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ABSTRACT This study provides of a comparative analysis of emotion estimation from facial expressions
under partial occlusion caused by face masks and extended reality (XR) headsets. Unlike previous studies
that have independently explored these two scenarios, this research compares and analyzes the statistical
differences between them. In order to achieve this, the RAF-DB dataset has been used as a non-occluded
baseline to construct two new datasets: i) a dataset formed by faces partially occluded by face masks, and ii) a
dataset formed by faces partially occluded by XR headsets. To evaluate the impact of occlusion in emotion
estimation, three deep learning models have been fine-tuned using transfer learning, and results from a
random classifier have been used as a baseline. Seven differentmetrics were obtained per dataset, and a 2-way
ANOVA test was performed on each metric. As expected, significant statistical differences are observed
between the non-occluded faces (acc. 0.8780) and the faces partially occluded by face masks (acc. 0.7520)
and XR headsets (acc. 0.7400) on all metrics. Notably, the comparison between the two partially occluded
datasets revealed significant statistical differences in the metrics f1-score (macro), precision (macro) and
recall (macro), which we attribute to different types of occlusion affecting different parts of the face that are
key to some emotions. This research contributes to advancing emotion recognition systems by highlighting
their robustness and effectiveness even in partial occlusion settings, and showing a full comparative analysis
between two common types of occlusion.

INDEX TERMS Emotion classification, emotion recognition, facial expression analysis, partial occlusion,
transfer learning, deep learning, extended reality, face masks, HMD, XR headset.

I. INTRODUCTION
Facial expressions are an incredibly complex and dynamic
communication tool capable of expressing a wide range of
emotions [1], [2]. Researchers have long been interested in
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accurately estimate emotions from facial expressions, as it
has implications in various fields such as neuroscience,
human-computer interaction, marketing, and psychomotor
learning [3], [4], [5], [6], [7], [8].

In some scenarios, faces can be partially occluded, posing
an increased challenge for facial emotion recognition algo-
rithms. To overcome this, researchers can rely on alternative
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approaches that do not depend only on facial expressions.
These alternatives include estimation of emotions from body
poses, variations in voice, physiological signals, and employ-
ing multimodal approaches combining different methods [9],
[10], [11], [12], [13], [14]. Nevertheless, valuable information
may still be found in the visible regions of the face unaffected
by occlusion. This presents an opportunity for existing facial
emotion recognition algorithms.

There are two scenarios of special interest in facial emotion
recognitionwith partial occlusion. The first scenario is the use
of extended reality (XR) headsets [15]. This scenario is inter-
esting because of the growth of the XR industry [16], with
available commercial devices like Meta Quest 2, 3 and Pro,
Apple Vision Pro, or HTC Vive devices. It has application
in fields like healthcare [17], [18], [19], [20], education and
training [7], [17], [18], [21], [22], and gamification [17], [22],
[23]. The second scenario is the use of face masks, which
increased globally during the COVID-19 pandemic [24],
[25], [26]. The use of face masks has been demonstrated
to affect emotion recognition in humans [27], [28], [29],
specially in individuals with conditions like autism spectrum
disorder [30], [31], [32], as well as to affect performance on
facial expression classification algorithms [27].

Both scenarios are complement each other: XR headsets
occlude the upper part of the face (periocular area), while face
masks occlude the lower part (orofacial region). However,
existing literature lacks an exploration of deep learning
algorithms performance differences between these two types
of occlusion (Section II). Additionally, the intrinsic bias in
emotion recognition datasets [33] is usually not adequately
addressed, and the metrics used to compare the models are
not sufficient. Moreover, techniques used to synthetically
occlude the faces may inadvertently leave crucial areas of the
face un-occluded, resulting in information leakage.

In this study, we hypothesize that comparing facial
expressions without occlusion to those with partial occlusion
caused by face masks or XR headsets will reveal significant
statistical differences. However, we anticipate that there may
not be significant statistical differences when comparing
occlusion by face masks with occlusion by XR headsets.
To test this hypothesis, three deep learning models are trained
across three datasets: i) non-occluded faces, ii) faces partially
occluded by face masks, and iii) faces partially occluded by
XR headsets. The imbalance of the datasets is addressed by
using a generative model for data augmentation, ensuring
generated instances are sufficiently different to instances
from the dataset. The synthetic occlusion was introduced
considering the dimensions and inclination of the face to
ensure there is no information leakage. Different metrics
suitable for handling unbalanced datasets have then been
selected to evaluate the performance of the models. These
metrics are: accuracy, precision (macro and weighted), recall
(macro and weighted), and f1-score (macro and weighted).
Finally, a 2-way ANOVA test is employed to statistically
compare the different groups of results and assessing the
statistical differences.

FIGURE 1. Workflow followed to perform the systematic review.

This paper is organized as follows. Section II reviews the
related work in the field to provide context and background
for our research. Section III outlines the materials and
methods used, as well as the process and reasons followed
to select them. Section IV presents our results. Section V
discusses the implications of our findings, identifying the
limitations of the study and suggesting directions for future
research. Finally, Section VI shows the conclusions of this
paper.

II. RELATED WORK
Bibliography on facial emotion classification involving
partial occlusion caused by face masks and XR headsets
using deep learning techniques is limited. This may be
attributed to the availability of alternatives like the use of
physiological sensors or voice analysis. To identify studies
addressing this issue, we conducted a systematic literature
review. Inclusion criteria for the systematic review were:
i) the occlusion must be similar to that introduced either
by face masks or XR headsets, ii) the study must use
deep learning techniques, and iii) the study must try to
recognize/classify basic emotions (e.g., happiness, sadness,
contempt). Three databases (IEEE Xplore, ACM DL and
PubMed) were selected, and the following search query
was created: (‘‘emotion’’) AND (‘‘occlusion’’) AND (‘‘face
mask’’ OR ‘‘headset’’ OR ‘‘HMD’’). This search query was
executed on the search engines of the databases.We identified
5 papers, as well as two previous reviews on estimation of
emotions with partial occlusion caused by the use of XR
headsets [34], [35] from where we extracted three more
papers. In total, our review includes 8 papers. The review
workflow is illustrated in Fig. 1.
We conducted a depth analysis of the eight papers,

examining aspects such as type of occlusion (periocular
or orofacial), deep learning models used, datasets utilized,
emotions assessed, or whether the occlusion employed was
real or synthetic. The subsequent paragraphs provide a
detailed examination of each paper. Table 1 presents a
summary of the findings of our systematic review.

In Houshmand and Khan [36], two CNN architectures
named VGG and ResNet are used to evaluate facial emotion
classification in faces partially occluded by XR headsets.
The datasets assessed were AffectNet, RAF-DB and FER+,
with occlusion synthetically introduced by placing a black
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TABLE 1. Information extracted from our systematic review.

patch over the periocular area. To address dataset imbalance,
horizontal image flipping is applied for data augmentation.
The target emotions assessed were happiness, sadness, anger,
surprise, fear, disgust, neutrality and contempt (contempt

is only available on AffectNet and FER+). The models
were trained both from scratch and using transfer learning
on models pretrained on the VGG-Face dataset. Optimal
results were achieved through transfer learning on the
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RAF-DB and the FER+ datasets. However, the study has
limitations, as relying only on the accuracy metric for
result interpretation. This can potentially lead to bias in
imbalanced datasets where the models can perform better
on majority classes than on minority classes due to more
information available. Additionally, the horizontal image
flipping augmentation technique may introduce redundancy
due to facial symmetry. It is notable how, even when optimal
results are obtained on partially occluded faces demonstrating
it is possible to do facial emotion recognition on them, this
study does not compare results obtained on the partially
occluded dataset against those on the original non-occluded
dataset, lacking of a baseline for assessing the impact of
occlusion in the results obtained.

In Yong et al. [37] three CNN architectures (ResNet,
Inception-ResNet-V2 and DenseNet), are employed to evalu-
ate facial emotion classification in faces partially occluded
by XR headsets. The dataset used is Radbound Faces
Dataset (RafD), a balanced dataset formed by images
created in a laboratory setting, where participants pose the
facial expressions. Occlusion was synthetically introduced
by placing a black patch over the periocular area. The
emotions assessed were happiness, sadness, anger, surprise,
fear, disgust, contempt and neutrality. Transfer learning is
used to train the models pretrained on the ImageNet dataset.
The study reports optimal results with all three models,
and the interpretation of the results relies on precision,
recall and accuracy metrics for each individual class. Class
activation maps are presented to illustrate how the CNNs
focus attention on the orofacial region. A notable limitation
of this study is that the dataset used is created in a controlled
laboratory environment, potentially limiting its applications
to real settings where different conditions such as lightning,
image quality, and background noise may impact the model
performance.

In Georgescu and Ionescu [38], two CNN architectures
(VGG-f and VGG-face), are used to evaluate facial emotion
classification in faces partially occluded by XR headsets.
The datasets employed are FER+ and AffectNet, with
synthetic occlusion introduced by a non-specified method.
Horizontal image flipping is applied for data augmentation
to address dataset imbalance. In the case of AffectNet,
downsampling is also applied. The emotions assessed were
happiness, sadness, anger, surprise, fear, disgust, contempt
and neutrality. The models were training by joining the
training sets of the AffectNet and FER+ datasets, and
then testing on the separate test sets of both datasets.
Transfer learning is employed, initially training the models
on non-occluded faces and later on partially occluded faces.
Both models were then tested on partially occluded faces.
Favorable results are reported for models trained on partially
occluded faces, and a comparison of results between partially
occluded and non-occluded faces is presented. However, the
interpretation relies only on the accuracy metric, potentially
introducing bias in result analysis. The data augmentation
technique, once again, involves flipping images, which

may lead to redundancy. Furthermore, downsampling the
majority classes is implemented to mitigate imbalance, but
this approach could result in information loss for the majority
classes.

In Petrou et al. [39], a lightweight and fast CNN archi-
tecture named mini-Xception is used to estimate emotions
from faces partially occluded by XR headsets. This model
was selected because it is suitable for mobile devices.
The dataset used is a custom dataset created from internet
images, initially created for a previous project. To address
class imbalance, all of the minority classes were removed,
leaving only three emotions: happiness, sadness and neutral.
Synthetic occlusion was applied by overlying a black patch
on the periocular area. Different transfer learning techniques
were tested, revealing optimal results when updating all of
the weights of the models instead of freezing layers. The
evaluation metrics used were accuracy and f1-score (macro
and weighted), more suitable for interpreting results on
imbalanced datasets. A notable advantage of this study is the
adaptability of the mini-Xception model to small devices.
However, a drawback of the study is the downsampling
method, since removing the minority classes reduces the
variety of emotions the models can estimate.

In Abate et al. [27], three methods were selected (Residual
Masking Networks, CNNs and Amending Representation
Modules), based on their performance on non-occluded
datasets and their availability online. The goal was to assess
facial classification in faces partially occluded by face masks,
and occlusion in the periocular area (similar to XR headsets).
The datasets used were RAF-DB and FER2013. Occlusion
was synthetically added by overlying a face mask, and by
placing a horizontal black patch over the periocular area. The
emotions assessed were happiness, sadness, anger, surprise,
fear, disgust, and neutrality. The models were trained from
scratch without using transfer learning. Notably, good results
were achieved when training on partially occluded faces.
The study concluded that a model trained on non-occluded
faces performs worse on partially occluded faces than a
model trained on partially occluded faces, indicating that
occlusion impacts facial emotion recognition algorithms and
that the characteristics of the training set are important for the
network to focus on target areas of the face. The evaluation
metrics used were accuracy, precision, recall and f1-score,
suitable for imbalanced datasets. The authors acknowledged
that different occlusionsmay affect the recognition of specific
emotions more than others [40]. A limitation is that the
periocular occlusion cannot be compared to that introduced
by a XR headset, as the horizontal bar might not occlude
both eyes and the eyebrows when the face is tilted. Moreover,
even when the study uses as a baseline the results of the
original studies over the non-occluded datasets, there is no
further comparison between the two types of occlusion,
and no method to correct the imbalance of the datasets is
mentioned.

In Luo et al. [24], two models (ResNet andMobileNet with
contrastive representation learning) are trained to estimate
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emotions from faces partially occluded by face masks. Three
datasets are used: RAF-DB, LFW and VIP-DB. VIP-DB is
a custom dataset composed of real-world images obtained
from videos of people using face masks, while LFW is a
face verification dataset categorized into positive, negative
and neutral emotion. The emotions available in RAF-DB and
VIP-DB are happiness, sadness, anger, surprise, fear, disgust,
and neutrality. Despite VIP-DB having real occlusion, the
dataset can be consideted small. Synthetic occlusion was
inserted into the RAF-DB and LFW datasets by overlying
a face mask over the faces. To address class imbalance,
data augmentation involving horizontally flipped images was
applied. Results were evaluated using the accuracy metric,
revealing optimal results with contrastive representation
learning on masked LFW and RAF-DB. However, VIP-DB
did not obtain good results, likely due to its small size.
A notable advantage of the study is the incorporation of
real-world masked face images, although the size of the
dataset is limited. Again, relying only on the accuracy
metric to assess the results presents a limitation given the
imbalance on face emotion recognition datasets, and other
metrics should be used, like f1-score. Additionally, the use
of horizontally flipped images to address imbalance may
introduce redundancy in the dataset.

In Sola and Gera [25], the ResNet model with contrastive
learning and knowledge distillation is used to estimate
emotions from faces partially occluded by face masks. Two
datasets are evaluated:MSD-E, a posed dataset of face images
with and without face masks created by the authors and
publicly available, and MSD-PE, a similar dataset containing
pairs of images of the same person with and without a face
mask. Both datasets are annotated with emotions: happiness,
sadness, anger, surprise, fear, disgust, and neutrality. MSD-E
is not highly imbalanced, so bias correction is not applied.
The study achieves optimal results on non-masked images,
particularly for positive emotions (surprise, happy and
neutral) using accuracy as evaluation metric. As expected,
partially occluded images show lower accuracy. Visualization
tools like Grad-CAM plots for attention and t-SNE for
feature visualization are utilized. A cross-dataset study was
conducted using RAF-DB, where synthetic occlusion was
introduced by overlying a face mask. A model trained on
Masked RAF-DB was tested on MSD-E and a model trained
on non masked RAF-DB was tested on non-masked images
ofMSD-E. Similar results were obtained for neutral, surprise,
sadness and anger, misclassifyng most emotions as neutral
in the masked case. The authors conclude that synthetically
occluded images may not generalize to real-world situations,
emphasizing the need for real-world datasets. The small size
of MSD-E and MSD-PE could be a limitation, along with the
use of just the accuracy metric for evaluation.

In Castellano et al. [26], the model VGG16 pretrained
on the ImageNet dataset is used to estimate emotions from
faces wearing face masks. The FER2013 dataset is used for
emotion recognition, and an unnamed dataset consisting of
unmasked and synthetically masked faces is used to detect

presence of a mask. The emotions assessed were happiness,
sadness, anger, surprise, fear, disgust, and neutrality. Three
networks were trained: i) to detect if a face is wearing or not
a mask using the unnamed dataset, ii) to detect emotions on
unmasked faces using FER2013, and iii) network to detect
emotions on cropped images of the periocular area using
FER2013. Since only the periocular area is used as input,
no synthetic occlusion is needed. Instead, unwanted parts
of the image are eliminated. No bias correction technique
is applied in this study. The evaluation metrics used were
accuracy, f1-score, precision and recall, and optimal results
were obtained for positive emotions like happiness, neutrality
or surprise. This study introduces the concept of cropping
the images, providing networks with only the essential
information for emotion recognition. However, this approach
may potentially remove useful information, such as head
position or forehead details, which could contribute to a more
accurate emotion classification.

In the eight reviewed studies, the applications of deep
learning techniques has been proved to be effective in
achieving optimal results estimating emotions from faces
partially occluded by face masks or XR headsets. Further,
studies using transfer learning report a faster convergence
and even better results. However, certain limitations are noted
across some of the studies. These include: giving insufficient
details regarding the training process and hyperparameters
used, absence of metrics more useful on evaluating models
trained on imbalanced datasets, potential introduction of
redundancy through bias correction techniques, and lack of
strategies to address dataset imbalance. Additionally, only
one study has addressed both types of occlusion, but no com-
prehensive comparison is conducted. To address these gaps,
our paper aims to conduct a statistical analysis, assessing
differences between various evaluationmetrics obtained from
models trained on both types of occlusion. This approach
seeks to provide a more comprehensive understanding of
the performance and limitations of emotion classifiers in
scenarios involving face masks and XR headsets.

This study, specifically, focuses on the analysis of sta-
tistical differences among evaluation metrics obtained from
training three CNN architectures (VGG-16, ResNet-50 and
SE-ResNet-50) using transfer learning. The selection of
these architectures is based on their suitability for transfer
learning and the availability of pre-trained models from
the keras_vggface python library. Addressing the limitations
observed in existing studies, our focus is on comparing
the occlusion effects induced by XR headsets with those
caused by face masks. To accomplish this, in this study we
conduct a statistical analysis of evaluation metrics obtained
after training our models on three datasets: i) non-occluded,
ii) partially occluded by face masks, and iii) partially
occluded by XR headsets. Additionally, we include the
metrics obtained from a random classifier as a baseline. The
workflow for our study is outlined in Fig. 2, providing a
visual representation of the methodology followed in our
analysis.
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FIGURE 2. Workflow followed in this study. First, a dataset was selected
and augmented to address class imbalance. Then, two synthetic datasets
introducing occlusion by face masks and XR headsets were created,
resulting in three datasets (no occlusion, occlusion by face masks, and
occlusion by XR headset). Deep learning models were trained on each
dataset. The best results obtained were used to create three groups of
metrics. Additionally, a random classifier was executed to obtain a
baseline group. Finally, the four groups of metrics were compared using a
2-way ANOVA statistical analysis.

III. MATERIALS AND METHODS
A. DATASET SELECTION AND DATA AUGMENTATION
The first step of this study involved the meticulous selec-
tion of the datasets to train the models. In this process,
we thoroughly examined facial emotion recognition (FER)
datasets available on the web and identified in the preceding
section. The following inclusion criteria were established: i)
the dataset must consist of images, not videos, to simplify the
selection of representative frames; ii) subjects must be real
humans, excluding computer-generated avatars for greater
generalizability to real-world scenarios; iii) images must not
be posed to enhance applicability to real-world settings; iv)
images must be in color, as color information can aid emotion
classification and compensate for information loss introduced
by partial occlusion; v) input size must be 224 × 224 × 3 or
greater, aligning with the input requirements of our models
to avoid quality loss and deformation when resizing is
needed; and vi) the total number of instances in the full
dataset (combining training and test sets) must surpass 10,000
images to ensure achieving robust results. Table 2 provides a
summary of the datasets explored, alongwith reasons for their
inclusion or exclusion based on the established criteria.

After carefully explore available options, the only two
datasets that met our criteria were RAF-DB [41] and
AffectNet. However, AffectNet was discarded due to the
unavailability of its test set. The RAF-DB dataset consists of
15,339 images (training set: 10,226; test set: 5,113) of faces
captured in the wild from the web. The images are classified
into seven emotions: happiness, sadness, anger, surprise, fear,
disgust and neutrality, with each image labelled by at least
40 independent annotators.

The first analysis we performed was to calculate the class
distribution of the dataset. Note that for the dataset to be

TABLE 2. Datasets considered for this study.

balanced, the percentage of instances per class should be
roughly 14.28% (100% / 7= 14.2857%). Fig. 3 illustrates the
class distribution of the dataset in the training set and the test
set before any further manipulation. It is notable how the class
distribution is roughly the same in the two sets. However, the
dataset is imbalanced towards the happiness class, with the
classes fear, anger, surprise and disgust underrepresented. It is
crucial here to acknowledge that this imbalance is intrinsic
to the nature of expressions in the real world and common
in facial expression recognition datasets [33], and thus, it is
difficult to overcome.

To address the uneven class distribution in the dataset,
data augmentation techniques were employed. Specifically,
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FIGURE 3. Class distribution of the RAF-DB dataset in the training set and
the test set. The distributions of both datasets are similar, and highly
imbalanced towards the happiness class, having the fear, anger, disgust,
and surprise classes underrepresented.

CFR-GAN [42] was used to create new instances while
preventing redundancy. The algorithm was used to frontalize
and de-occlude the faces within the underrepresented classes
(fear, anger, surprise and disgust) in the training set. To avoid
biases in the results, the test set was not modified. Fig. 4
shows examples of the generated images. To ensure consis-
tent facial proportions in the generated images, MediaPipe
Face Detection [43] was used to detect the bounding boxes
of the faces and crop them. Images where a face could not
be detected were discarded. The new class distribution after
augmenting the dataset is presented in Fig. 5. It can be noted
how the imbalance is slightly corrected as the percentage
of instances of the majority class (happiness) has decreased
with respect to the percentage of instances of the minority
classes (fear, anger, surprise and disgust). As a side effect,
the percentage of instances of the sadness class was decreased
too.

B. CREATION OF SYNTHETICALLY PARTIALLY OCCLUDED
DATASETS
The following step was to create two synthetic datasets to
simulate occlusion imposed by either a face mask or a XR
headset. Mediapipe Face Landmark Detection was again
used, but this time with the goal of identifying landmarks on
the faces. Using the detected landmarks, face masks and XR
headsets were overlayed on the faces. The overlay layers were
resized and rotated to better align with the faces, ensuring
that the faces were correctly partially occluded. This process
aimed to realistically simulate the occlusion caused in real-
world scenarios.

This step resulted in three datasets: i) no-occlusion,
ii) occlusion by face masks, and iii) occlusion by XR
headsets. The class distribution in the training set remained
unchanged, as depicted in Fig. 5. The reason of this is that

FIGURE 4. Data augmentation pipeline followed in this study. The images
of the RAF-DB dataset belonging to the minority classes were frontalized
and de-occluded using a generative method called CFR-GAN. These
images were then cropped, by detecting the bounding box of the face
using MediaPipe, to ensure consistent facial proportions in the generated
images. The new images were added to the original dataset. Note how
some facial characteristics of the person may change and elements like
glasses are removed, while the general facial expression is kept.

FIGURE 5. Class distribution in the training set of the RAF-DB dataset
before and after augmenting the underrepresented classes (Fear, Disgust,
and Anger). In the augmented dataset, the class distribution has been
slightly corrected, though it is still imbalanced. Note that we have
removed instances from the dataset not recognized by MediaPipe Face
Detection, which may have also affected the class distribution.

we already removed images where faces were not detected in
the previous step. However, the occlusion was added also to
the test set, leading to the removal of images where faces were
not detected from all three datasets. This resulted in aminimal
variation in the class distribution of the test set, illustrated in
Fig. 6. The pipeline used to generate these synthetic datasets
is visually represented in Fig. 7.

C. SELECTION OF CLASSIFIERS AND HYPERPARAMETERS
To generate the necessary performance metrics for the
statistical analysis, deep learning models must be selected,
trained, and tuned. Following the trends observed in previous
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FIGURE 6. Class distribution in the test set of the RAF-DB dataset before
and after introducing partial occlusion. The algorithm used to detect face
landmarks did not detect faces in some of the instances, so they were
removed causing a slight variation in the class distribution.

studies, transfer learning was employed. As described in [36],
transfer learning serves as an efficient method to reuse
existing trainedmodels in a fast an easyway. Additionally, the
original pretrained model may contain valuable information
to mitigate the loss introduced by occlusion.

The keras_vggface python library was chosen for this
study, primarily due to the availability of different pre-trained
models and its ease of use for transfer learning tasks. The
library provides access to models such as VGG-16 [44],
ResNet-50 and Se-ResNet-50 (SeNet-50 for short) [45].
For each of these models, weights trained on the VGG-
Face dataset [45] are downloaded and prepared for transfer
learning. We followed the approach of updating all weights
of the models that proven to be the best in [39].
The following step is the selection of an optimizer to train

the models. This is an important decision as the optimizer
plays a key role in adjusting the weights of the models
by minimizing the loss function. Additionally, the choice
of optimizer can impact the convergence of the models by
avoiding local minima and facilitating faster convergence.
In this study, seven different optimizers are evaluated:
SGD (Stochastic Gradient Descent), RMSProp, Adagrad,
Adadelta, Adam, Adamax, and Nadam.

The convergence of the models can be influenced by their
hyperparameters, which is essential for achieving optimal
results. Given the dataset size, the number of optimizers to
test, and the computational resources required for training
each configuration, a decision was made to focus on tuning
the learning rate with the values: 0.01, 0.001 and 0.0001. The
learning rate is a critical hyperparameter as it determines the
step size taken to update the weights during training. A high
learning rate may lead to overshooting, causing instability
and bouncing during convergence, while a low learning
rate may result in slow convergence. This focused approach

TABLE 3. Summary of hyperparameters used in this study.

allows for a balance between effective model training and
efficient resource use.

The dataset labels were encoded using one-shot encoding,
and the chosen loss function was categorical cross-entropy,
which is well-suited for this type of encoding. To validate
the models, stratified k-folds cross-validation [46] was
selected. Stratified k-folds cross-validation addresses the
class distribution imbalance by ensuring that the original class
distribution is approximately preserved in each fold. A value
of k=5 was used to ensure that the number of instances in
each evaluation set is similar to the number of instances in
the test set of the dataset.

The models were trained using the Keras library with
TensorFlow backend. The hardware used was an Nvidia
GeForce RTX 3080 Ti Laptop GPU with 16GB of dedicated
memory, and 64GB of RAM memory. The batch size had to
be lowered to 16 due to the weights of the models and images
not fitting inmemory. Amaximum of 20 epochs was selected,
with early stopping activated. The hyperparameters used in
this study are summarized in Table 3.

D. EVALUATION METRICS AND COMPARATIVE ANALYSIS
The seven metrics chosen to evaluate the models were:
accuracy, f1-score (macro and weighted), precision (macro
and weighted) and recall (macro and weighted). The metrics
were calculated using the scikit-learn python library. Note
that the macro version of the metrics assigns equal weight
or ‘‘relevance’’ to all classes in the dataset, providing an
overall performance measure across all classes. On the other
hand, the weighted version of the metrics assigns weight
to each class based on the proportion of instances in the
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FIGURE 7. Pipeline followed to introduce partial occlusion on the instances of the
non-occluded dataset. The faces were analyzed using MediaPipe to obtain face
landmarks, and overlay images of a face mask and a XR headset were located in the
faces, rotating and resizing according to face position and dimensions.

dataset, considering that the models could perform better on
the majority classes than in the minority classes and that it
could affect results [47].
To analyze and compare the results obtained from training

the models on the different datasets, a 2-way ANOVA test
with Tukey’s post hoc analysis for multiple comparisons was
used. This statistical test was employed to address if there
are significant statistical differences between the different
groups of performance metrics. Additionally, metrics were
calculated from a random classifier over the non-occluded
dataset. The random classifier was exclusively used on
the non-occluded dataset because it assigns classifications
randomly without learning characteristics from the image.
Consequently, the results from the random classifier are
expected to be independent of the dataset used. The random
classifier serves as a baseline because it represents a classifier
that knows nothing about the datasets. This makes it adequate
since we can compare the results obtained by the rest of the
models to assess if they are learning at all.

IV. RESULTS
The three classifiers were trained on the three datasets to
obtain metrics for comparing model performance across
different types of occlusion. A total of 189 result tables were
generated during this training process (3 datasets x 3 models
x 7 optimizers x 3 learning rates = 189 result tables). Each
table contains the results of training the models through
stratified k-folds cross-validation using 5 folds, resulting in
945 models trained under different conditions (189 tables x
5 folds = 945 times a model was trained). The total number
of individual values obtained was 6,615 values (945 models
trained x 7 metrics obtained per model = 6,615 individual
values). In this section, only the best sets of results obtained
for each dataset is presented. For a more in-depth analysis,
including all tables and values, refer to the Supplementary
Material (S1: Selection of Best Classifier per Dataset and S2:
Result Tables Grouped).

After an in-depth analysis of the metrics (S1: Selection of
Best Classifier per Dataset), the optimal outcomes for each
dataset were identified. Specifically, for the non-occluded

dataset, the best results were achieved using SeNet-50 with
the Adadelta optimizer and a learning rate of 0.01. For the
dataset with XR headset occlusion, the best results were
achieved using SeNet-50 with the Adagrad optimizer and
a learning rate of 0.001. For the dataset with face mask
occlusion, the best results were achieved using ResNet-
50 with the Adagrad optimizer and a learning rate of
0.001. To facilitate explanations the results obtained on the
non-occluded dataset will be referred to as the RAF-DB
group, those from the dataset partially occluded by XR
headsets as the XR RAF-DB group, those from the dataset
partially occluded by face masks as the Masked RAF-DB
group, and results from the random classifier as the random
classifier group. Table 4 provides a more detailed overview
of the best results obtained for each dataset.

A 2-way ANOVA test using GraphPad Prism 8 was
conducted, and the results are presented in Fig. 8. The
statistical analysis revealed that the three groups (RAF-DB,
XR RAF-DB and Masked RAF-DB) exhibit significant
statistical differences when compared against the random
classifier group. This indicates that all three groups success-
fully learned valuable information to classify emotions. Addi-
tionally, when comparing the non-occluded group (RAF-DB)
against the two partially occluded groups (XR RAF-DB
and Masked RAF-DB), significant statistical differences are
also observed. This aligns with our expectations, as even
though the two partially occluded groups (XR RAF-DB and
Masked RAF-DB) are learning when compared against the
random classifier, occlusion leads to loss of informationwhen
compared to the non-occluded dataset (RAF-DB).

The most interesting findings emerged when comparing
the two partially occluded groups (XR RAF-DB and Masked
RAF-DB). Notably, there were no significant statistical
differences in terms of accuracy, recall (weighted) and f1-
score (weighted). However, significant statistical differences
were observed in terms of precision (macro), recall (macro)
and f1-score (macro). The disparities in the macro metrics
can be attributed to the imbalanced nature of the dataset.
In imbalanced datasets, models tend to favor the majority
class due to the availability of more information (instances)
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TABLE 4. Summary of the hyperparameters used and the metrics
obtained from the best models per each dataset. The metric values in this
table are the mean (with standard deviation) of the five folds calculated
per each model. The tables with all of the obtained metric values per fold
and a detailed description of the results can be seen in the
Supplementary Material (S2: Result Tables Grouped).

about it. Consequently, the models may become better
at distinguish the majority class from the other classes.
The weighted metrics consider the number of instances in
each class when calculating the results, reflecting this bias.
On the other hand, macro metrics weight all of the classes
equally when calculated, not reflecting this bias. Hence,
the observed discrepancy may be attributed to the minority
classes performing worse in the XR RAF-DB group than
in the Masked RAF-DB group. This differences may be
attributed to the majority classes performing better in the XR
RAF-DB group than the minority classes. This aligns with
the findings of [40], that concluded that the mouth is more
informative for neutral, happiness and anger emotions than
the eyes (happiness and neutral are majority classes in our
study), and the eyes are more informative for surprise. This
can also be observed in the metrics obtained per each class in
the supplementary material (S1: Selection of Best Classifier
per Dataset), where the only emotion not aligning with the
finding of [40] is anger. Thus, themajority classes performing
better in the XR RAF-DB group than the minority classes,
while keeping the overall performance the same, could
explain the significant statistical differences in the macro
metrics. Significant statistical differences were also observed
in terms of precision (weighted). After examining the results,
the conclusion was that the significance is statistical but not
practical, since the differences between the means of the two
groups were low when performing the 2-way ANOVA test.

V. DISCUSSION
This study focuses on investigating the statistical differences
between the absence of occlusion and two types of occlusion
(occlusion introduced by a XR headset, and occlusion
introduced by a face mask) during the classification of facial
expression. The evaluation revolves around the statistical
variances in performance metrics obtained from training
deep learning classifiers on the datasets, each featuring one
of the types of occlusion. The occlusion was introduced
synthetically by overlying images of an XR headset or a face
mask onto the faces within the RAF-DB dataset.

To generate performance metrics, three CNN models
(ResNet-50, SeNet-50 and VGG-16) were trained using
transfer learning. The models were fine-tuned by adjusting
the optimizer and learning rate. The top-performing models
for each dataset were selected (refer to S1: Selection of
Best Classifier per Dataset), and metrics from these models
were then used to create three evaluation groups: i) RAF-DB
group: results from the best-performing model on the non-
occluded dataset, ii) XR RAF-DB group: results from
best-performing model on the dataset partially occluded by
XR headset-s, and iii) Masked RAF-DB group: results from
the best-performing model on the dataset partially occluded
by face masks. Additionally, a fourth group named Random
Classifier, consisting of results from a random classifier
applied to the non-occluded dataset, was included as a
baseline.
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FIGURE 8. Statistical analysis by 2-way ANOVA test. Representation of (A) evaluation metric values obtained by the
classifiers, (B) accuracy, (C) f1-score (macro), (D) precision (macro), (E) recall (macro), (F) f1-score (weighted), (G) precision
(weighted), (H) recall (weighted). Bars indicate mean ± SD (B) F (3, 16) = 3888, **** p < 0.0001, (C) F (3, 16) = 1797, **** p <
0.0001, *** p = 0.0001, (D) F (3, 16) = 797.2, **** p < 0.0001, ** p = 0.0016, (E) F (3, 16) = 1667, **** p < 0.0001, *** p =
0.0008, (F) F (3, 16) = 4376, **** p < 0.0001, (G) F (3, 16) = 5721, **** p < 0.0001, * p = 0.0365, (H) F (3, 16) = 3888, **** p <
0.0001 using two-way ANOVA with Tukey’s post hoc analysis for multiple comparisons. n=5 for every group (one value per
fold). According to the analysis, there are significant statistical differences between the Random Group and the other
groups (RAF-DB, Masked RAF-DB, and XR RAF-DB). This finding suggests that all three groups have successfully learned
valuable information from the faces. Furthermore, when the two partially occluded groups are compared (Masked RAF-DB
and XR RAF-DB) with the non-occluded group (RAF-DB), there are also significant statistical differences. This outcome is
expected, since occlusion implies loss of information. Significant statistical differences were also observed in the macro
metrics between the two partially occluded datasets. This discrepancy may be attributed to the majority classes performing
better in the XR RAF-DB group than in the Masked RAF-DB group. Finally, significant statistical differences are also found
on the weighted precision metric, but we consider that it has no practical significance.
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The four groups were compared using a 2-way ANOVA
test. The test results (Fig. 8) revealed significant statistical
differences between the random group and the other three
groups. This finding indicates that, independently of the
occlusion introduced, all three groups are learning valuable
information for facial expression classification. Significant
statistical also emerged when comparing the non-occluded
group against the partially occluded groups, implying that the
non-occluded group acquired more information, as expected
due to occlusion causing information loss. In the comparison
between the two partially occluded groups (XR RAF-DB and
Masked RAF-DB), statistical differences were observed only
in the macro metrics. These differences may stem from the
minority classes of the XR RAF-DB group performing worse
than those in the Masked RAF-DB group due to the distinct
impact of occlusion types on different emotions.

The findings align with the first part of our hypothesis
(‘‘comparing facial expressions without occlusion to those
with partial occlusion caused by face masks or XR headsets
will reveal significant statistical differences’’), indicating that
there are significant statistical differences between the results
obtained on facial expressions with no occlusion and those
with occlusion caused by face masks or extended reality (XR)
headsets. Interestingly, the second part of our hypothesis
(‘‘there may not be significant statistical differences when
comparing occlusion by face masks with occlusion by
XR headsets’’) is contradicted by our results due to the
fact that significant statistical differences in some metrics
highlights the impact of different occlusion types on emotion
recognition tasks.

The full source code for this study is accessible
in the GitHub repository under an open-source license:
https://github.com/Physical-User-Modeling-PhyUM/XR
-FaceMask-EmoClass. Although the code is tailored to the
RAF-DB dataset structure, it can be readily adjusted for use
with other datasets through minor modifications.

A. LIMITATIONS
This study shows that even when faces are partially covered
by XR headsets or face masks, meaningful information can
be extracted for facial expression classification, as revealed
by our statistical analysis. However, it is crucial to recognize
the limitations of our research, which should be taken into
account when interpreting the findings and planning future
studies:

1) The dataset employed in this study is highly imbal-
anced. Although we used various strategies to address
the issue, like data augmentation, the use of informative
metrics and the implementation of stratified k-folds
cross-validation, it is important to acknowledge that
the class imbalance may still impact the results of our
study.

2) The synthetic nature of the added partial occlusion
may not fully replicate the complexity and variability
present in real-world scenarios. While the use of
synthetic occlusion is justified for the specific goals of

this study, we acknowledge that future research should
emphasize the application of thesemethods in authentic
real-world settings.

3) Despite the results obtained with partial occlusion
being satisfactory, it is important to note that the
occlusion is still decreasing the performance of the
models. This is expected as loss of information is
inherent to occlusion in computer vision problems.

4) This study and related works focus only on basic
emotions, sometimes incorporating additional emo-
tions like neutrality or contempt. This narrow focus
could be limiting, especially in scenarios such as
educational settings, where the assessment of more
complex emotions like boredom, engagement, or frus-
tration may be necessary. One dataset suitable for
this task is the DAiSEE dataset [48], [49], although
it is formed by videos and not images. For instance,
in psychomotor learning, which involves the inter-
connection of cognitive, psychomotor, and affective
aspects of learning [50], the assessment of emotions
associated with educational settings can be beneficial.
Some studies, such as those reviewed in [51] utilize
XR headsets for educational settings, particularly in
learning medical skills, where learners may need to
wear face masks as per protocol.

B. FUTURE LINES OF RESEARCH
Future lines of research should focus on overcome the
limitations here mentioned, as well as in pushing the state of
the art of this study and the studies mentioned in the related
work:

1) As existing datasets become outdated over time, future
research should prioritize the creation of new datasets
or the adaptation of existing ones to meet modern
needs. One primary limitation involves the inherent
imbalance in facial expression recognition datasets,
as evident in RAF-DB [41], Affectnet [33] and FER+
[52], [53]. Different approaches can be considered to
address this issue. Some may involve labor-intensive
efforts, such as expanding datasets with new instances,
while others may be more sophisticated, such as lever-
aging generative models to generate new instances for
underrepresented classes. Moreover, certain datasets
like FER+ may consist of images with dimensions
too small for modern architectures, necessitating image
resizing and consequent quality loss. The application of
super-resolution techniques [54] could offer a solution
to mitigate this problem.

2) As mentioned before, certain scenarios may require the
evaluation of emotions not conventionally explored in
facial expression recognition research, such as bore-
dom or engagement within educational settings [55].
Investigating how existing models perform when
applied to these new emotions can prove valuable,
particularly in contexts like psychomotor learning,
where the affective domain is intricately linked to the
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cognitive and psychomotor domains. In addition, how
to provide affective feedback to the learners in an
effective way [56] while using multisensorial channels
that emerge when the learning environment extends the
traditional computer-based scenarios [57].

3) To address the decline in performance resulting from
partial occlusion, multimodal approaches can be used.
These approaches involve collecting a broader set of
signals that can be analyzed in synchrony to increase
performance. For instance, some psychomotor learning
systems may already have the required resources for
this. As an example, the KUMITRON system [58] is
an example that integrates inputs from physiological
sensors. This system that uses cameras and physiolog-
ical sensors can be easily adapted to estimate emotions
using a multimodal approach, offering a potential
solution to the challenges posed by facial occlusion.

4) The high availability and affordability of smartphones
and smartwatches makes them ideal tools for emotion
estimation. These devices typically feature cameras
and inertial sensors that can be leveraged to analyze
facial images and motion for emotion estimation.
Moreover, newer smartphones may even incorporate
physiological sensors like heart rate monitors or
skin conductivity sensors. Expanding on this notion,
psychomotor learning systems that utilize smartphones
as a complete infrastructure, such as KSAS [59]
could serve as a foundational framework for advancing
research in this direction, by capturing information
using the smartphone as a wearable, and executing
lightweight and fast models directly on the device as
it is done in [39], highlighting the potential of these
ubiquitous devices in emotion estimation research.

VI. CONCLUSION
This study undertakes a statistical analysis to evaluate the
performance of deep learning models in facial emotion
recognition under partial occlusion. The partial occlusion
types included in this study are the use of face masks and
the use of XR headsets, two scenarios that are becoming
more and more common in our lives. To do this analysis,
a real-world facial emotion recognition dataset was selected
and processed, addressing class imbalance and introducing
synthetic occlusion through overlaying face masks and XR
headsets images on the instances of the dataset. This resulted
in three datasets: i) non-occuded dataset, ii) dataset with
occlusion introduced by face masks, and iii) dataset with
occlusion introduced by XR headsets. Three deep learning
models (VGG-16, ResNet-50 and SeNet-50) were fine-tuned,
and the best results obtained for each datasets were analyzed
using a 2-way ANOVA statistical test.

This study highlights the potential of deep learning
models with transfer learning for recognizing facial emotions
in static faces, even with partial occlusion. Despite the
inherent imbalance on facial emotion recognition datasets
and the challenges posed by partial occlusion, the models

demonstrated the ability to learn information, although with
a significant decrease in performance when the faces where
partially occluded. Notably, we observed no significant
statistical differences between the two types of occlusion,
with exceptions for certain emotions where the occluded parts
of the face could play a more prominent role.

Our findings and our systematic review underscore the
need to address the limitations of existing facial emotion
recognition datasets, including the lack of non-basic emotions
like confusion, engagement or boredom. Additionally, the
imbalance of classes is still a issue that, although inherent
to the problem, should be addressed. We also encourage the
use of multimodal approaches to overcome the effects of
partial occlusion and the use of mobile devices for a more
accessible emotion estimation. These efforts could be crucial
for enhancing the practical applicability and robustness of
facial expression recognition models in real-world scenarios,
regardless of the presence of occlusion.

In summary, this research contributes valuable insights
into the challenges and opportunities associated with facial
emotion recognition under partial occlusion, paving the way
for future advances in the field and the development of more
reliable, versatile and accesible emotion recognition systems.
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