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ABSTRACT This paper proposes a design of a multilayer controlled beam horn antenna for the D-band.
The multilayer design can achieve easy to control, low cost, and compact structure. The designed structure
achieves the effect of a conventional horn antenna by stacking multiple layers and realizes the effect of beam
switching by modifying the multi-layer plate structure. The widest bandwidth can be obtained when stacking
4 layers of boards, covering 24.7% (110-141GHz) of the bandwidth with a simulation gain of approximately
13.5dBi. By replacing the third plate structure, beam switching of±30 degrees can be achieved, and the gain
after beam switching can also reach 11.5 dBi.

INDEX TERMS Horn, antenna, D-band, beam switching, multi-layer.

I. INTRODUCTION
Due to the increasing demand for data capacity in commu-
nication systems, D-band has been selected as a potential
communication band because of its low atmospheric absorp-
tion, very low latency, and large available bandwidth. Current
applications for D-band [1], [2], [3], [4], [5], [6] communica-
tion include small base stations [7], short-range high-speed
transmission [8], and automotive radar [9]. In the D-band,
it is important to note the relatively high path loss and the
dielectric loss generated by the substrate. These issues will
be the most important challenges to overcome in designing
D-band antennas.

To solve the losses generated by the path at millimeter
wave frequencies, it is often necessary to design antennas
with high directivity. In recent years, the way to improve
the antenna gain is mostly through the array structure to
achieve higher directivity, such as [3], [10], [11], [12], [13],
and [14] are through the array structure to improve the radi-
ation directivity. In [10], a slot array using corporate-feed
is introduced to achieve a homogeneous feeding network
through the slot waveguide, and metal pins are added to
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the radiation slot to increase the bandwidth. In [11], a high
gain and high efficiency transmitting array antenna using
low-temperature cofired ceramics (LTCC) technology with
360◦ phase coverage through a tunable substrate integrated
waveguide is proposed. Therefore, it is clear that arrays are
the most common way to increase gain, but it is important
to consider that arrays require a complex feeding network,
which can cause higher loss and make the design more diffi-
cult in the millimeter wave band.

In recent years, there are also discussions on such as Pérot
cavity antenna [15], [16], reflector antenna [17], [18], [19],
lens antenna [18], [20], [21], [22], [23], [24], [25], [26], [27],
[28], and horn antenna [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39], [40]. In [15], the phase shift feeder and
the phase shift surface are designed using the LTCC technique
and the holder is designed using the 3D printing technique.
The designed results can achieve about 17.5dBi and 17.1dBi
dual polarization gain. In [17], a quasi-parabolic reflector
was proposed and the antenna was made beam-controlled by
swapping the feed source. In [20], it is proposed to design the
lens through three dielectric materials so that it increases the
range of transmission and reception of the packaged antenna.
In [21], a controlled, highly directional, and low scanning loss
is achieved by the integration of two lenses. In [29], [31],
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[41], [42], [43], and [44], multilayer metal horn antennas are
designed on PCB boards, and the metal structure of the horn
is simulated by metal via. The results presented show a wide
bandwidth and high antenna gain. In [32], a tapered horn
structure is designed with packaging metal to improve the
antenna performance. In [33], a substrate integrated waveg-
uide (SIW) feed is used to excite and achieve a bandwidth of
129.5-156.5 GHz with good antenna gain by adding a horn
antenna.

This paper proposes a multi-layer PCB with an integrated
Horn antenna structure. Each layer of the PCB is designed
through a progressive structure, and each layer uses Via as
the metal wall to mimic a standard horn antenna. The Horn
antenna is able to control the radiation phase shift through
different substrate structures, and the performance of the
proposed antenna structure in terms of radiation gain and
phase switching is verified by actual measurements.

II. GUIDELINES FOR MANUSCRIPT PREPARATION
A. MULTILAYER HORN ANTENNA
This paper proposes a low-cost multilayer horn structure
antenna, and the proposed antenna has a periodic structure.
It has the high gain, broadband, and pronounced radiation
directivity of a traditional horn antenna. To imitate the con-
ductive wall of a conventional horn antenna, the metal wall
is replaced by a periodic stepped ring via. In Fig. 1(a),
the cross-section of the designed multilayer horn antenna is
shown. The antenna feed end is fed by a WR-6.5 waveguide
as the feed port, and the structure is made of a 4-layer Arlon
Diclad 880 substrate (dielectric coefficient of 2.2, tangential
loss of 0.0009, and substrate thickness of 0.508mm). Fig. 1(b)
is an exploded view of the structure, and Fig. 1(c) is a top
view of the antenna. The bottom layer is the ground plane
connected to the WR-6.5 waveguide, and the whole structure
is fixed by screws and locating pins.

B. ANALYZING ANTENNA STRUCTURE
Fig. 2 shows the reflection coefficients and simulated gains of
the basic structure for 3-, 4-, and 5-layers stacked to study the
effect of different layer numbers on the antenna. As shown in
Fig. 2(a) and (b), the reflection coefficient of the structure
with 3 layers is about 110-135 GHz and the gain is about
8-10dBi at 110-150 GHz. The structure with 4 layers has
a bandwidth of 120-145 GHz with a reflection coefficient
below the −10dB standard, and the antenna gain is about
9-11dBi at110-150 GHz. When the number of stacked layers
increases to the fifth layer, the reflection coefficient will be
lower than −10 dB at 110-126 and 140- 148GHz, and the
gain is about 10-13.5dBi at 110-150 GHz. The bandwidth of
the 3-layers structure is 110-135 GHz, which is worse than
the 4- and 5-layers structures in terms of gain performance.
Although the 5-layers structure has the maximum antenna
gain at 140-150 GHz, the bandwidth of the reflection coeffi-
cient does not reach the maximum bandwidth of the 4-layers
structure. Therefore, a four-layer horn antenna architecture

FIGURE 1. Structure of the multilayer horn antenna. (a) Cross-sectional
view. (b) Exploded view. (c) Top view.

will be chosen as the base. In Fig. 3, the radiation patterns of
the 3, 4, and 5-layers structures are shown. The yz-plane of
Fig. 3(a) shows that at the overlapping 125GHz, the radiation
gain of the 3-layer structure is about 7dBi at 0 degrees, and the
maximum gain of the structure with 4 layers is about 10dBi,
withmore obvious directivity. The 5-layer structure shows the
maximum radiation gain at plus or minus 30 degrees.

The xz-plane in Fig. 3(b) shows that the structure with
3 layers has an antenna gain of 8 dBi at 0 degrees, which is
2 dBi different from the 10 dBi of the structure with 4 layers.
The five layers also shows themaximum radiation gain at plus
or minus 30 degrees.

C. BEAM CONTROL DESIGN
In this section, beam direction control is performed by switch-
ing the structure of the 3rd layer substrate to achieve the
result of beam transformation. The structure of the design
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FIGURE 2. Analysis of the stacked horn structure. (a) Reflection
coefficient. (b) Gain.

FIGURE 3. Radiation pattern for different stacking quantities.
(a) yz-plane. (b) xz plane.

is shown in Fig. 4. Fig. 4(a) shows the detailed dimensions
of the proposed multilayer horn antenna. In the third layer
of the structure, two additional structures are designed to
increase the via metal wall, and this structure adjusts the
rectangular groove of length b5 length to br1. Fig. 4(b) shows
the cross-sectional view of the antenna. It can be seen in
layer 3 of the structure along the via metal wall, respectively.

FIGURE 4. Detailed specifications of each multilayer horn antenna.
(a) Dimensions (b) Cross-section (c) Top view. (a1 = 0.8mm, a2 = 2.4mm,
a3 = 1.6mm, a4 = 3.2mm, a5 = 2.4mm, a6 = 4.4mm, a7 = 3.2mm, a8 =

4.8mm, b1 = 1.6mm, b2 = 3.2mm, b3 = 2.4mm, b4 = 4mm, b5 = 3.2mm,
b6 = 4.8mm, b7 = 4mm, b8 = 5.6mm, and br1 = 2.4mm.)

Fig. 4(c) shows the multilayer antenna extending in both
directions of vias, where Mχ is used asthe distance from the
metal wall to the center point along the extended via.

Since the multilayer structure is modified, the reflec-
tion coefficients of the original antenna structure and the
fixed addition of via metal walls (Mx progressively shorter)
towards the feed center are analyzed in Fig. 5. The bandwidth
of the Mχ can be seen to cover 114.8-145GHz at the −10 dB
reflectance coefficient standard at the original size of 1.6mm.
When the Mχ is reduced to 0.8mm, the bandwidth covers
116.8-150 GHz. When the Mχ is reduced to 0mm, the band-
width is shifted to a low frequency of 110-125.8 GHz.

Then discuss the beam change affected by increasing the
via metal wall (Mx progressively shortened). Fig. 6 shows
that when Mχ is at the original size of 1.6 mm, the radiation
pattern in the yz-plane is concentrated at 0 degrees, and when
Mχ is at 0.8 mm, the radiation pattern has a directional angle
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FIGURE 5. Reflection coefficient analysis of via parameter Mχ .

FIGURE 6. Radiation pattern of the parameter Mχ .

of 15 degrees. The radiation pattern ofMx at 0mm is similar to
that of Mχ at 1.2 mm, with a phase shift of about 15 degrees.

III. MEASUREMENT RESULTS AND VALIDATION
The proposed multilayer horn antenna is fabricated on a
low-cost PCB board as shown in Fig. 7. In Fig. 7(a) a physical
photograph of all stacked layers is shown, and the antenna
size is 20 mm × 20 mm. Fig. 7(b) shows the complete
structure fixed by locating pins and screws, also shows the
measurement environment.

A. MULTILAYER HORN ANTENNA MEASUREMENT
RESULTS
The measured reflectance coefficients of the multi-layer horn
antennas are in Fig. 8. The results show that the simulated and
measured results are similar, but the overall measured band-
widths are toward the lower bandwidths, which are included
in the 110-141GHz. Fig. 9 shows the simulated andmeasured
gain comparisons. The measured results show that the gain is
about 13.5 dBi overall, with a maximum peak gain of 14 dBi
at 135 GHz, and the simulated average gain is about 10 dBi at
110-150 GHz, while the maximum gain can reach 11.2 dBi.
The actual gain increases by about 3.5dB when compared to
the simulated result. The measured and simulated yz- and
xz-plane radiation patterns are shown in Fig. 10. Due to

FIGURE 7. Fabricated multilayer horn antenna. (a) Dimensions.
(b) Measurement environment.

FIGURE 8. Results of the measurement of the reflection coefficient.

FIGURE 9. Simulated and measured gain.

the measurement environment, it is not possible to measure
the radiation direction from90degrees to 270 degrees. The
measured radiation pattern has the maximum radiation gain
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TABLE 1. Comparison of horn antenna documents in similar frequency bands in recent years.

FIGURE 10. Measurements of (a) yz-plane and (b) xz-plane radiation
patterns at 130 GHz.

FIGURE 11. Comparison of the reflection coefficients of switched
materials.

at 0 degree, which is the same as the simulated result. The
trend is consistent in the yz plane, while the xz plane shows
a wider radiation pattern.

B. MEASUREMENT AND SIMULATION OF DIFFERENT
THIRD-LAYER MATERIALS
The reflection coefficients for switching materials are shown
in Fig. 11. The measured bandwidth covers 111-142.8 GHz,
which is reduced compared to the simulated reflectance

FIGURE 12. The xyz-plane radiation pattern at 130 GHz for the switched
plate. (a) Right side and (b) left side.

coefficient of 107-148.8 GHz, and the actual mea-
sured reflectance coefficient is reduced by resonance at
118 and145.5 GHz. Fig. 12 shows the radiation pattern of
the multilayer horn antenna and the replacement material.
The radiation pattern of the basic multilayer horn antenna
tends to be concentrated at 0 degrees and has a radiation
gain of 10 dBi. The radiation pattern is kept at plus or minus
15 degrees of beam shift.

C. LITERATURE COMPARISON
In Table 1, a comparison of the designed multilayer horn
antenna with recent literature on horn antennas in similar fre-
quency bands will be presented here. The proposed antenna
architecture has the thinnest structure thickness and a higher
radiation gain compared to [29], [32], and [33], and has a
wider operating bandwidth in terms of reflectance coefficient
compared to the literature [32], [33]. The proposed antenna
can control the direction of the beam by switching plates.
The proposed design provides more flexibility than a fixed
beam direction and offers high gain and a thinner structure
thickness.

IV. CONCLUSION
In this paper, a controlled beam multilayer horn antenna
design for D-band is designed. The designed multilayer horn
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antenna shows a consistent reflectance coefficient bandwidth
for both measurement and simulation in the substrate switch-
ing structure and achieves a reflectance coefficient bandwidth
of 110-147.9 GHz (29.3%) with a peak gain of 11 dBi
for measurement. The reflection coefficient after replacing
multiple layers of substrates also maintains similar results
to the measured results, covering an effective bandwidth of
113-142.8 GHz at −10 dB standard. The measured radia-
tion pattern has a phase-switching ratio of plus or minus
30 degrees at 10 dBi radiation gain. It shows that the designed
structure has good consistency and robustness. The proposed
multilayer horn antenna design can meet the advantages of
controllable beam phase, simple structure, and low cost, indi-
cating that the antenna has good prospects for application in
D-band communication systems.
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