, and
scalingmanipulations. Post-processing like JPEG com-
pression and edge blurring is applied to some of these
images.

B. EVALUATION METRIC
All experiments are conducted on a pixel level to ensure
a comprehensive evaluation. True Positive (TP) signifies
the total pixels correctly identified as forged that genuinely
belong to the forged region. False Positive (FP) signifies
the total pixels erroneously identified as forged, despite
not being part of the actual forged region. Similarly, False
Negative (FN) indicates total pixels incorrectly identified as

not forged, even though they belong to the forged region.
From these metrics, Precision (P), Recall (R), and F1-Score
are calculated. F1-Score serves as the primary performance
metric for evaluating the efficacy of our proposed approaches
and also for comparison with other reportedmethods Its value
ranges from 1 (best) to 0 (worst). We have shown it in terms
of percentage (after multiplying it by 100) in this thesis. P,
R and F1-Score are related to TP, FP and FN as under:

P =
T P

T P + F P
, (6)

R =
T P

T P + F N
, (7)

F1 = 2
P × R
P + R

. (8)

VII. EXPERIMENTS AND RESULTS
The performance evaluation of our proposed approach for
forgery detection was conducted using the OpenCV-Python
public library on a computer system comprising an Intel
Core (TM) i7 processor, 8 GB RAM, and a 2.80 GHz CPU.
In this section, we present the results of our evaluation,
encompassing both quantitative and qualitative outcomes,
for various types of forgeries. Additionally, we compare the
performance of our approach with state-of-the-art techniques
in the field of copy-move forgery detection.

A. PERFORMANCE EVALUATION
In our experiment, we aimed to assess the performance of
detectors and descriptors on forged images that underwent
various types of forgery and post-processing. We focused
on nine distinct types of copy-move forgery attacks, which
can be considered a comprehensive list of forgeries followed
by post-processing attacks. Some of these attacks have been
previously studied, allowing for comparisons with existing
works. The types of copy-move forgery attacks considered in
our study are as follows:
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TABLE 3. Details of the image used for the training and testing phase of experimental work.

1) Simple copy-move: This scenario involves directly
pasting a copied region without any additional pr-
processing, post-processing, or transformations. It is
also referred to as translation.

2) Multiple copy-move: In this scenario, there are two
possibilities. Firstly, the copied region is pasted mul-
tiple times in different regions of the image. Secondly,
multiple regions are copied and pasted into the image.

3) Rotation: The copied region is rotated by a certain angle
before pasting onto the image. We have taken images
with small angles like 10◦, 20◦, 30◦ etc. and large
angles like 60◦, 120◦, 180◦ also.

4) Flip: The copied region is rotated by 180◦ and pasted
onto the image.

5) Scaling: Scaling can be performed in two ways: by
adjusting the height or the width of the copied region.
In our experiments, we used datasets that included
images with varying percentages of up or down scaling
applied to the copied region.

6) Combined transformation: In the case of combined
transformation, multiple attacks, like rotation and
scaling, are done to the targeted copied part of the
image prior to pasting it. This technique is used to
createmore complex and realistic copy-move forgeries.

7) JPEG compression: In the JPEG compression attack,
the copy-move region is subjected to lossy compression
using the JPEG algorithm. The experiment involved
using datasets with varying levels of compression
applied to the forged images, allowing for evaluation of
the method’s performance under different compression
settings.

8) Additive noise: Additive noise is a commonly
employed attack to conceal evidence of forgery in
copy-move forged images. The experimental datasets
utilized in the study include forged images with
different levels of AWGN added, creating a more
challenging scenario for the detection of forgery.

9) Additional post-processing: In addition to the basic
copy-move attack, post-processing techniques such
as image blur, brightness change, color reduction,
and contrast adjustment are commonly employed in
combination with the copy-move attack to conceal
evidence of forgery. The CoMoFoD dataset includes
forged images with varying levels of these post-
processing techniques, applied after the copy-move
operation, to remove forgery footprints.

B. DISCUSSION OF EXPERIMENTAL RESULTS
In this section, we present the evaluation results of our
proposed copy-move forgery detection technique on different
types of attacks. The objective of copy-move forgery detec-
tion is to identify regions in the image that exhibit similarity,
indicating the presence of forgery. Hence, we assess the
performance of our technique on various types of attacks,
including simple copy-move, rotation, flip, scaling, combined
attacks, JPEG compression, AWGN, and additional post-
processing attacks. We analyze the effect of these attacks on
the accuracy of detection and localization of forged regions.

1) SIMPLE COPY-MOVE
Simple copy-move forgery detection refers to the identi-
fication of forgery where no post-processing or geometric
transformation is applied. It involves the duplication of
a specific region within an image and pasting it onto
another region of the same image without any additional
modifications. Our approach effectively detects and handles
both single and multiple instances of copy-move forgery.
In Figure (5), we have included some of the detected forgeries
for single and multiple copy-move cases.

We conducted a comparative analysis of our proposed
algorithm with several recently reported copy-move forgery
detection approaches, and the results are presented in
Table (4). Our approach consistently performed well across
different datasets, as indicated by the high F1-Score values
obtained. The proposed approach has shown improved results
in the CMFD, GRIP, CoMoFoD, MICC-F600, and CASIA-II
datasets compared to the keypoint-based approaches. How-
ever, in the MICC-F220 and COVERAGE datasets, the
performance of the CNN-CenSurE based approach is slightly
lower.

TABLE 4. Comparison of our results (F1-Score) with recently published
works for simple copy-move forgery in images.
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Our approach outperforms recently published keypoint-
based works [10], [41] in terms of detection results on the
GRIP dataset. This improvement can be attributed to the
proposed approach’s capability to effectively detect forgery
in images with diverse textures. However, it is worth noting
that Li’s approach [42] demonstrates exceptionally high
performance on the GRIP dataset, surpassing the proposed
approach. We compared our work with neural network-based
work proposed by Zhu et al. [27] besides others. From
the results of [27] we can infer that the use of only
neural networks is not helping detection and localization
in diverse images. In a comparison of time complexities,
our proposed approach surpasses other methods in image
processing. It processes images in just 15.17 seconds,
showcasing superior efficiency compared to Li’s approach
(86.6 seconds), Bi’s approach (74.17 seconds), and Diwan’s
approach (15.75 seconds). This rapid processing significantly
enhances the effectiveness of forgery detection, especially for
real-time applications.

The proposed CNN and CenSurE fusion approach includes
the benefits of image keypoints and image features extracted
by the CNN model, which makes detection and localization
even better. Figure (5) illustrates examples of images for
copy-move forgery detection.

FIGURE 5. Detection results for single and multiple copy-move forgeries
from CMFD, CoMoFoD and MICC-F600 datasets.

Image Texture: As we know if we use only keypoint
information of the image, extraction of useful keypoints for
extreme image texture is difficult. Like in a smooth image
number of keypoints is so low that they are not sufficient

to detect and localize forgery. Whereas in highly textured
images with self-similar structures, there is a large number of
similar keypoints that create false localization of the tempered
region. In our proposed approach, since we used a fusion of
keypoint features of images with the neural network, it is
evident from Figure (6), that it was quite effective in forgery
detection and localization for diverse images.
Multiple Copy-Move: As mentioned in Section (VII-A),

we address multiple copy-move forgery explicitly, some
example images for multiple copy-move forgery detection are
shown in Figure (7) and Figure (5) in the following section.

FIGURE 6. Detection results for images with different textures from GRIP,
CMFD and MICC-F600 datasets.

2) DETECTION OF POST-PROCESSED COPY-MOVE
Skilled forgery of digital images often involves applying vari-
ous post-processing attacks to hide the traces ofmanipulation.
In our study, we investigated several commonly used post-
processing attacks, such as JPEG compression, noise addi-
tion, brightness change, color reduction, contrast adjustment,
and image blurring. These operations are extensively used for
hiding copy-move forgery in a digital image.We analyzed the
impact of these attacks on forged images to understand their
effects and develop effective detection methods.

CNNs are powerful deep-learning models capable of
learning complex patterns and features from images. They
can automatically learn and extract relevant features from
images, including those affected by post-processing attacks.
By training a CNN on a dataset that includes post-processed
copy-move forged images, the network can learn to identify
the subtle changes and artifacts introduced by different
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FIGURE 7. Detection results for Copy-move images with low to high JPEG compression and low to high additive noise for CMFD
and CoMoFoD datasets.

post-processing techniques. This enables the CNN to detect
and classify forged regions accurately. CenSurE keypoint
detector, on the other hand, is designed to extract distinctive
local features from an image. These keypoints represent areas
with significant variations in intensity. Indeed, the robustness
of the combined CNN and CenSurE approach plays a crucial
role in detecting copy-move forgery, even in the presence of
post-processing techniques like JPEG compression and noise
addition.
JPEG Compression:We are taking post-processed images

from CMFD and CoMoFoD datasets for the experiment. For
robust experimentation of our approach, we have used six
levels of JPEG compression, e.g., JPEG 100, 90, 80, 70,
60, and 40, the lesser the number more the compression.
As shown in Table (5) for both datasets results gradually
deteriorated when the compression level in images went on
increasing. As expected, as we move from JPEG 100 to JPEG
40, the F1-Score deteriorated, but still, we got good results
in all cases for both datasets. We know that as compression
increases high-frequency information like edges, corners, and
gradient change of the image gradually gets smooth out. This
high-frequency information in the image is the key feature of
the image that was used by the image feature detectors.

TABLE 5. The average result of copy-move forgery detection for images
with various JPEG and Noise levels for CMFD and CoMoFoD datasets and
its comparison with keypoint-based approach [10].

In JPEG compressed images, when the compression level
is below 60, image visual degradation and blocking artifact
were noticeably visible. This factor is affecting forgery
detection in images with higher compression. However, CNN
architecture curtails the effect of higher compression by
detecting low-level image features. The CNN can learn to
recognize the statistical patterns and artifacts introduced
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by JPEG compression. As shown in the Table (5) the
keypoint-based approach proposed by Diwan et al. [10],
yielded significantly lower results, particularly for higher
levels of compression, while our proposed approach effec-
tively detected forgery even under challenging compression
conditions. The first two rows of the Figure (7) showcase
images with JPEG compression with different levels of
compression.
Additive Noise: Additive noise is a commonly used

post-processing attack aimed at concealing image forgeries
by introducing random pixel values. The introduction of noise
in an image can generate undesired edges or corners, which
can disrupt the background of the image. The next experiment
in post-processed copy-move forgery detection was to see
the impact of additive noise in images after the simple copy-
move operation. Themiscellaneous edges and corners created
during noise addition become severe when the noise level
increases, it creates a blur effect. These miscellaneous edges
affected the detection of keypoints but multi-level CNN
architecture extracted detailed image features, which in turn
helped in better detection and localization of forgery after the
fusion classifier stage of the proposed approach.

Table (5) illustrates the results of forgery detection
for copy-move images with added noise. The findings
demonstrate that our proposed approach surpasses the
keypoint-based method introduced by Diwan et al. [10] in
terms of accuracy, particularly for lower levels of noise.
This highlights the effectiveness of our approach in detecting
forgery in the presence of noise. However, it is worth
noting that the performance of our approach diminishes for
higher levels of noise. The last two rows of the Figure (7)
showcase images with additive noise with different levels of
compression.

FIGURE 8. Copy-move forgery detection results for images with additional
post-processing, e.g., Brightness change (BC), Colour reduction (CR),
Contrast adjustment (CA), and Image blur (IB) for the CoMoFoD dataset.

3) ADDITIONAL POST-PROCESSING
The proposed approach for copy-move forgery detec-
tion exhibits robustness against additional post-processing

techniques, such as brightness change, color reduction,
contrast enhancement, and image blur. These operations
make changes in the image at the pixel level and camouflage
traces of forgery and are commonly employed to conceal
traces of copy-move forgery in images. By modifying
the pixel values, these operations make it challenging to
detect forgery. For example, increasing the brightness of
a forged image can decrease contrast, leading to a higher
number of false negatives and a decrease in the recall,
ultimately reducing the overall detection accuracy or F1-
Score. Similarly, in the case of color reduction, reducing
intensity levels can impact edge detection and detection
accuracy.

In our experiments, we evaluated the performance of
the proposed CNN-CenSurE-based approach on additional
post-processing techniques using the CoMoFoD dataset.
The results indicate that our approach effectively detects
and localizes forgery across different levels of these post-
processing operations. Figure (8) illustrates the consistent
results obtained even when the processing levels range
from soft to harsh. The CoMoFoD dataset includes forged
images with three levels of additional post-processing: level1,
level2, and level3. The label3 corresponds to the harshest
processing, which is more severe compared to level2 and
level1. Similarly, level1 represents the lighter or softer
processing in comparison to level2 and level3. This pattern
holds true for contrast adjustment, color reduction, and
brightness change as well.

By clustering keypoints and incorporating CNN features,
our approach successfully preserves similarity in keypoints
and registers local image features, enhancing the overall
effectiveness of forgery detection and localization. Our pro-
posed approach shows effective forgery detection capabilities
even with varying levels of post-processing, from soft to
harsh. However, as depicted in Figure (8), the level of
post-processing becomes more severe, leading to a lower
overall F1-Score. This is mainly due to the fact that harsher
post-processing attacks, like high levels of image Blur or
contrast adjustment, can obscure keypoint information and
make it more difficult to accurately detect copy-move forgery.

4) DETECTION OF GEOMETRICALLY TRANSFORMED
COPY-MOVE
Our research now aims to detect a forgery in images where
the copy-move regions have undergone rotation or scaling.
Detection of forgery becomes further complicated when the
copied region is geometrically transformed before moving
it. These transformations are commonly employed to make
forgery appear realistic. However, not all image features
are invariant to such transformations, posing a challenge
for detection. We specifically focus on scenarios where the
copied region is rotated by large angles, such as 40◦, 60◦, and
180◦, as well as cases involving significant scaling combined
with rotation, known as a combined attack.
Copy-Move With Angle Rotation: Detection of forgery

becomes increasingly challenging when copy-move regions
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FIGURE 9. Detection results for copy-move images with rotation as the geometrical transformation from CMFD, CoMoFoD
and MICC-F600 datasets.

are affected by rotation, particularly at higher degrees of
rotation. To address this challenge, our approach leverages
the features extracted from a CNN architecture and utilizes
the CenSurE keypoint detector. By combining these two
components, our method benefits from both the discrimina-
tive power of CNN features and the robustness of CenSurE
keypoints in capturing important information from forged
regions. The statistical information extracted from these
features boots the effectiveness of forgery detection for the
images which involves angle rotation.

Our approach demonstrates successful forgery detection in
images with small degrees of rotation, such as 2◦, 4◦, 6◦, and
10◦. Notably, our approach excels in detecting and localizing
forgery even at higher degrees of rotation, such as 20◦, 40◦,
60◦ and 180◦ rotation, surpassing the performance of the
method proposed by Diwan et al. [10]. This highlights the
effectiveness of our approach in addressing the complexity

of detecting forgery with higher degrees of rotation, an aspect
that has not been extensively studied by previous researchers.
The superior results obtained for higher degrees of rotation
validate the robustness and capability of our approach in
handling such challenging forgery scenarios.

However, when examining Table (6), it is evident that as
the rotation angle increases, the F1-Score decreases. This
decline is attributed to the loss of correspondence among the
extracted image feature, making it more challenging to detect
and localize the forgery accurately. Despite this decrease
in performance, the proposed algorithm maintains stable
computational complexity across various attack conditions,
including large geometrical transformations like 180◦ rota-
tion (flip). The stable computational complexity contributes
to faster computation, allowing for efficient forgery detection
in real-time applications. Some images with rotation are
shown in Figure (9).
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FIGURE 10. Detection results for copy-move images with scale and combined attack as the geometrical transformation
from CMFD, CoMoFoD and MICC-F600 datasets.

TABLE 6. The average result of copy-move forgery detection for images
with various levels of angle rotation for CMFD dataset and its comparison
with the keypoint-based approach [10].

Copy-Move With Scale Change: The accuracy of
copy-move forgery detection is significantly affected when
there are changes in the scale of the manipulated region.
This challenge becomes even more prominent when scaling
is combined with rotation, resulting in a combined attack.
As mentioned in section (VI-A), even small-scale changes

and rotations in combined attacks may not be visibly apparent
in the copy and move regions. However, they disrupt the
correspondence between these regions, posing a significant
challenge to forgery detection. Moreover, the dataset includes
a small amount of JPEG compression, further deteriorating
the correspondence between the copied and moved regions
and exacerbating the difficulty of detection. Consequently,
the detection accuracy is considerably compromised in such
scenarios, highlighting the importance of addressing this
critical issue in forgery detection algorithms.

Our proposed approach combines the strengths of CNN
andCenSurE keypoints to boost the detection and localization
of forgery, particularly in cases involving angle rotation
and scale change. By utilizing the pooling layers of CNN,
the dominant features of the images, which are rotation
and scale-invariant, are extracted. This combination of
CNN and CenSurE keypoints strengthens the detection and
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localization capabilities, especially for scenarios where large
scale changes are involved. The results presented in Table (7)
demonstrate the effectiveness of our approach in detecting
forgery.

Table (7) provides insights into the impact of scale change
and combined attacks on the performance of our approach.
It is worth noting that our proposed approach consistently out-
performs the approach presented by Diwan et al. [10] in terms
of detecting forgery with scale changes, especially for scale
variations of 2%, 4%, 6%, 8% and 10%. These results indicate
that our approach excels in handling scale variations and
demonstrates superior performance in detecting copy-move
forgery under such conditions.

The impact of scale changes on detection accuracy is
evident from the results obtained in our experiments. How-
ever, our proposed approach exhibits strong capabilities in
detecting forgery even in the presence of complex combined
attacks. This is demonstrated by the experiments run on the
CMFD dataset, and the accuracy of our forgery detection is
visually represented in Figure (10). The figure showcases
the precise identification of forged regions, with the first
two rows depicting results for scaled copy-move forgery and
the last two rows showcasing the detection performance for
combined scale and rotation attacks. These results serve as
evidence of the robustness and effectiveness of our approach
in handling complex scenarios of copy-move forgery.

TABLE 7. The average result of copy-move forgery detection for images
with various levels of scale factor and its comparison with the
keypoint-based approach [10].

VIII. CONCLUSION
The proposed end-to-end trainable copy-move fusion
approach incorporated the advantages of CenSurE keypoint
and CNN architecture to detect and localize the copy-move
forgery in digital images. It employs a data-driven approach
that allows the algorithm to update its learning through
training data continually. Creating a fusion of keypoints with
CNN features enhances forgery detection in the presence of
different copy-move forgery attacks.

The CNN-CenSurE approach works pretty well on all
varieties of copy-move forgery including simple copy-move
(single and multiple), post-processed copy-move (JPEG and
Noise), geometrically transformed copy-move (angle rotation
and scale change), and some additional processing like
brightness change, colour reduction, contrast adjustment, and
image blur. We can say that we could meet our objective
of making a robust approach that can detect a forgery

in all types of copy-move forged images. We specifically
addressed images with various textures like smooth and
coarse images with dense textures. We are getting stable
results in images with different attacks, which makes our
detection approach useful for a diverse range of forged
images. Extensive experiments on seven datasets available
in the public domain have been carried out, demonstrating
the superior performance of the proposed CNN-based fusion
approach over other image forgery detection approaches. This
algorithm takes very little time to process, so it can be used
for faster detection.
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