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ABSTRACT Piezoelectric actuators are widely used in micro and nano-positioning systems for accurate
movement. However, they exhibit some nonlinearities, particularly hysteresis, which makes precise control
rather challenging. Many methods are available in the literature to compensate for the hysteresis effect in
piezoelectric actuators, but often a model of the actuator is required for this purpose. Identification of such
a model is challenging too. In this paper, we propose using a robust observer-based controller for precise
motion tracking of piezoelectric actuators without the need for a hysteresis model. The controller consists
of a fuzzy extended state observer (FESO) to estimate the hysteresis and other nonlinearities, as well as
model uncertainties and external disturbances. Subsequently, a robust sliding-mode controller is designed
and added to the framework. Joint stability analysis guarantees the stability and tracking performance of the
proposed combined controller. Simulation and experimental results confirm the performance of the proposed
controller compared to some other techniques.

INDEX TERMS Precision motion control, piezoelectric actuator, hysteresis, fuzzy extended state observer,
sliding mode control.

I. INTRODUCTION
Precision motion control is an important research subject
in the field of micro and nano positioning. Smart material
actuators are suitable tools used to provide precision motion
control [1]. Piezoelectric actuators (PEA), with high resolu-
tion, swift response, and high stiffness, are themost renowned
ones [2]. PEAs have been used in different applications,
such as cell puncture mechanisms [3], surgical devices
(a ventilation tube applicator) [4], scanning probemicroscopy
(SPM) [5], adaptive optics, aviation, micromanipulator [6],
and high-precision machine tools [7]. However, the per-
formance of PEAs is limited by their intrinsic nonlinear
dynamics, particularly hysteresis [7], [8]. Hysteresis can
cause a dissimilarity between the control system output and
the desired position [8]; additionally, it can be the reason
for system instability [8], [9] and output oscillation [9], [10].
To obtain precise motion tracking of the PEA, the design of
an effective compensator is, therefore, necessary.
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Different models, based on various concepts, have been
proposed over the years to describe the behavior of PEAs,
including their hysteresis. The Bouc-Wen model [11], the
Duhem model [12], the Maxwell-Slip model [13], the
Prandtl-Ishlinskii model [14], and the Preisach model [8] are
some of the well-known models used for hysteresis modeling
in the literature.

One of the traditional techniques of hysteresis compensa-
tion is open-loop control, also known as the feed-forward
compensator [10]. In this technique, the compensator is an
inverse hysteresis model cascaded with the PEA. Generally,
the open-loop structure has the well-known drawback that
it cannot compensate for modeling errors, uncertainties,
and external disturbances [3], [10]. Additionally, open-loop
hysteresis compensation requires an accurate hysteresis
model [3]. Moreover, it is not always possible to obtain
an inverse of the model. To enhance the performance
of open-loop controllers, some researchers have suggested
feedback control along with the inversion-free feed-forward
compensator [1], [10], [15].

To compensate for external disturbances and model mis-
match, as every control engineer is well aware, closed-loop
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control and feedback are required. Many different techniques
have been suggested over the years for closed-loop control of
PEAs, as reviewed in a number of surveys including [2], [6],
and [7]. However, the need for a model for the PEA remains,
albeit not as accurate as the case of open-loop control.

To evade the need for a model which requires extra
off-line steps of modeling and identification, feedback
control algorithms with no hysteresis model were developed.
For instance, sliding-mode controller (SMC) with fast reach-
ing law and proportional-integral-differential (PID) sliding
surface combined with time delay estimation (TDE) [3]; a
combined controller using an extended state observer (ESO)
with the SMC and PD controllers for feedback, and radial
basis function neural networks for reference generation in
feedforward [4]; current-cycle iterative learning control with
active disturbance rejection control [16]; and adaptive SMC
with uncertainty and disturbance estimation [17] are some of
the techniques used for model-free control of PEAs.

Note that neural network models have structural complex-
ities that result in increased computational burden. Adaptive
mechanisms can often contribute to increased complexity
too [18]. Also, it is impossible to avoid TDE errors since the
microcontroller sampling time sets the minimum value for
the time delay [19]. Additionally, noisy measurements and
nonlinearity of signals along the sampling time cause a time
delay error [20].
In this paper, we propose a hysteresis model-free controller

with fuzzy extended-state observer (FESO) for PEAs. Due
to the fact that the SMC is capable of dealing with different
uncertainties and external disturbances [3], [9], we adopt it as
the main controller to enhance the tracking performance of
PEAs. However, the level of uncertainty and the upper bound
for the disturbance directly affects the conservatism of the
controller [9]. The control performance, in this case, can be
enhanced using a disturbance estimator/observer. Extended
state observer (ESO) is a well-known technique used to
eliminate the effect of disturbances on the performance
of control systems [21]. ESO creates an extra state to
estimate internal uncertainty and external disturbances in
real time [21] and is often used for active disturbance
rejection control [22]. ESO has also been utilized for PEA
control [4], [16]. Conventional ESO, however, suffers from a
few drawbacks, including chattering in the nonlinear form of
ESO [16]; and the peaking value and the convergence rate in
the linear form of ESO (LESO) [21], which could negatively
impact the control performance.

The objective of the design outlined in this paper is
to ensure a satisfactory tracking performance of PEAs
for both continuous and discontinuous trajectories in the
presence of disturbances and system uncertainties, with
high accuracy in both steady and transient performance.
Therefore, we propose to employ fuzzy ESO (FESO) [21] to
estimate the hysteresis and other disturbances, on top of the
robust SMC.

The main contributions of this paper are described as
follows:

• The design of the proposed algorithm is based on the
second order linear dynamics with unknown hysteresis
nonlinearity. Thus, there is no complexity in the basic
model and parameters identification of the hysteresis
nonlinearity and the calculation of its inverse are not
needed.

• The FESO can form a desired transient performance.
It can obtain satisfactory estimation without any infor-
mation about disturbances/uncertainties such as their
bounds. Additionally, its fast convergence speed assists
in improved control performance.

• The stability analysis of FESO with the controller is
studied theoretically based on a joint stability proof.
Joint stability refers to the stability of a system in which
all components or subsystems operate together. This is
important since, the individual stability of subsystems
does not guarantee overall stability in nonlinear systems.

• In order to effectively illustrate the crucial role played
by estimation tools in enhancing controller performance,
we compare a variety of advanced estimation techniques
including FESO, LESO, and TDE. By employing
these methods, we showcase a deeper understanding of
how estimation tools can enhance the performance of
controllers in various applications.

• The efficiency of the proposed algorithm is tested for
tracking different reference trajectories. The experimen-
tal results show that the FESO-SMC controller can
ensure a proper trade-off between the convergence rate,
peaking value, and tracking accuracy.

II. PRELIMINARIES
The Bouc-Wen model of PEA, which is used in this paper for
observer/controller design is given by [11] as{

mẍ(t) + bẋ(t) + kx(t) = k(du(t) − h(t)) − w(t)
ḣ(t) = αdu̇(t) − β|u̇(t)|h(t) − γ u̇(t)|h(t)|

(1)

where u is the control signal (driver voltage for PEA), and
x is the system output (position of PEA). Parameters of the
linear part are m, b, k , and d , which represent the mass,
damping coefficient, stiffness coefficient, and piezoelectric
coefficient, respectively. Additionally, w(t) represents exter-
nal disturbance, model uncertainty, and other unknown terms.
Furthermore, h(t) is an internal state that accounts for the
hysteresis nonlinearity. Parameters of the nonlinear part are:
α, β, and γ .
Considering h(t) and w(t) as uncertainty/disturbance

denoted byD(t) = −
k
mh(t)−

1
mw(t), the dynamical model (1)

is rewritten as

ẍ(t) +
b
m
ẋ(t) +

k
m
x(t) =

kd
m
u(t) + D(t) (2)

Based on this simplified model, there is no need for hys-
teresis parameter identification. The uncertainty/disturbance
termD(t) is estimated by the proposed observer, i.e., the fuzzy
extended state observer (FESO).
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FIGURE 1. Input (ko1eo1 + ko2ėo1) (left) and output (ωo) (right)
membership functions of the fuzzy model.

III. DESIGN OF FESO FOR PEA
Owing to the complexity of the structure of PEAs, as
explained before, accurate model extraction is a challenging
task [5]. To tackle this challenge, at least partly, the nonlinear
(i.e., hysteresis) and disturbance components of the PEA
dynamics, represented by D(t) in (2), are estimated using
FESO.

A. THE STRUCTURE OF FESO
To design an FESO for the simplified PEA model in (2), the
idea is to consider D(t) as the third state and estimate it [21].
The state-space form of (2) is, therefore, expressed as

ẋ1 = x2

ẋ2 = −
k
m
x1 −

b
m
x2 + x3 +

kd
m
u

ẋ3 = Ḋ ≜ ϕ(t)
y = x1

(3)

To estimate D(t) in real-time, FESO is constructed as
ż1 = z2 − ωoβ1eo1

ż2 = −
k
m
z1 −

b
m
z2 + z3 +

kd
m
u− ω2

oβ2eo1

ż3 = −ω3
oβ3eo1

eoi = zi − xi i = 1, 2, 3

(4)

and the observer bandwidthωo is tuned by a fuzzymodel with
five rules as

• Rule 1: If ko1eo1 + ko2ėo1 is PL then ωo is S
• Rule 2: If ko1eo1 + ko2ėo1 is PM then ωo is M
• Rule 3: If ko1eo1 + ko2ėo1 is S then ωo is L
• Rule 4: If ko1eo1 + ko2ėo1 is NM then ωo is M
• Rule 5: If ko1eo1 + ko2ėo1 is NL then ωo is S

Here βi, i = 1, 2, 3 are the tunable parameters of FESO, and
ko1 and ko2 are the input scaling factors of the fuzzy model.
The fuzzy system input, ko1eo1 + ko2ėo1, is fuzzified

using linguistic values, positive medium (PM), small (S),
and negative medium (NM), which are all represented by
Gaussian membership functions; positive large (PL) which
is described by an S-shaped membership function; and
negative large (NL) which is represented by a Z-shaped
membership function, as shown in Fig. 1 (left). Similarly,
for the bandwidth ωo, the Gaussian, S-shaped, and Z-shaped
membership functions are used for medium (M), large (L),

and small (S), respectively, as shown in Fig. 1 (right).
Therefore, the architecture of the fuzzy system consists of
minimum implication, singleton fuzzifier, and the center of
gravity defuzzifier.

B. CONVERGENCE OF FESO
To analyze the convergence of the estimation error, after some
mathematical manipulations, the dynamics of FESO observer
in (4), is obtained as

ėo = Aeo + B′

1eo − ϕ(t)B2 (5)

where

eo =

eo1eo2
eo3

 ,A =

−ωoβ1 1 0
−ω2

oβ2 0 1
−ω3

oβ3 0 0

 ,

B′

1 =

 0 0 0
−k/m −b/m 0
0 0 0

 , B2 =

0
0
1


Let εi =

eoi
ωi−1
o

, thus

ε̇ = ωoA1ε + B1ε −
ϕ

ω2
o
B2 (6)

where

ε =

ε1
ε2
ε3

 , A1 =

−β1 1 0
−β2 0 1
−β3 0 0

 ,

B1 =

 0 0 0
−

k
ωom

−
b
m 0

0 0 0

 , B2 =

0
0
1


Notice the difference between B1 and B′

1. Now, if βi’s
are selected properly, then A1 is Hurwitz. Therefor, the
solution of the Lyapunov equation AT1 P + PA1 = −I ,
i.e., P is unique, symmetrical, and positive definite. For the
convergence analysis, we assume that ϕ is bounded, i.e.,
|ϕ| ≤ δ. In the case of the Bouc-Wen model, where D(t) =

−
k
mh(t)−

1
mw(t), the assumption requires that rates of change

of h(t) and w(t) are bounded, which is practically valid.
Consideringtheupperbound
Theorem 1: For FESO in (4) and the given fuzzy rules, the

observer errors converge to the following regions

|eoi| ≤
2ωi−1

omaxδλmax(P)

ω2
omin(ωomin − 2∥PB1∥)

, i = 1, 2, 3.

Proof: A Lyapunov function is selected as Vo = εTPε, where
P is obtained from the Lyapunov equation given above and
is positive definite. By using (6), the time derivative of Vo is
obtained as

V̇o = −ωoε
T ε + 2εTPB1ε +

2εTPB1(−ϕ)
ω2
o

(7)

Now, because ωo is tuned by the fuzzy model, it is
time-varying, but has lower and upper bounds defined
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by ωomin ≤ ωo ≤ ωomax . Then,

V̇o ≤ −ωomin∥ε∥
2
+ 2∥PB1∥∥ε∥2 +

2δλmax(P)∥ε∥

ω2
omin

(8)

Notice that if ωomin > 2∥PB3∥ and ∥ε∥ >
2δλmax (P)

ω2
omin(ωomin−2∥PB3∥)

then V̇o < 0. With the proper choice of fuzzy membership
functions and their location, ωomin can be selected large
enough. Therefore, 2δλmax (P)

ω2
omin(ωomin−2∥PB3∥)

is the upper bound

for ∥ε∥. Thus, |eoi| = ωi−1
o |εi| ≤ ωi−1

omax∥ε∥, i = 1, 2, 3 and
the proof is complete.

IV. FESO-BASED SLIDING MODE CONTROL OF PEA
To eliminate the undesirable effects of hysteresis and other
disturbances on the tracking performance of PEA, FESO is
first employed to estimate them; then it is mitigated by the
SMC algorithm.

A. THE SMC STRUCTURE
In this paper, the control rule of SMC is extracted based on
the proportional-derivative (PD) sliding surface. The tracking
error is defined as

e = x − xd (9)

where x is the position of PEA and xd is the desired position.
The PD sliding surface is defined as s = ė + λe, where ė =

ẋ− ẋd , and λ > 0 is the design parameter. The time derivative
of s is obtained as

ṡ = ẍ − ẍd + λ(ẋ − ẋd )

= −
k
m
x1 −

b
m
x2 + x3 +

kd
m
u− ẍd + λ(ẋ − ẋd ) (10)

Therefore, the control rule is calculated as

u =
m
kd

(ẍd + λẋd ) +
1
d
x1 −

m
kd
z3 + (

b
kd

− λ
m
kd

)z2

− kc1s− kc2 sgn(s) (11)

where kc1 and kc2 are the design parameters.

B. JOINT STABILITY ANALYSIS OF FESO-SMC
CONTROLLER
Theorem 2: For system (2) with the state space form (3),

the control rule is calculated as (11). With proper selection of
the design parameters ωomin and kc2, the convergence of the
tracking error (9) to zero is assured.

Proof: First notice that in the control rule (11),
we explicitly use the first state x1 (the PEA position) which
is measured by accurate sensors. For the other two states
x2, x3, their estimation from the observer, i.e., z2, z3 is used.
For closed-loop stability analysis, the Lyapunov function V
is defined as V = Vc + Vo, where Vo = εTPε is the
Lyapunov function of the observer and Vc ≜ 1

2 s
2 is the

Lyapunov function of the controller. The time derivative of
Vc is obtained as

V̇c = sṡ (12)

Substituting (11) into (10) leads to

ṡ = x3 − z3 + (λ − b/m)(x2 − z2) −
kdkc1
m

s−
kdkc2
m

sgn(s)

(13)

Then, by substituting (13) into (12) we have

V̇c = Nεs−
kdkc1
m

s2 −
kdkc2
m

sgn(s)s (14)

where N =

[
0 −

λ−
b
m

ωo
−

1
ω2
o

]
. Using (8) and (14) and

V̇ = V̇c + V̇o we obtain

V̇ ≤ ∥N∥∥ε∥|s| −
kdkc1
m

s2 −
kdkc2
m

|s| − ωomin∥ε∥
2

+ 2∥PB3∥∥ε∥2 +
2δλmax(P)∥ε∥

ω2
omin

Considering the upper bound of ε, i.e., ∥ε∥ ≤

2δλmax (P)
ω2
omin(ωomin−2∥PB3∥)

= τ , after some manipulations we have

V̇ ≤ −
kdkc1
m

s2 − (−∥N∥τ +
kdkc2
m

)|s| (15)

Now, if kc2 >
∥N∥τm
kd we assure that V̇ is negative definite.

Therefore, by considering the following conditions, the
closed-loop stability is guaranteed
1) ifωomin > 2∥PB1∥, the estimation errors converge to the

bounded balls.
2) if ωomin > 2∥PB1∥ and kc2 >

∥N∥τm
kd , both s and

consequently the tracking error converge to zero.
Remark 1: The proposed algorithm offers a distinct advan-

tage as it does not require knowledge of the hysteresis model
or any information about disturbances. This characteristic
makes it particularly appealing for practical applications due
to its simplicity and ease of implementation.
Remark 2: Ensuring closed-loop stability requires a value

of the coefficient kc2 large enough to satisfy kc2 >
∥N∥τm
kd .

On the other hand, since kc2 is the coefficient of the sign
term in the control signal, using large values for it can lead to
chattering which is undesirable. However, for PEA, due to the
small values of

m
kd

(it is about 3.4×10−6 in the experimental
setup), and τ (upper bound of the estimation error which is
small since the states are small), the lower bound on kc2 is
very small. Therefore, a small value for kc2 can be selected to
avoid chattering.

V. SIMULATION RESULTS
In this section, the performance of the FESO-based control
algorithm is assessed through simulation. The simulation is
performed using Matlab and Simulink software. The model
used for PEA (as the plant under control) is a Bouc-Wen
model in (1) whose parameters are identified using data
from the experimental setup. Notice that the proposed control
structure is model-free, thus the model obtained here is
only used for simulating the PEA, not for controller design.
The sampling frequency, similar to the experimental tests,
is selected as 1 KHz.
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FIGURE 2. Tracking performance of the FESO-SMC algorithm.

FIGURE 3. Estimation performance of FESO observer.

A sinusoidal reference signal with a frequency of 10 Hz
and amplitude of 5 µm is used for the assessment. Fig. 2
depicts the tracking performance of the proposed controller.
Furthermore, Fig. 3 illustrates the observer’s ability to
estimate the unknown terms and the states of the system. The
experimental results were in accordance with the simulation,
where the hysteresis effect in the system was taken into
consideration.

VI. EXPERIMENTAL RESULTS
The experimental setup comprised a 20 µm piezoelectric
actuator and a high-voltage amplifier, with the input range
of 0 − 10 V and the output range of 0 − 75 V. Signal
conditioning devices provide an analog voltage of 0 − 10 V
proportional to the PEA position in the range of 0 − 20 µm.
All devices are from the Thorlabs company. For com-
munication between software and hardware, a PCI-1711
data acquisition module from Advantech Inc. was utilized.
The controller and observer were implemented in Matlab.
The experimental setup is shown in Fig. 4. By applying
low-frequency sinusoidal input (to avoid the effect of
hysteresis), the parameters of the linear part of the PEA

FIGURE 4. Experimental setup.

are obtained, using Matlab’s System Identification toolbox,
as b

m = 1192, k
m = 2.452 × 105, and kd

m = 2.937 × 105.
Various reference trajectories, including sinusoidal and

square waves, are considered. For comparison, the perfor-
mances of four different algorithms, namely the proposed
FESO-SMC algorithm, the linear ESO-SMC algorithm, time-
delay estimation (TDE)-SMC algorithm, and PI controller,
are obtained. To demonstrate the significance of the estima-
tion tool in enhancing controller performance, we employ
techniques including FESO, LESO, and TDE. For the
TDE algorithm, obtained from [3], the total disturbance is
estimated as

D̂(t) = D(t − T ) = ẍ(t − T ) −
b
m
ẋ(t − T ) +

k
m
x(t − T )

−
kd
m
u(t − T )

where T is the sampling time. Then, a robust exact
differentiator (RED) [3] is utilized to estimate ẋ and ẍ.
In order to ensure a meaningful comparison, we use the
same sliding surface, PD, for FESO-SMC, LESO-SMC, and
TDE-SMC. Also, ωo of LESO is selected equal to ωomax of
FESO. Additionally, the same control gain kc1,2 is used for
LESO-SMC and FESO-SMC. The root mean square error
(RMSE) and the maximum absolute error (MAE) are then
calculated to evaluate the performance of the four controllers.
For better verification, MAE is calculated after the transient
response. Also, root mean square (RMS) of the control signal
is calculated and compared as a measure of control effort.

The experimental results are obtained for three different
reference trajectories, as explained in the following.

1) SINUSOIDAL REFERENCE
Let xd = 5 sin(20π t) + 7 µm. The experimental results are
depicted in Fig. 5. The FESO-SMC controller has a smaller
peaking value in comparison to the other three controllers.
As observed in Fig. 5, the convergence times of tracking
error to a zone around zero for the FESO-SMC, LESO-SMA,
TDE-SMC, and PI controllers are approximately 0.031, 0.07,
0.075, and 0.06 s, respectively. RMSE, MAE, and RMS
control for the four controllers are reported in Table 1.
Furthermore, the FESO-SMC controller shows the smallest
initial control effort compared to the other three controllers.
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FIGURE 5. Tracking performance of the FESO-SMC (top), LESO-SMC
(middle1), TDE-SMC (middle2), and PI (bottom) algorithms with
xd = 5 sin(20πt) + 7 µm.

FIGURE 6. Tracking performance of the FESO-SMC (top), LESO-SMC
(middle1), TDE-SMC (middle2), and PI (bottom) algorithms with
xd = 5 sin(20πt) + 3 sin(10πt) + 10 µm.
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TABLE 1. Tracking performance of the four controllers with
xd = 5 sin(20πt) + 7 µm.

2) MULTI-FREQUENCY SINUSOIDAL REFERENCE
Let xd = 5 sin(20π t) + 3 sin(10π t) + 10 µm. The
experimental results are depicted in Fig. 6, the convergence
time of tracking error to a zone around zero for the FESO-
SMC, LESO-SMC, TDE-SMC, and PI controllers are about
0.041, 0.033, 0.079, and 0.102 s, respectively. RMSE, MAE,
and RMS control for the four controllers are reported in
Table 2.

TABLE 2. Tracking performance of the four controllers with
xd = 5 sin(20πt) + 3 sin(10πt) + 10 µm.

3) SQUARE WAVE REFERENCE
For the third experiment, first a step reference with an
amplitude of 10 µm is considered. The results are depicted
in Fig. 7. The RMS error and RMS control for the four
controllers are reported in Table 3. It can be observed that,
the FESO-SMC, LESO-SMC, TDE-SMC, and PI controllers
have almost the same transient response speed, while the
overshoot (Mp) for FESO-SMC is less than the other three.
We can also observe that the PI controller has no proper

FIGURE 7. Tracking performance of FESO-SMC, LESO-SMC, TDE-SMC, and
PI algorithms with step reference.

TABLE 3. Tracking performance of the four controllers with step
reference.

performance for tracking square waves with a frequency of
10 Hz or more.

Next, a square wave reference with the frequency of 10 Hz
and amplitude of 4µm is considered for FESO-SMC, LESO-
SMC, and TDE-SMC controllers, as shown in Fig. 8. After
the first period, the FESO-SMC obtains a settling time (Ts)
of 0.01 s without overshoot, while the LESO-SMC has a
settling time of 0.023 s with an overshoot around 26% and
TDE-SMC has a settling time of 0.023 s with an overshoot
of around 24.8%. By comparing the three controllers with
different estimation techniques, it van be observed that the
fuzzy-based observer, FESO, improves the tracking results.

FIGURE 8. Tracking performance of FESO-SMC, LESO-SMC, and TDE-SMC
for a square wave reference.

VII. CONCLUSION
Due to hysteresis, the precision motion tracking of PEAs
has become a challenging task. In this paper, to provide
the desired performance of PEAs, a robust observer-based
controller constituted by an FESO observer and SMC
controller was proposed. Using FESO eliminates the need for
identification and inversion of hysteresis to compensate for
the hysteresis effect.

To evaluate the tracking performance of the proposed
algorithm, the reference trajectories of continuous and dis-
continuous signals were considered. The transient behavior
of PEA was inadequate under the PI, LESO-SMC, and
TDE-SMC controllers. The results confirmed the satisfactory
performance of the FESO-SMC algorithm in both the
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transient and steady-state parts. Furthermore, the stability and
tracking of the proposed algorithm were demonstrated using
the Lyapunov theory and a joint stability analysis. As part of
our future research efforts, we will integrate FESO and TDE
methods to enhance the estimation of total disturbance and
incorporate it into the control structure of PEA. This approach
is expected to yield improvements in the performance of
the control system, and we look forward to exploring its
potential in detail. Another future research direction is to
modify the control structure for higher excitation frequencies.
The severe growth of the hysteresis nonlinearity with exciting
frequency, as well as structural limitations of PEA, restrict
the application of the proposed controller in high excitation
frequencies, which will also be addressed in our future
research.
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