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ABSTRACT In large-scale enterprises, vast amounts of textual information are shared across corporate
repositories and intranet websites. Traditional search techniques that lack context sensitivity, often fail to
retrieve pertinent data efficiently. Modern techniques that use a distributed representation of words require
a considerable training dataset and computation, thereby presenting financial and operational burdens.
Generative models for information search suffer from problems of transparency and hallucination, which
can be detrimental, especially for organizations and their stakeholders who rely on these results for critical
business operations. This paper presents a non-goal oriented conversational agent based on a collection
of finite state machines and an information search model for text search from an extensive collection of
stored corporate documents and intranet websites. We used a distributed representation of words derived
from the BERT model, which allows for contextual searching. We minimally fine-tuned a BERT model on a
multi-label text classification task specific to a closed-domain knowledge base. Based on DCG metrics, our
information retrieval model using distributed embeddings from theminimally trained BERTmodel andWord
Movers Distance for calculating topic similarity is more relevant to user queries than BERT embeddings with
cosine similarity and BM25. Our architecture promises to significantly expedite and improve the accuracy of
information retrieval in closed-domain systems without the need for a massive training dataset or expensive
computing while maintaining transparency.

INDEX TERMS Natural language processing, conversational agent, information retrieval, closed domain
knowledge base, BERT word movers distance.

I. INTRODUCTION
In today’s data-rich environment, the daily expansion of
information has intensified the challenge of identifying
and retrieving the relevant data. Organizations have a
wealth of knowledge stored in documents and on intranet
websites. Efficient search and retrieval are crucial when such
information is distributed globally.

Identifying and searching for relevant information and
documents given a query is a core challenge for infor-
mation retrieval (IR). The applications range from web
searching, text mining, and document search from highly
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domain-specific documents. For applications that involve
highly domain-specific documents, the content matching of
the query to the document is crucial. These documents use
words and syntax that may be specialized for a particular
domain.

When we consider finding documents relevant to a query,
the traditional approach uses the frequency of the words
in the document. This approach has led to successful
algorithms such as TF-IDF [1] and BM25 [2]. However,
traditional information retrieval algorithms, do not model the
semantics or context of words. The system has no method
for determining how similar or dissimilar the two terms are.
Advances in Natural Language Processing have allowed us to
model embeddings for words in a language that encodes the
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contextual similarities between words. Word2Vec [3] was the
first neural network architecture to produce word embeddings
that showed some linguistic contexts. Furthermore, state-
of-the-art studies on neural network architectures, such as
GloVe [4], Elmo [5], and BERT [6] have been developed
to represent natural language in a latent space and learn
embeddings for words based on different downstream uses.
Moreover, the Elmo and BERTmodels can be pre-trained and
fine-tuned for a specific downstream task. This is similar to
the transfer learning in computer vision. Learning the context
of words using a neural network opens a new search domain.

Neural models for information retrieval tend to use a setup
known as telescoping [7], [8], [9]. In this system, we search
for the documents in question using a traditional IR model,
such as TF-IDF and BM25 and form a set of candidate
documents. The neural model then examines the candidate
documents to search for relevant results.

We consider and address these information management
system problems and demonstrate a system that allows users
to contextually find information. We address this problem in
a domain-specific setup where the documents in question are
collections of corporate documents.

Closed domain information retrieval also benefits from
query completeness when obtaining pertinent results for a
query [10]. Often, queries do not capture a user’s information
needs very well; for example, a query may consist of only a
few words, the query words may not match the words used
in any of the relevant documents, or the user may not know
how to express the information needs. Domain knowledge
can be incorporated into the system to reduce the number of
iterations required by the user to derive relevant information
from a search system. This is accomplished by providing a
conversational agent to the user, where the agent can ask the
user questions to provide additional information.

Interest in conversational agents has increased in the
research community and commercial systems over the past
few years. Conversational agents can efficiently replace
humans in goal-oriented settings in which the user wants to
achieve a specific goal, such as booking travel tickets and
ordering food [11], [12], [13]. Chatbots are commonly seen
as intelligent agents who can converse with humans in the
way humans interact; however, this is difficult. Earlier chatbot
systems used scripts of questions and answers to respond
to users. Each response was based only on the previous
utterance of the user. Chatbots, in which the turn-taking of
conversations was also implemented, were mostly used to
retrieve information from a database of conversational scripts.
Advances in natural language processing techniques with
deep learning have led researchers to use recurrent neural
networks to model human conversations [14], [15], [16],
[17]. Finite-state machines have also successfully modeled
human conversations for goal-oriented chatbots. Non-goal-
oriented chatbots require a knowledge base from which
they can extract information and converse with the user.
Understanding user intent and maintaining context play a
crucial role in such agents.

Finite-state machines (FSMs) offer a versatile framework
for modeling machines, humans, and mixed-initiative agent
architectures. Deep learning-based methods for designing
non-goal-oriented chatbots encounter two primary chal-
lenges. First, end-to-end deep learning does not inherently
equip the conversational agent to understand the context and
meaning of the conversation. However, this understanding
often requires an engineered knowledge base for information
retrieval. Second, these deep learning models for conversa-
tion require extensive training data, which are often scarce
for domain-specific applications.

Recent advances in Natural Language Processing, such
as Generative Pre-Training (GPT) [18], [19], [20] and
RLHF [21], [22], [23], [24], have paved the way for
Large Language Models (LLMs). Architectures such as
GPT3 and GPT4 are increasingly employed for open-domain
question answering and information retrieval. However,
these LLMs require significant computational resources and
large training datasets to achieve optimal results. They
are also susceptible to hallucinations, lack transparency,
and can underperform compared to domain-specific fine-
tuned models, such as BERT [25]. Commercial non-goal-
oriented conversational agents typically rely on handcrafted
features and knowledge-based data extraction. Although
sequence-to-sequence and other neural network models have
shown promise in emulating human conversations, they
often lack provisions for external knowledge integration
and face the challenge of data scarcity for domain-specific
training. Traditional information retrieval systems employ
non-contextual text representations, whereas neural network
models offer contextualized text representations that enhance
information relevance. In our research, we harnessed FSMs
in a novel manner to model conversations by leveraging
word embeddings from the BERT model to extract pertinent
information from textual documents.

The contributions of this paper are summarized as
follows:

1) A finite-state machine-based architecture for conver-
sational agents to retrieve information from corporate
documents (Microsoft Word and PDF) containing data
stored in tabular format and from the intranet.

2) An information search model using a neural network
architecture based on distributed word embeddings
extracted from a BERT model fine-tuned on a clas-
sification task, making highly accurate predictions of
document meta-data. We then used these predictions
to filter documents to generate a set of candidate
documents. We use the word movers distance to find
the most relevant information from within documents.

3) We compared the relevance of the results from an
information search model using distributed representa-
tions with cosine similarity and word movers distance.
We use BM25 as a baseline and show that neural word
embeddings with Word Movers Distance provide more
relevant results than traditional IR algorithms using
DCG metrics.
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Our method enables an organization to build IR systems
that do not require expensive hardware or a large labeled
dataset for training, and domain knowledge can be built into
a conversational agent to ensure query completeness. Since
results are derived directly from the document through query-
text matching, the system is also transparent and provides the
source of its answers.

II. RELATED WORK
A vast amount of research literature is available on conver-
sational agents and information retrieval. Various approaches
for chatbot development include matching question-response
pairs [26], [27], using neural networks [28], and modeling
conversations with finite state machines [29]. One of the
earliest works in chatbots was the ELIZA chatbot [30]
developed by Joseph Weizenbaum. ELIZA used pattern
matching and pre-written interactive scripts to engage users in
conversation. The ALICE [31] chatbot is another early work
on chatbots. It used the AIML markup language to create
interactive templates to converse with the user.

The rise of machine learning and neural networks [16] in
natural language processing gave way to natural language
understanding. This allowed computer systems to understand
the user’s words rather than mindlessly using information
retrieval models. Intent and entity detection [32], [33], [34],
[35] in a user utterance is now used by most commercial
chatbot systems [12].
Song et al. [36] demonstrated a retrieval-based conversa-

tional system that uses an ensemble of retrieval-based and
generative-based approaches. They search fored user-based
utterances in a large conversational repository, return a reply
that best matches the query, and synthesize new replies. The
generated and retrieved responses then perform a re-ranking
process to determine the final answer to the output.

Instead of using Q-R pairs for chatbots, Yan et al. [37]
extracted data from unstructured documents. A model was
designed to directly measure the relevance between the
utterances and responses. This chatbot is intended for
short-text conversations, in which the response depends
only on the last statement. Answers were obtained after
selecting sentences from the given documents by ranking all
possible sentences based on features designed at different
granularity levels. They used the BM25 to generate a set
of candidate sentences. The candidate sentences were re-
ranked, and the relevance score of a sentence was computed
as a weighted sum of different relevance functions. These
relevance functions were word, phrase, sentence, document,
relation, type, and topic-levels.

Conversational agents have been applied to IR problems
across various domains. GeCoAgent [38] is a conversational
agent modeled as a big data agent for clinicians and biol-
ogists. The agent helps users extract relevant data from the
repositories and perform data analysis. SAACS [39] presents
a framework and techniques that augment conversational
search services with the capability to understand and reason
about subjective user utterances. The authors discussed

automatic subjective tag extraction from user utterances
and online reviews using state-of-the-art machine learning
techniques such as BERT, adversarial training, and data
programming. HoPE [40] is an architecture for conversational
agents that uses ontology-based modeling and Sentence-
BERT [41] networks adjusted on pregnancy guidelines data
to support pregnant women in obtaining more reliable
information during the baby’s thousand day period.

Neural networks are becoming increasingly popular for
development of conversational agents. Vinyals and Le [14],
used a sequence-to-sequence neural network [16] framework
for end-to-end training of conversational agents. The model
converses by predicting the following sentence given the pre-
vious sentence or sentences in a conversation. They specified
that their model could perform simple reasoning and extract
knowledge from domain-specific datasets. Wu et al. [42]
used a sequential matching framework for context-sensitive
chatbots. They match each utterance’s response in the
context of multiple granularity levels and distill important
matching information from each pair as a vector by using
convolution and pooling operations. The vectors are then
accumulated chronologically through an RNN, which models
the relationships among the utterances. The final matching
score is calculated using the hidden states of the RNN.
Yi and Jung [29], showed that the classical method of
developing chatbots leads to better user satisfaction than end-
to-end neural network-based models. The chatbot that they
developed was modeled with a finite-state machine using a
bot-initiative strategy. Traditional IR methods using TF-IDF
and SVM have been used to extract information.

Mohammad Mahdi Abdollah Pour et al. [43] focused on
self-supervised contrastive learning methods for late and
early fusion in Reviewed-Item Retrieval (RIR). It intro-
duces novel contrastive fine-tuning techniques for BERT
embeddings tailored for both the late and early fusion
approaches. This study demonstrates that late fusion methods
significantly outperform early fusion methods, highlighting
the importance of individual review nuances in query scoring.

Rachmawati and Yulianti [44] explored the efficacy of
transfer learning in building a CDQA system for COVID-19
inquiries. It introduces the Sequential Dependence Model
(SDM) as the retriever in a retriever-reader architecture,
significantly enhancing system accuracy. The study found
optimal performance with the top 20 documents, five-
sentence passages, and BERT-large as the reader model,
demonstrating the superiority of transfer learning over
non-transfer learning approaches in CDQA systems.

Ezhilarasi et al. [45] presented a comprehensive framework
for enhancing crop information retrieval. This framework
integrates LDW-ontology to calculate word importance and
SNM-BERT for data training, aiming to tackle challenges
such as unstructured data, low relevancy, and high compu-
tation time. The methodology included data pre-processing,
crop ontology construction using OWL, visualization, and
storage in MongoDB, followed by information retrieval
through clustering. The SNM-BERT model, which utilizes
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a transformer and an attention mechanism, significantly
improves the accuracy, precision, and query retrieval time
for simple and complex queries, outperforming existing
techniques in agricultural information retrieval.

In their study, Larionov et al. [46] presented the archi-
tecture of Tartan, a non-goal-oriented bot. It provides users
with engaging and fluent casual conversations, emphasizing
structured conversations based on flexible finite-statemodels.
Instead of using only one chat and information retrieval
model, they used a different state machine for each conver-
sational topic. The FSMs were swapped in and out as and
when the user intention suggested.

An end-to-end deep learning system has also been
used for dialogue state tracking in conversational agents.
Williams et al. [28] developed a Hybrid Code Networks.
Hybrid Code Networks allow the training of conversational
agents with RNN architecture. A crucial part of these
networks is enabling the user to engineer domain-specific
knowledge into a conversational agent. Action templates can
be engineered into agents that allow the execution of specific
actions. Hybrid Code Networks can learn state transitions
in a conversation, which can be used instead of modeling
conversational scripts using finite-state machines.

Neural networks have become a significant part of
natural language processing. Neural network models are
currently being researched for information retrieval as well.
Mitra et al. [47] presented a dual embedding space model,
in which Word2Vec word embedding was used for IR.
These two sets of embeddings represent documents and user
queries, respectively. The query is mapped using the input
representation of Word2Vec, and the documents are mapped
using the output representation of Word2Vec. Wu and Li [48]
used document topics to measure document similarity. Each
document is considered to be composed of predefined topics.
A word cluster denotes a topic. A word cluster is generated
from the word-word co-occurrence matrix using PIRM [49].
They used GloVe word embeddings.

Building upon the extensive corpus of research in
conversational agents and information retrieval, our work
distinctively positions itself by integrating a finite state
machine (FSM) architecture for query completeness with
the nuanced capabilities of neural network-based distributed
word embeddings, specifically from the BERTmodel. Unlike
conventional methods which rely heavily on traditional
algorithms or neural networks, this study introduces a
novel architecture that combines both improved accuracy
and relevance. Emphasizing transparency and resource
efficiency, this approach is particularly suited to organi-
zations with limited computational resources, offering a
scalable and interpretable solution for corporate document
retrieval.

III. CHATBOT ARCHITECTURE
Figure 1 shows the chatbot architecture. Natural Language
Understanding is crucial for determining conversational flow
and information extraction.

A. NATURAL LANGUAGE UNDERSTANDING
We used the Snips NLU open-source package for intent and
entity extraction from the user utterances. Three primary
user intentions were extracted. Three data sources were used:
tabular sources, such as CSV files and Excel Sheets, text
documents, such as PDFs and Word Documents, and intranet
websites. Each intent suggests the source from which the
user wants information. Each type of data source provides
information unique to the source. We need to determine
whether the user intends to:

1) Extract information from tabular data sources
2) Extract information from and view the location of text

documents
3) Extract information from and view the location of

intranet websites.

B. STATE MACHINE MANAGEMENT
The chatbot was modeled using a hierarchy of finite-state
machines. The agent has multiple state machines, one for
each user intent. The state machine manager can answer
the user’s basic questions and guide them to engage in
conversation. Depending on the user’s intent, it also selects
the state machine that should be employed. The state
machine manager recognizes the user intent, that is, the
user wants to search for information from tabular sources,
documents, or intranet websites and selects the associated
state machine. The related state machine then drives the
conversation.

Each state machine has a start state, and triggers its own
state changes. Each state machine also has its own model
for entity extraction. The state machine manager only has
an intent-detection model. It also has an object that holds
the currently active sub-state machine. If a specified intent
is detected from a user’s utterance, it triggers a change
in its state. It has the same number of states as specified
user intents. In this case, there are three intents. The state’s
change sets the state machine associated with the intent
as the current state and puts it in the start state. Next, all
utterances are passed to the currently active state machine.
As the user converses with the bot, the global state-machine
manager parses each statement to check its intent. If the
intent does not suggest a functionality change, it passes the
utterance to the currently active state machine. The current
active-state machine parses entities from a statement using
its intent-entity model.

This is a machine initiative chatbot. A machine initiative
means that once the chatbot knows the user’s intent, it can ask
the user questions to gain more information about the user’s
query. The following are some of the entities that the chatbot
can understand:

1) Category: The category from which the user wants
information

2) Country: The country from which the user wants
information
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FIGURE 1. Architecture of the FSM Bot-initiative chatbot.

3) Business Function: The business function from which
the user wants information. Hereby, the business
function is referred to as just ‘function.’

4) Files edited or created on a specific date/month/
year: The user can ask the chatbot to display files or
information only from those modified or created on a
particular day, month, or year.

5) Type of file: Users can ask the bot to search for files or
information from specific file types.

6) Domain-specific keywords: keywords that are specific
to the organization. These may include abbreviations,
words specific to the domain of the documents, etc.

The category, country, function, and date, if specified, were
used to filter documents to extract information. If specified,
any category, country, or function is used in the search model.
Three situations arise when selecting what to use as a query
for the search model. First, the keywords extracted from user
utterances were used as a queries. Second, if none of the
entities are detected in the utterance, the entire utterance is
used as the query. Third, suppose any other entity is detected,
and no keyword entity is present. The detected entity words
are removed from the utterance, and the edited utterance is
used as the query.

The context is maintained if a specific category, country,
or function is specified. Any of these entities, if specified,
is stored in a key-value pair by the state machine. Here,
the key is the entity’s name, and the value is the word
extracted from the utterance corresponding to that entity.
These key-value pairs are then used to filter the search results.

C. CONVERSATION
In each state machine’s start state, the chatbot informs the
user what it is capable of and suggests that the user inputs

something for searching. Each step in the conversation is
modeled as a state in a finite state machine. The chatbot
decides when to move to another state, depending on the
current state’s conditions. The dialogue manager maps from
the state to the function call in that state. This allows the
dialogue manager to pass the user’s utterance to the function
associated with that state.

D. STATE TRANSITIONS
The next state is triggered by the current state as and when
the purpose of the current state is fulfilled. When a state
can transition to multiple states, the next state is chosen
based on filtering out which meta-data will yield fewer
results. We counted the results for each category, country, and
function. For example, if the counts are:

CategoryA = 10CategoryB = 40

CountryA = 20CountryB = 30

FunctionA = 5FunctionB = 45

The bot now selects which filter to ask from the user
based on each meta-data’s standard deviation. Typically,
we computed the standard deviation from a given sequence

using the formula σ =

√
1
n

∑n
i=1(xi − µ). Using this for the

counts above, we obtain:

σ (CategoryA,CategoryB) = 15.0

σ (CountryA,CountryB) = 5.0

σ (FunctionA,FunctionB) = 20.0

If we filter by country, there is a better chance of
obtaining fewer final results. Thus, the bot transitions into a
country_response state.
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FIGURE 2. The figure above shows the global state machine manager and
the selection of a sub-state machine. The flow of information in a
sub-state machine is also shown.

If the user mentions meta-data to filter by, the second point
for calculating the standard deviation is zero.

The search results are filtered each time a new entity
is detected. The user can filter out search results without
repeatedly searching the system.

E. STATE MACHINE SWITCHING
When a state machine manager processes an intent, it triggers
the corresponding state machine. Subsequently, it directs
all utterances to the active machine. If a different intent is
received while the state machine is active, it switches to the
relevant one. If no intent is detected in a user’s utterance,
it is directed to the active state machine. Figure 2 shows the
state transitions and flow of information through the state
machines.

IV. INFORMATION SEARCH MODEL
A. DATA
The data used to develop and test the models were documents
collected from a private multinational bank. All documents
were stored on internal cloud storage. The shared cloud
storage has different folders that contain files for other
categories. Each file in a category was created for a specific
function and country. Highly domain-specific files contain
words and abbreviations specific to the category, country, and
function for which they contain information.Most documents
contain a vast amount of numerical information, and the most
descriptive parts are in document headers.

B. DATA COLLECTION, PARSING AND LABELLING
We developed a crawler to navigate various parts of the cloud
storage, extract information from Microsoft Word and PDF
documents, and generatemetadata for each file.We employed
a tree data structure to organize the data for efficient search.
This choice was tailored to the intended use of our search
model, which involves retrieving and displaying information
from files or their paths that closely match the user queries.

Each document consists of sections labeled with headings,
subheadings, and sub-subheadings, referred to as Level 1,
Level 2, and Level 3 headings respectively. The root node of

each document contains the full path and associated metadata
of the file. Level 1 headings are children of the root node,
level 2 headings under level 1 headings, and the same for level
3 headings. Each node stores a heading and the corresponding
section text.

We used the documents collected by our crawler to prepare
a dataset to train a model capable of categorizing user
input queries by category, country, and function. As these
documents were structured in a tree format, we created
combinations of section headings with their root headings.
Specifically, for each level 1 section, we generated combina-
tions of lengths 1, 2, and 3, using headings from levels (l+1)
and (l + 2). Each combination served as a training data row.
The generated data were then normalized. Normalization

of text for Natural Language Processing applications is a
pre-processing step that modifies the text to standardize it
for any downstream task. The text was normalized using the
following modifications:

• Lowercasing all the characters
• Removing punctuations from the text

Some combinations were duplicated across the categories,
countries, and functions. This was a multi-label classification
problem for three different types of outputs, and the training
dataset mapped each document to its category, country, and
function. We addressed the nuances involving missing details
by generating a ‘‘no-data’’ classification output. Figure 3
shows a representation of the document.

C. MODEL ARCHITECTURE
The model architecture is shown in Figure 4. This model
uses BERT [6] for token encoding. BERT is a state-of-
the-art encoder, which is a stack of Transformer Encoder
layers. There are two variants of BERT, the BERT Base
and BERT Large. The BERT Base has 12 stacked encoder
layers, 12 attention heads, and a hidden state of dimension
768. In this model, we used the BERT architecture. The
breakthrough for BERT is that it can be pre-trained and fine-
tuned for downstream NLP tasks. All encoder layers in the
BERT are trainable for downstream tasks. The last layer of
the BERT Base was trained for the task.

BERT takes an input of sequence length nl and outputs an
embedding of (nl, 768). Figure 5 shows the encoder stack,
which takes an input sequence length of 512 and outputs an
embedding of dimension 768 for each token. The (nl, 768)
embedding output is then passed through a 1D convolution
layer. The 1D convolution over text can be considered by
taking n-grams over words. Using a filter size of f is similar
to taking f -grams over words. The filter size over volume
becomes (f , 768). For nf number of filters, the output of this
layer is thus of shape (nl − f + 1, nl). The 1D max pooling
layer uses a filter size of (nl−f + 1), the output of which
is (nf ). This vector is then used as an input to three sub-
networks, that performmulti-label classification for category,
country, and function output. Our model uses:

nl = 64, f = 3, nf = 256.
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FIGURE 3. (a) Shows an example document with its name and the table of contents. Each topic in the table of contents is considered a node with a
section of text information under that topic. (b) The document in (a) is parsed in a tree structure. The root node holds the file name along with the file
meta-data. Each subsequent sub-topic forms a child node.

FIGURE 4. Proposed model: BERT + Convolutional + Branched Neural
Network Model.

The output of the dense layer in each sub-network is passed
through a sigmoid activation function. The sigmoid function
models each logit as an independent probability distribution.
Thus, the output of each sub-network is the probability of
categories, countries, and portfolios. A learning rate of 1e-4
with a decay of 1e-6 was used. The Adam optimizer [50]
was used for optimization. We used the sigmoid binary
cross-entropy loss, which is defined as:

loss(x, z) =
1
n

n∑
i=1

zi × −log(sigmoid(xi))

+ (1 − zi) × −log(1 − sigmoid(xi)) (1)

where, x = logits, z = labels.

FIGURE 5. Stacked Encoder Layers. CLS and SEP are two special tokens
specifying the sequence’s beginning and end.

D. WORD REPRESENTATION
We use word embeddings derived from the first sequence
output of the last encoder layer (layer 11) of the BERT Base
when only the word wi is input as a sequence to the BERT
model. Thus, each word i is represented by vectorw i

∈ R768.
The learned distributed representations were used for

similarity measurements in the representation space. We gen-
erated a vocabulary of words in the training set, and eachword
was assigned a unique ID. The training dataset contained a
vocabulary of 20,772 words. Each word was passed through
the BERT network, and its representationwas recorded. Thus,
a functional lookup table is obtained for each word in its
representation.
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E. CANDIDATE DOCUMENTS
The model described in Section IV-C was used to obtain
the probability of a query belonging to a particular category,
country, or function. The outputs are the probabilities that the
query belongs to each label for each output type. We take
the two highest probabilities for each category, country
and function and use these probabilities to filter the set of
available documents. These documents, filtered by category,
country, and function, served as candidate documents for
similarity measurements.

F. DOCUMENT REPRESENTATION
Each document is represented as a tree, as explained in
Section IV-B. Each node other than the root node has a head-
ing and text corresponding to information about the heading.
Each heading hi is a sequence of words in which each word
has a unique id, hi = {ψ(w1), ψ(w2), ψ(w3), . . . , ψ(wn)}
where, ψ : w 7→ h is a mapping of the word to its unique id.
This sequence is represented as a sequence of embeddings,
Hi = {φ(w1), φ(w2), φ(w3), . . . , φ(wn)}. For each root node,
the representation is generated using the text sequence from
the document’s file name, where φ maps the unique word ID
to word embedding. Thus, each node of every document is
represented by v ∈ Rn×768, where n is the number of word
tokens in the heading or name of the document.

V. SIMILARITY COMPUTATION
To rank the text or document most relevant to the user query,
we need to measure the similarity between the query and each
node in each candidate document. There are several methods
for calculating the similarity between two sequences of word
embeddings; we will experiment and work with two of
them.

A. COSINE SIMILARITY
Given a query representation q = {q1, q2, q3 . . . qn} and
a node representation n = {n1, n2, n3 . . . nm}, the cosine
similarity between the two is calculated as shown in
Equation 2.

sim(q, n) =
centroid(q⃗).centroid(n⃗)

||centroid(q⃗)||||centroid(n⃗)||
(2)

where,

centroid(v) =
1
n

n∑
i=1

vi (3)

Intuitively cosine similarity works because when word
embeddings are learned in the embedding space, words of a
similar category, country, and function are clustered closer
to each other in the embedding space. The centroids of the
query and node sequences are calculated. These two vectors
are close to the clusters of their respective embeddings.
Therefore, the higher the sim(q, n) the more relevant are the
query and node.

B. WORD MOVERS DISTANCE
Kusner et al. [51] developed the Word Movers Distance
(WMD) as a metric to measure the similarity between
two text documents. This method uses word embeddings
generated by a neural network architecture rather than
traditional approaches to calculate similarity. Although any
word embedding can measure document similarity with the
algorithm, the original paper uses Word2Vec embeddings.
WMD measures the similarity or dissimilarity between two
documents as the minimum distance traveled by the words in
one document to reach the terms in other document’s.

For the given two-word embeddings xi and xj, the cost of
moving from one word to another is given by

c(i, j) = ∥xi − xj∥2 (4)

Given two documents d and d′, each word i in d can be
transported to each word j in d′ in total or in parts. Let
T ∈ Rn×n be a sparse flow matrix where Tij > 0 denotes
the amount of word i ∈ d flowing into word j ∈ d′. The
minimum cost of moving from d to d′ is obtained by solving
the following optimization problem:

minimize
T≥0

n∑
i,j=1

Tijc(i, j)

subject to
n∑
j=1

Tij= di, i = 1, . . . , n

n∑
i=1

Tij= d ′
j , j = 1, . . . , n (5)

where,

di =
ci∑n
j=1 cj

(6)

where ci is the term frequency of the ith word in document
d . Our implementation uses word embeddings derived from
BERT to measure WMD similarity.

Thus, the word mover distance is a constrained optimiza-
tion problem that determines the optimumflowmatrix T . The
word movers distance is a particular case of the earth movers
distance computation [52], [53].

VI. EXPERIMENTS
We compared the relevance of the generated search results
and the efficiency of ranking the search results given
a query for the BM25 model, BERT+Cosine similarity,
and BERT+WMD models. The query uses pre-processing
similar to document pre-processing, but we also removed the
stopwords in this case.

EXPERIMENTAL SETUP
We created a dataset of distinct queries requested by users
from user logs generated by the chatbot. Using 100 random
queries from this set of queries, we generated the top
10 search results from the BM25, BERT+Cosine, and
BERT+WMD ranking schemes. Human evaluators then
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TABLE 1. Comparision of using BERT embeddings and Elmo embeddings with the branched neural network for multi-label classification of three different
categories of classes. The highest metric values are shown in bold.

TABLE 2. The DCG scores of the three search ranking models in comparison. DCG@X states that top X results were used for calculating the DCG score. *
Each of these models ranks the files filtered using the predictions from the prediction model.

assigned a relevance score to each search result from each
query. The score is 0-5, where 5 is Perfect, 4 is Excellent,
3 is Fair, 2 is Poor, 1 is Bad and 0 is Irrelevant. These scores
are then used to calculate each ranking model’s Discounted
Cumulative Gain (DCG). In the search result ranking from the
BM25 algorithm, we consider all documents from the dataset
as candidate documents. The candidate documents, which are
to be ranked by BERT embeddings + cosine similarity and
BERT embeddings + WMD, are generated by filtering the
set of documents using the categories, country, and function
of a document.

VII. RESULTS AND DISCUSSION
Table 1 lists the F1 and true positive scores for the
multi-label classification of each metadata category of the
document. The true positive score must be maximized
because these predicted values filter the records for other
similaritymeasurements.We also compared the classification
model by using Elmo embeddings. Table 1 shows that BERT
embeddings provide considerably better results.

Table 2 shows DCG scores for BM25, BERT embedding
+ cosine similarity, and BERT embeddings+WMD.We use
BM25 as a baseline to measure the ranking performance with
BERT embeddings.

The results in Table 2 show that BERT+WMD outper-
formed BM25 resulting in a significant margin of the DCG
metric. However, cosine similarity shows inferior results for
both DCG metrics, suggesting that they neither produce very
relevant results nor rank them well.

We found that BERT embeddings with WMD provided
better relevance by analyzing the queries and their ranked
results. Although an exact word is not present in the result,
a sequence with words with better semantic similarity to the
query word is higher. The drawback of any ranking with

BERT embedding is that if a word is absent in the training
dataset or rarely occurs, the model needs to fine-tune the
word’s embeddings, thus showing poor search results. BM25,
on the other hand, can score a text with a rarely occurring
word higher than other texts in which it does not appear.

Therefore, we propose using a mixture model with BM25
and word movers distance. The mixture model ranks the
filtered results from the predictive model.

SCORE(q, d) = αWMDfiltered (q, d) + (1 − α)BM25(q, d)

(7)

where α is a user-tuneable parameter.

VIII. CONCLUSION
This study evaluated the use of conversational agents
and neural word embeddings to search for information in
a closed-domain knowledge base. We show that BERT
embeddings can produce good results when used with Word
Movers Distance to find the similarity between a query and
a document. We also present a method to telescope search
results using document meta-data and entity recognition from
user input. It has been shown that fine-tuning BERT is
inexpensive and requires far less training data than training
a model from scratch. In addition, our architecture matches
the query to the document text instead of generating it, thus
returning to the user the verbatim text from the document
along with the document’s source. This also allowed the
system to be transparent. Future work can explore more
advanced neural architectures such as retrieval-augmented
generation models to improve the relevance and provide
abstractive summaries. Investigating techniques for explain-
able information retrieval to provide a rationale for the
retrieved documents is also a promising direction. Overall,
our architecture enables organizations to build contextual and
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transparent information retrieval systems in addition to large
knowledge bases in a resource-efficient manner.
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