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ABSTRACT The selection of an optimal investment sector is of critical importance not only for individual
financial success but also to drive economic development. The allocation of capital into sectors with high
potential for growth, innovation, and job creation is key. In addressing the complexity of decision-making
scenarios associated with investment sector exploration, we introduce a novel data structure known as Picture
fuzzy hypersoft set (PFHSSs). This specialized approach within computational intelligence and decision-
making aims to categorize data into various attributes and sub-attributes, considering the significant role of
neutrality. The study stems from the need for a comprehensive framework (PFHSSs) that can effectively
handle intricate decision-making scenarios involving attributes, subattributes, and nuanced factors such as
neutrality. Traditional tools such as TOPSIS and its extensions of fuzzy sets, while robust inMultiple Criteria
Decision Making (MCDM), may face challenges in modeling and analyzing decision-making information
within a PFHSSs environment. The rationale behind this study lies in enhancing the accuracy and efficiency
of decision-making processes when dealing with complex, fuzzy, and multi-criteria data. By introducing
newly proposed distances and similarity measures tailored to PFHSSs, and constructing a PFHSSs-TOPSIS
method, we aim to address the limitations faced by existing models in the PFHSSs environment. The
application of Hamming distance-based similarity measures further distinguishes our method by determining
the weights assigned to each decision maker. The proposed PFHSSs-TOPSIS method is practically applied
in designing an optimal investment sector exploration tool for investors. This method has the potential to
establish a crucial connection between alternatives and attributes, providing value across various fields and
industries. The research emphasizes bridging the gap in decision-making scenarios where alternatives and
attributes need to be effectively connected and analyzed, thereby contributing to the advancement of decision-
making processes in complex domains.

INDEX TERMS Soft set, hypersoft set, picture fuzzy hypersoft set, similarity measure, TOPSIS, algorithms,
decision making, optimization.
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I. INTRODUCTION
The choice of the most suitable investment sector is
crucial, not only for individual financial success but also
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for its pivotal role in driving economic development by
directing capital towards sectors with the highest potential
for growth, innovation, and job creation. In the complex
world of investment, decision-makers often rely on a blend
of quantitative data and qualitative insights driven by human
intuition. However, harnessing these human-intuitionistic
data effectively requires tools that can handle the inherent
uncertainty and imprecision in decision-making. Here, fuzzy
set theory comes into play. Fuzzy set theory provides a
mathematical framework for dealing with vague or imprecise
information, allowing for a more nuanced and realistic
representation of investor preferences, risk perceptions, and
market sentiment. By incorporating fuzzy set theory into
the analysis, the Investment Sector Selector application can
better capture the subtleties of decision-making, ensuring
that it considers the intricacies of individual investor’s
preferences and beliefs when recommending optimal invest-
ment strategies. This approach enhances the application’s
ability to provide well-informed, balanced, and personalized
investment sector recommendations, ultimately contributing
to more effective economic development strategies.

Zadeh [1] introduced the concept of fuzzy sets (FS),
which was a groundbreaking contribution to dealing with
uncertainty and vagueness in various fields. Atanassov and
Stoeva [2] introduced intuitionistic fuzzy sets (IFS). IFS dif-
fers from FS by introducing the concept of a non-membership
degree, which quantifies the degree to which an element
does not belong to a set. This complements the degree of
membership, which quantifies the degree of belongingness.
IFS is considered a natural progression from FS and aims
to overcome some of the drawbacks of fuzzy set theory.
It provides a broader framework for managing information
that is fuzzy, uncertain, or incomplete. The introduction of
picture fuzzy sets (PFS) by Cuong [3] addresses the limitation
of IFS in handling inconsistent information, particularly
in scenarios such as voting questions. PFS is designed
to accommodate such situations by incorporating three
distinct functions: positive membership function, neutral
membership function, and negative membership function.
By incorporating these three functions, the PFS provides a
more nuanced representation of information, especially in
cases where people may have varying degrees of support
or opposition to a particular option. This is particularly
relevant in voting scenarios where individuals can ‘‘vote for,’’
‘‘abstain,’’ ‘‘vote against,’’ or ‘‘refuse to vote.’’ PFS allows for
a finer-grained analysis of opinions and attitudes, capturing
not only the traditional membership and non-membership
degrees but also neutrality. He and Wang [4] proposed a
novel information transformation mechanism to facilitate the
conversion of unstructured data to picture fuzzy numbers
(PFN). This mechanism serves as a bridge between raw
unstructured data and the structured representation offered by
PFNs, enabling a more effective analysis and interpretation
of the data. Wang and Yu [5] contributes to the development
of methods and techniques to handle PF information in
continuous dynamic emergency decision making scenarios.
Luo and Li [6] study on the construction method of similarity
measures on Picture Fuzzy Sets (PFS), the focus lies on

developing a framework to assess similarity between PFS.
By incorporating PFSs into the MRN (Multi-Resolution
Network) approach, Zhang et al. [7] have explored a novel
methodology that effectively leverages the advantages of
MG-PRSs and three way decisions within the FL framework.
This comprehensive investigation aims to enhance the
efficiency and effectiveness of MRN models in dealing
with complex and uncertain data. Molodtsov [8] introduced
the concept of soft set (SS) theory as a way to address
unpredictability in a parametric manner. This theory aims
to overcome restrictions and challenges in dealing with
uncertain or unpredictable data. Maji et al. [9] introduced
the concept of a fuzzy soft set (FSS), which is hybrid model
that combines the characteristics of both FS and SS. The
motivation behind introducing this hybrid model is to account
for the inherent vagueness and imprecision in real-world data,
especially in situations where attributes cannot be accurately
characterized using only crisp values of 0 and 1.

Maji et al. [10] introduced the concept of an intuitionistic
fuzzy soft set (IFSS), which is a mathematical framework
that combines elements from both IFS and SS. In this
hybrid model, each element is characterized not only by
its membership degree and non-membership degree but also
by a hesitation degree, just like in IFS. Additionally, the
flexibility of SS is retained, allowing for elements to belong
to a set with varying degrees of confidence or uncertainty. The
picture fuzzy soft set (PFSS), as defined by Yang et al. [11],
represents a hybrid model that combines elements of both
PFS and SS. PFSS allows for a parametrization point of
view when dealing with uncertainties in a picture fuzzy
environment, each element in the universal set can be charac-
terized or described in terms of various attributes, and these
attributes introduce different levels of uncertainty, positivity,
neutrality, and negativity. The limitations of previous theories
in coping with overall inconsistency and inaccuracy in data,
particularly when dealing with characteristics of a group of
parameters that contain additional subattributes. To address
these limitations, Smarandache [12] introduced the concept
of hypersoft sets (HSS) by building upon the SS framework.
The key innovation in the development of hypersoft sets
is the introduction of a multi-decision function, instead
of associating just one set of values with each parameter,
HSS enable the association of multiple sets of values,
reflecting different possible assignments for each attribute or
decision.

Saeed et al. [13] conducted a study to explore and establish
the fundamental principles and concepts of hypersoft set
theory. This likely includes defining the core concepts,
properties, and characteristics of HSS. Abbas et al. [14]
defined the basic operations that can be performed on
HSS. These operations are essential for manipulating HSS
and performing various mathematical and computational
tasks within the HSS framework. These basic operations
likely include set union, intersection, complement, and other
fundamental set operations adapted to the context of HSS.
Yolcu and Ozturk [15] introduced the concept of fuzzy
hypersoft sets (FHSS), which extend traditional HSS to
handle fuzzy and uncertain information. These FHSS have
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found wide applications in various domains where decision-
making involves uncertain or imprecise data. The framework
allows for a flexible representation of attributes, subattributes,
and their relationships, enhancing decision support systems.
Yolcu et al. [16] also led to the development of intuitionistic
fuzzy hypersoft sets (IFHSS), which further expand the
framework to accommodate intuitionistic fuzzy information.
This comprehensive framework is capable of handling not
only fuzzy and uncertain data but also incomplete and vague
information. Saeed and Harl [17] introduced the notion of
picture fuzzy hypersoft sets (PFHSSs), which is used to handle
attributes and subattributes, making them particularly valu-
able when dealing with inconsistent information. Building on
the concept of PFHSSs, Saeed et al. [18] introduced the idea
of picture fuzzy hypersoft graphs (PFHSG).

These graphs provide a fresh perspective on risk analysis,
particularly in product sales, by visually representing the
contributing variables and their interactions. They enhance
the transparency and interpretability of risk assessment,
aiding decision-makers in understanding complex systems.
Harl et al. [19] introduced lattice-ordered picture fuzzy
hypersoft (LOPFHSS). This structure is particularly benefi-
cial for complex decision-making situations where attributes
need to be considered at a sub-attribute level, uncertainty
is present, and there is a need to establish ordering or
preference among parameters. This approach provides amore
flexible and structured way to handle such decision-making
problems, offering potential solutions to challenges in real-
world applications. The concept of a bipolar picture fuzzy
hypersoft set (BPFHSS), as introduced by Harl et al. [20],
addresses the importance of considering inconsistent, bipolar,
and multiple sub-attribute information in decision-making
processes.

Similarity measures play a crucial role in dealing with
uncertain data, especially in the context of SS, FSS, IFS,
IFSS, PFSS and HSS. These measures are essential for
quantifying the degree of similarity or resemblance between
two sets or elements characterized by uncertainty.

Majumdar and Samanta [21] initiated the study of similar-
ity measures of SS and introduced new similarity measures
for FSS, which were based on distance metrics, set-theoretic
approaches, and matching functions. Liu et al. [22] proposed
similarity measures and entropy measures for FSS and
investigated their properties. Feng and Zheng [23] conducted
research on novel similarity measures for FSS, focusing
on distance-based measures. Ghose et al. [24] introduced a
weighted similarity measure using intuitionistic fuzzy soft
sets for the classification of biomarkers. Aggarwal et al. [25]
introduced the PFSS similarity measure. These similarity
measures contribute to the toolbox of methods available
for working with PFSSs, making them more versatile
and applicable in various domains where uncertainty and
imprecision are inherent. Rahman et al. [26] proposed a
similarity measure between two possibility intuitionistic
fuzzy hypersoft. Saqlain et al. [27] developed distance and
similarity measures for IFHSS with the help of aggregate
operators. The introduction of similarity measures for

neutrosophic hypersoft sets (NHSSs) by Saqlain et al. [28]
is crucial, as these sets are designed to handle data with addi-
tional elements of indeterminacy, making them suitable for
scenarios where uncertainty and incomplete information are
prevalent. Jafar et al. [29] proposed trigonometric similarity
measures specifically designed for NHSSs, applying these
trigonometric similarity measures to the context of renewable
energy source selection.

Hwang et al. [30] originally developed the TOPSIS
method, which is a popular multicriteria decision analysis
technique used for ranking alternatives based on their
similarity to the ideal solution. Chen et al. [31], [32] further
studied and possibly extended the TOPSIS method, likely
exploring variations or applications of the technique in
specific contexts. Boran et al. [33] introduced an adaptation
of TOPSIS that incorporates IFS. IFS allow for representing
both membership and non-membership degrees of elements,
making the TOPSIS approach more suitable for handling
uncertainty and vagueness in decision-making problems.
Chen et al. [34] developed a proportional interval T2 hesitant
fuzzy TOPSIS approach. This likely involves incorporating
hesitant fuzzy sets that allow decision-makers to express their
uncertainty or hesitancy about the membership of elements
in a set. The Hamacher aggregation operators and andness
optimization models might be used to aggregate preferences
and make decisions. Eraslan and Karaaslan [35] introduced
the fuzzy soft TOPSIS method as a multi-criteria decision-
making technique. Fuzzy soft sets are a generalization of
traditional fuzzy sets and can capture more complex decision
scenarios where uncertainty and soft information play a role.
The approach proposed by Mehmood et al. [36], involving
the use of lattice-ordered t-bipolar soft sets in the TOPSIS
method, is a novel and innovative method for solvingMCDM
problems.

The extension of the TOPSIS method under IFHSS envi-
ronment, based on correlation coefficients and aggregation
operators, as introduced by Zulqarnain et al. [37]. The
selection of an effective hand sanitizer to reduce the effects
of COVID-19 is a critical decision in the current global
health crisis. An extension of the TOPSIS technique based
on correlation coefficients under the NHSS presents by
Samad et al. [38] an innovative approach to this problem.

Kalaichelvi and Malini [39] conducted a study that applied
fuzzy soft sets to investment decision-making problems.
This research likely involved collecting data from female
employees working in government and private sector com-
panies in Coimbatore, Tamil Nadu, India. The notion of
‘‘period’’ (daily, weekly, monthly, or annually) is crucial
for investment decision-making problems. This suggests that
the timing of investments, such as how often decisions
are made or how long investments are held, plays an
important role in the decision-making process. Different
periods may have varying degrees of impact on investment
choices. özgür and Nihal [40] introduced a new method to
incorporate the notion of period into investment decision-
making using soft set and matrix theories. Mukherjee and
Das [41] has introduced a decision-making procedure that
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focuses on solving investment decisions. This procedure
uses fuzzy fuzzy soft sets and opinion weighting vectors to
handle uncertainty, imprecision, and subjective preferences
in the investment decision-making process. Khan et al. [42]
applied picture fuzzy soft robust VIKOR Method and
its associated algorithmic procedures to solve investment
problems. Zhang et al. [43] used the matrix version of com-
plex fuzzy hypersoft sets(CFHSS) to construct a decision-
support system for the evaluation of real estate residential
projects. Zhao et al. [44] proposed the possibility single-
valued neutrosophic hypersoft set (psv-NHSS) framework for
evaluating investment projects. Khan et al. [45] developed
the ‘‘q-Rung Orthopair Fuzzy Hypersoft sets’’ aggregation
operator to address a decision-making problem related to real
estate investment.

A. MOTIVATION
With that, PFHSSs is a powerful mathematical framework for
handling attributes and subattributes, especially in scenarios
where information may be inconsistent or imprecise. Here
are some key features of PFHSSs that make them valuable in
addressing challenges:

(i) PFHSSs excel in situations where the available informa-
tion related to attributes and subattributes is inconsis-
tent. In real-world decision scenarios, it’s common to
encounter data inconsistencies, conflicts, or variations.
PFHSSs provide a robust tool for managing and making
sense of this inconsistent information.

(ii) PFHSSs allow the representation of multiple points
of view or perspectives associated with attributes and
subattributes. Decision-makers can model and analyze
different sources of information within a unified frame-
work. This multi-view representation is valuable when
dealing with diverse and sometimes conflicting data
sources.

(iii) PFHSSs-based decision models enhance transparency
by visualizing the relationships and inconsistencies
between attributes and subattributes. This transparency
helps in the understanding and interpretation of complex
decision scenarios. Decision-makers can see how differ-
ent attributes and subattributes interact and contribute to
the overall decision.

(iv) PFHSSs consider the membership degree (MD), non-
membership degree (NMD), and abstinence degree
(AD) values for attributes and subattributes. This
comprehensive approach allows for a more nuanced rep-
resentation of the uncertainty and vagueness associated
with each element.

(v) PFHSSs are capable of handling multiargument data,
meaning that they can capture and model complex rela-
tionships involving multiple attributes and subattributes
simultaneously. This makes them suitable for decision-
making in multidimensional environments.

(vi) PFHSSs are versatile and can be applied to various
domains and problem types, including decision sup-
port, risk analysis, and multi-criteria decision-making
(MCDM).

While traditional TOPSIS and its fuzzy set extensions
are powerful tools for MCDM, they may face challenges
when dealing with complex decision-making information
in a PFHSSs environment. The development of a TOPSIS
method based on new distances and similarity measures for
PFHSSs and matrices represents a valuable contribution to
decision science. This approach enhances decision accuracy,
streamlines complex decision processes, and accommodates
multi-criteria considerations and fuzziness. By leveraging
Hamming distance-based similarity measures, it provides
a systematic and mathematically grounded framework for
assessing similarities in complex and uncertain data, ulti-
mately improving the quality of decision making across
various domains.

B. PAPER LAYOUT
The structure and content of the study appear to be
organized as follows: The section II provides foundational
knowledge by introducing important concepts. The section III
introduces and presents distance and similarity measures
designed forPFHSSs. The section IV outlines the construction
of PFHSSs-TOPSIS based on the proposed distance and
similarity measure. The section V demonstrates the practical
application of the developed PFHSSs-TOPSIS algorithm in
the context of designing an investment sector selector. The
section VI is dedicated to a comparative analysis. The
final section VII provides concluding remarks and discusses
potential directions for future research. It summarizes the
findings of the study and suggests areas where further
investigation and improvement may be needed

II. PRELIMINARIES
This section serves as a foundation by reviewing the
fundamental definitions of various concepts. It covers FS,
IFS, PFS, HSS and PFHSSs. This is likely to provide readers
with the necessary background knowledge for the subsequent
sections.
Definition 1 [2]: An IFS on universe of discourse

Q = {q1,q2,q3, . . . .,qα} is defined as:

Z = {⟨mZκ

(qi), n
Zκ

(qi)⟩| qi ∈ Q}

where mZκ

(qi) : Q −→ [0, 1] denotes membership degree of qi
in Z, nZ

κ

(qi) : Q −→ [0, 1] is non membership degree of qi in
Z. 0 ≤ mZκ

(qi) + nZ
κ

(qi) ≤ 1, hZ
κ

(qi) = 1 − mZκ

(qi) − nZ
κ

(qi) represent
hesitancy degree of qi in Z, ∀ qi ∈ Q, 0 ≤ hZ

κ

(qi) ≤ 1.
Definition 2 [3]: A PFS on universe of discourse Let

Q = {q1,q2,q3, . . . .,qα} is defined as::

V = {⟨mVκ

(qi), t
Vκ

(qi), n
Vκ

(qi)⟩| qi ∈ Q}

where mZκ

(qi) : Q −→ [0, 1] denotes membership degree of qi
in Z, tV

κ

(qi) : Q −→ [0, 1] is neutral degree of qi in Z, nV
κ

(qi) :

Q −→ [0, 1] is non membership degree of qi in Z. 0 ≤

mVκ

(qi) + tV
κ

(qi) + nV
κ

(qi) ≤ 1, rV
κ

(qi) = 1 − mVκ

(qi) − tV
κ

(qi) − nV
κ

(qi)
represent refusal degree of qi in V, ∀ qi ∈ Q, 0 ≤ rV

κ

(qi) ≤ 1.
Definition 3 [8]: Let Q be a universe of discourse, P(Q)

the power set of Q and hκ
i a set of attributes. Then, the pair

(F, hκ
i ), where F : hκ

i −→ P(Q) is called a SS over Q.
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Definition 4 [11]: Let hκ
i is a parametric set. Consider a

function F : hκ
i −→ P(PF(Q)), P(PF(Q)) is power set of

PFS over Q then pair (F, hκ
i ) is representation of PFSS.

Definition 5 [13]: Let Q be a universe of discourse,P(Q)
the power set of Q. Let hκ

i = {hκ
1 , h

κ
2 , h

κ
3 , h

κ
4 , . . . . . . .., h

κ
β}

be β disjoint parameters set whose corresponding attribute
values are Hκ

1 ,Hκ
2 ,Hκ

3 ,Hκ
4 , . . . . . . ..,Hκ

β . Suppose H
κ

=

Hκ
1 × Hκ

2 × Hκ
3 × Hκ

4 × . . . .. × Hκ
β with Hκ

s ∩ Hκ
t = ∅,

t ̸= s, and t, s ∈ {1, 2, . . . ., β}. The pair (F,Hκ ), where F:
Hκ

→ P(Q) is called a HSS over Q.
Definition 6 [14]: Let Q be a universe of dis-

course, P(PF(Q)) the power set of PFS over Q.
Let hκ

i = {hκ
1 , h

κ
2 , h

κ
3 , h

κ
4 , . . . . . . .., h

κ
β} be β disjoint

parameters set whose corresponding attribute values are
Hκ
1 ,Hκ

2 ,Hκ
3 ,Hκ

4 , . . . . . . ..,Hκ
β . Suppose H

κ
= Hκ

1 × Hκ
2 ×

Hκ
3 × Hκ

4 × . . . .. × Hκ
β with Hκ

s ∩ Hκ
t = ∅, t ̸= s, and t, s

∈ {1, 2, . . . ., β}. The pair (F,Hκ ), where F: Hκ
→ P(Q) is

called a PFHSSs over Q. It is represented as follows;

(F,Hκ )=F(wκ
ς s
)={⟨mVκ

(qi), t
Vκ

(qi), n
Vκ

(qi)⟩| qi∈Q} ∀ wκ
ς s

∈Hκ

III. DEVELOPMENT OF DISTANCE AND SIMILARITY
METRICS FOR PFHSSS
This section introduces and presents extended distance and
similarity measures designed for PFHSS. These measures
are likely developed to facilitate more nuanced and accurate
comparisons within the PFHSS framework.
Definition 7: Let Q = {q1,q2,q3, . . . .,qα} be the set of

alternative and hκ
1 ,h

κ
2 , . . . ..,h

κ
β be the sets of attributes and

their corresponding attributive values are respectively the set
Hκ

ς1,H
κ
ς2,H

κ
ς3, . . . . . . ,H

κ
ςβ . Suppose H

κ
ς = Hκ

ς1 × Hκ
ς2 ×

Hκ
ς3 × . . . . . . . × Hκ

ςβ , with Hκ
ς t ∩ Hκ

ςs = ∅, t ̸= s, and
t, s ∈ {1, 2, . . . ., n}. The pair (Mκ

ij,H
κ
ς ), where Mκ

ij: H
κ
ς →

P(PF(Q)) is called a picture fuzzy hypersoft matrix (PFHSM)
of order α × β over Q. Then

(Mκ
ij,H

κ
ς )=Mκ

ij(vj)={⟨mMκ
ij
(qi), tMκ

ij
(qi), nMκ

ij
(qi)⟩|qi ∈ Q}

∀ vj ∈ Hκ
ς .

where i = 1, 2, 3, . . . .., α; j = 1, 2, 3, . . . .., β.
The PFHSM can be represented as follows

[Mκ
ij(vj)]α×β

=



m
Mκ

11
(q1)

, t
Mκ

11
(q1)

, n
Mκ

11
(q1)

. . . . . . . m
Mκ

1β
(q1)

, t
Mκ

1β
(q1)

, n
Mκ

1β
(q1)

m
Mκ

21
(q2)

, t
Mκ

21
(q2)

, n
Mκ

21
(q2)

. . . . . . . m
Mκ

2β
(q2)

, t
Mκ

2β
(q2)

, n
Mκ

2β
(q2)

. . .

. . .

. . .

m
Mκ

α1
(qα)

, t
Mκ

α1
(qα)

, n
Mκ

α1
(qα)

. . . . . . . m
Mκ

αβ

(qα)
, t

Mκ
αβ

(qα)
, n

Mκ
αβ

(qα)


Definition 8: Let (Mκ

1 ,H
κ
ς ) and (Mκ

2 ,H
κ
ς ) be two

PFHSSs over Q then the normalized Hamming distance

DPF
HS(M

κ
1 ,M

κ
2 ) is defined as:

DPF
HS(M

κ
1 ,M

κ
2 ) =

1
3n

n∑
j=1


|[m

Mκ
1

(qi)]vj − [m
Mκ

2
(qi)]vj |+

|[t
Mκ

1
(qi)]vj − [t

Mκ
2

(qi)]vj |+

|[n
Mκ

1
(qi)]vj − [n

Mκ
2

(qi)]vj |

 .

where i, j = 1, 2, 3, . . . .., n.
Definition 9: Let (Mκ

1 ,H
κ
ς ) and (Mκ

2 ,H
κ
ς ) be two

PFHSSs over Q then the Normalized Euclidean distance
DPF

HS(M
κ
1 ,M

κ
2 ) is defined, as shown in the equation at the

bottom of the next page.
Definition 10: Let (Mκ

1 ,H
κ
ς ) and (Mκ

2 ,H
κ
ς ) be two

PFHSSs over Q then the Generalized Weighted distance
DPF

HS(M
κ
1 ,M

κ
2 )λ is defined as:

DPF
HS(M

κ
1 ,M

κ
2 )λ

=

 1
3n

n∑
j=1

rj


|[m

Mκ
1

(qi)]vj − [m
Mκ

2
(qi)]vj |

λ

+|[t
Mκ

1
(qi)]vj − [t

Mκ
2

(qi)]vj |
λ
+

|[n
Mκ

1
(qi)]vj − [n

Mκ
2

(qi)]vj |
λ




1
λ

Definition 11: Let (Mκ
1 (ij),H

κ
ς ) and (Mκ

2 (ij),H
κ
ς ) be two

picture fuzzy hypersoft matrix PFHSM of order α ×β over Q
then the Normalized Hamming distance DPF

HS(M
κ
1(ij),M

κ
2(ij))

is defined as:

DPF
HS(M

κ
1(ij),M

κ
2(ij))

=
1

3αβ

α∑
i=1

β∑
j=1


|[m

Mκ
1(ij)

(qi) ]vj − [m
Mκ

2(ij)
(qi) ]vj |+

|[t
Mκ

1(ij)
(qi) ]vj − [t

Mκ
2(ij)

(qi) ]vj |+

|[n
Mκ

1(ij)
(qi) ]vj − [n

Mκ
2(ij)

(qi) ]vj |


Definition 12: Let (Mκ

1(ij),H
κ
ς ) and (Mκ

2(ij),H
κ
ς ) be two

PFHSM over Q then the Normalized Euclidean distance
DPF

HS(M
κ
1(ij),M

κ
2(ij)) is defined, as shown in the equation at the

bottom of the next page.
Definition 13: Let (Mκ

1(ij),H
κ
ς ) and (Mκ

2(ij),H
κ
ς ) be two

PFHSM over Q then the Generalized Weighted distance
DPF

HS(M
κ
1(ij),M

κ
2(ij))λ is defined as:

DPF
HS(M

κ
1(ij),M

κ
2(ij))λ

=

 1
3n

n∑
j=1

rj


|[m

Mκ
1(ij)

(qi) ]vj − [m
Mκ

2(ij)
(qi) ]vj |

λ
+

|[t
Mκ

1(ij)
(qi) ]vj − [t

Mκ
2(ij)

(qi) ]vj |
λ
+

|[n
Mκ

1(ij)
(qi) ]vj − [n

Mκ
2(ij)

(qi) ]vj |
λ




1
λ

Definition 14: Let (Mκ
1 ,H

κ
ς ) and (Mκ

2 ,H
κ
ς ) be two

PFHSSs over Q then the similarity measure SPF
HS(M

κ
1 ,M

κ
2 ) is

defined as:

SPF
HS(M

κ
1 ,M

κ
2 ) = 1 −

1
3n

n∑
j=1


|[m

Mκ
1

(qi)]vj − [m
Mκ

2
(qi)]vj |+

|[t
Mκ

1
(qi)]vj − [t

Mκ
2

(qi)]vj |+

|[n
Mκ

1
(qi)]vj − [n

Mκ
2

(qi)]vj |


Definition 15: Let (Mκ

1 ,H
κ
ς ) and (Mκ

2 ,H
κ
ς ) be two

PFHSSs over Q then the Generalized Weighted similarity
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measure SPF
HS(M

κ
1 ,M

κ
2 )λ is defined as:

SPF
HS(M

κ
1 ,M

κ
2 )λ

= 1 −

 1
3n

∑n

j=1
rj


|[m

Mκ
1(ij)

(qi) ]vj − [m
Mκ

2(ij)
(qi) ]vj |

λ
+

|[t
Mκ

1(ij)
(qi) ]vj − [t

Mκ
2(ij)

(qi) ]vj |
λ
+

|[n
Mκ

1(ij)
(qi) ]vj − [n

Mκ
2(ij)

(qi) ]vj |
λ




1
λ

Definition 16: Let (Mκ
1(ij),H

κ
ς ) and (Mκ

2(ij),H
κ
ς ) be two

PFHSM of order α × β over Q then the similarity measure
SPF

HS(M
κ
1(ij),M

κ
2(ij)) is defined as:

SPF
HS(M

κ
1(ij),M

κ
2(ij))

= 1 −
1

3αβ

∑α

i=1

∑β

j=1


|[m

Mκ
1(ij)

(qi) ]vj − [m
Mκ

2(ij)
(qi) ]vj |+

|[t
Mκ

1(ij)
(qi) ]vj − [t

Mκ
2(ij)

(qi) ]vj |+

|[n
Mκ

1(ij)
(qi) ]vj − [n

Mκ
2(ij)

(qi) ]vj |


Definition 17: Let (Mκ

1(ij),H
κ
ς ) and (Mκ

2(ij),H
κ
ς ) be two

PFHSM over Q then the Generalized Weighted similarity
measure SPF

HS(M
κ
1(ij),M

κ
2(ij))λ is defined as:

SPF
HS(M

κ
1(ij),M

κ
2(ij))λ

=1−

 1
3αβ

∑α

i=1

∑β

j=1
rj


|[m

Mκ
1(ij)

(qi) ]vj−[m
Mκ

2(ij)
(qi) ]vj |

λ
+

|[t
Mκ

1(ij)
(qi) ]vj−[t

Mκ
2(ij)

(qi) ]vj |
λ
+

|[n
Mκ

1(ij)
(qi) ]vj−[n

Mκ
2(ij)

(qi) ]vj |
λ




1
λ

IV. DEVELOPMENT OF PFHSSS-TOPSIS FOR MCDM
USING DISTANCE AND SIMILARITY MEASURES
In this section we introducing a multi attribute decision-
making problem that based on PFHSSs.

Qκ
i = {q1,q2,q3, . . . .,qα} be the set of alternative

and hκ
1 ,h

κ
2 , . . . ..,h

κ
β be the sets of attributes and their

corresponding attributive values are respectively the set
Hκ

1 ,H
κ
2 ,H

κ
3 , . . . . . . ,H

κ
β . Let r

κ
j be the weight of attributes

where 0 ≤ rκ
j ≤ 1 and

∑β
j r

κ
j = 1. Suppose that

DMκ

v = (DMκ

1 ,D
Mκ

2 , . . . .D
Mκ

t ) be the set of decision
makers and ϒκ

v be the weight of decision-makers with
0 ≤ ϒκ

v ≤ 1 and
∑t

v ϒκ
v = 1. Let [Mκ

v(ij)]α×β be

a decision matrix Mκ
v(ij) = {[m

Mκ
v(ij)

(qi) ]vj , [t
Mκ
v(ij)

(qi) ]vj , [n
Mκ
v(ij)

(qi) ]vj}
i = 1, 2, 3, . . . .., α; j = 1, 2, 3, . . . .., β; v = 1, 2, 3, . . . .., t .

{[m
Mκ
v(ij)

(qi) ]vj , [t
Mκ
v(ij)

(qi) ]vj , [n
Mκ
v(ij)

(qi) ]vj} ∈ [0, 1], 0 ≤ [m
Mκ
v(ij)

(qi) ]vj +

[t
Mκ
v(ij)

(qi) ]vj + [n
Mκ
v(ij)

(qi) ]vj ≤ 1.
The decision-making process for choosing an alternative

can be acquired using the steps below.
Step 1: Let [Mκ

v(ij)]α×β be the decision matrix based on
the decision makers information given as follows By using
[Mκ

v(ij)]α×β the ideal matrixMκ•

ij can be find as

[Mκ•

ij ]α×β = {[m•

Mκ
ij
(qi)]vj , t

•Mκ
ij(qi)]vj , n

•

Mκ
ij
(qi)]vj}

=


(1 −

∏t
v=1(1 − [m

Mκ
v(ij

(qi) ]vj )
1
t ),∏t

v=1([t
Mκ
v(ij

(qi) ]vj )
1
t ,∏t

v=1([n
Mκ
v(ij

(qi) ]vj )
1
t

 (1)

The ideal matrix can be represented as follows

[Mκ•

ij ]α×β

=



m
Mκ•

11
(q1)

, t
Mκ•

11
(q1)

, n
Mκ•

11
(q1)

. . . . . . . m
Mκ•

1β
(q1)

, t
Mκ•

1β
(q1)

, n
Mκ•

1β
(q1)

m
Mκ•

21
(q2)

, t
Mκ•

21
(q2)

, n
Mκ•

21
(q2)

. . . . . . . m
Mκ•

2β
(q2)

, t
Mκ•

2β
(q2)

, n
Mκ•

2β
(q2)

. . .

. . .

. . .

m
Mκ•

α1
(qα)

, t
Mκ•

α1
(qα)

, n
Mκ•

α1
(qα)

. . . . . . . m
Mκ•

αβ

(qα)
, t

Mκ•

αβ

(qα)
, n

Mκ•

αβ

(qα)


(2)

Step 2: The similarity between each decision matrix and the
ideal matrix is initially determined to calculate the weights of
the decision-makers as

SPF
HS(M

κ
v(ij),M

κ•

(ij))

= 1 −
1

3αβ

α∑
i=1

β∑
j=1


|[m

Mκ
v(ij)

(qi)
]vj − [m

Mκ•

v(ij)
(qi)

]vj |+

|[t
Mκ
v(ij)

(qi)
]vj − [t

Mκ•

v(ij)
(qi)

]vj |+

|[n
Mκ
v(ij)

(qi)
]vj − [n

Mκ•

v(ij)
(qi)

]vj |

 (3)

Using the information provided above, we now determine the
weight ϒκ

v of t decision-makers.

ϒκ
v =

SPF
HS(M

κ
v(ij),M

κ•

v(ij))∑t
v=1 S

PF
HS(M

κ
v(ij),M

κ•

v(ij))
(4)

with 0 ≤ ϒκ
v ≤ 1 and

∑t
v ϒκ

v = 1.

DPF
HS(M

κ
1 ,M

κ
2 ) =

√√√√∑n
j=1{|[m

Mκ
1

(qi)
]vj − [m

Mκ
2

(qi)
]vj |2 + |[t

Mκ
1

(qi)
]vj − [t

Mκ
2

(qi)
]vj |2 + |[n

Mκ
1

(qi)
]vj − [n

Mκ
2

(qi)
]vj |2}

3n

DPF
HS(M

κ
1(ij),M

κ
2(ij)) =

√√√√∑α
i=1

∑β

j=1{|[m
Mκ

1(ij)
(qi) ]vj − [m

Mκ
2(ij)

(qi) ]vj |2 + |[t
Mκ

1(ij)
(qi) ]vj − [t

Mκ
2(ij)

(qi) ]vj |2 + |[n
Mκ

1(ij)
(qi) ]vj − [n

Mκ
2(ij)

(qi) ]vj |2}

3αβ
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An aggregated picture fuzzy hypersoft decision matrix is
obtained as

Mκag

℘(ij) = {[m
Mκag

℘ij
(qi) ]vj , t

Mκag
℘ij

(qi) ]vj , n
Mκag

℘ij
(qi) ]vj}

=


(1 −

∏t
v=1(1 − [m

Mκ
v(ij)

(qi) ]vj )
ϒκ
v ),∏t

v=1([t
Mκ
v(ij)

(qi) ]vj )
ϒκ
v ,∏t

v=1([n
Mκ
v(ij)

(qi) ]vj )
ϒκ
v

 (5)

An aggregate matrix can be represented as follows

[Mκag

ij ]α×β

=



m
Mκag

11
(q1)

, t
Mκag

11
(q1)

, n
Mκag

11
(q1)

. . . . . . . m
Mκag

1β
(q1)

, t
Mκag

1β
(q1)

, n
Mκag

1β
(q1)

m
Mκag

21
(q2)

, t
Mκag

21
(q2)

, n
Mκag

21
(q2)

. . . . . . . m
Mκag

2β
(q2)

, t
Mκag

2β
(q2)

, n
Mκag

2β
(q2)

. . .

. . .

. . .

m
Mκag

α1
(qα)

, t
Mκag

α1
(qα)

, n
Mκag

α1
(qα)

. . . . . . . m
Mκag

αβ

(qα)
, t

Mκag
αβ

(qα)
, n

Mκag
αβ

(qα)


(6)

Step 3 : During the decision-making process, decision-
makers could believe that not all attributes are equally
important. Each decision-maker can then form their own
opinion about the relative importance of certain attributes.
The opinions of all the decision-makers regarding the
significance of each attribute must be combined in order to
obtain the collective judgement of the attributes that have
been chosen. For this purpose, to calculate the weight of
attributes based on the importance assigned by each decision-
maker is given as

[Mκ
v(ij)]1×β

= {m
Mκ∗

v(ij)
(qi) , t

Mκ∗

v(ij)
(qi) , n

Mκ∗

v(ij)
(qi) }

=

[
m
Mκ∗

v(11)
(q1)

, t
Mκ∗

v(11)
(q1)

, n
Mκ∗

v(11)
(q1)

. . . m
Mκ∗

v(1β)
(q1)

, t
Mκ∗

v(1β)
(q1)

, n
Mκ∗

v(1β)
(q1)

]
The weight rκ⋄

j of attributes Hκ
j ,

rκ⋄

j = {[mMκ⋄

v(ij) ]vj , [t
Mκ⋄

v(ij) ]vj , [n
Mκ⋄

v(ij) ]vj}

=


(1 −

∏t
v=1(1 − [m

Mκ∗

v(ij)
(qi) ]vj )

ϒκ
v ),∏t

v=1([t
Mκ∗

v(ij)
(qi) ]vj )

ϒκ
v ,∏t

v=1([n
Mκ∗

v(ij)
(qi) ]vj )

ϒκ
v

 (7)

Step 4 After establishing theweights for individual attributes,
we apply them to each row of the aggregated decision matrix.

[Mκ⋆

v(ij)]α×β

= {[m
Mκ⋆

v(ij)
(qi) ]vj , [t

Mκ⋆

v(ij)
(qi) ]vj , n

Mκ⋆

v(ij)
(qi) ]vj}

=


([m

Mκag
℘ij

(qi) ]vj ).([m
Mκ⋄

v(ij) ]vj ),

([t
Mκag

℘ij
(qi) ]vj + [tM

κ⋄

v(ij) ]vj − [t
Mκag

℘ij
(qi) ]vj .[t

Mκ⋄

v(ij) ]vj ),

([n
Mκag

℘ij
(qi) ]vj + [nM

κ⋄

v(ij) ]vj − [n
Mκag

℘ij
(qi) ]vj .[n

Mκ⋄

v(ij) ]vj )

 (8)

Step 5 The PFHSSs positive ideal solution is given as

Mκ⋆+

j = {[m
Mκ⋆+

v(ij)
(qi) ]vj , [t

Mκ⋆+

v(ij)
(qi) ]vj , n

Mκ⋆+

v(ij)
(qi) ]vj}

= {max([m
Mκ⋆

v(ij)
(qi) ]vj ),min([t

Mκ⋆

v(ij)
(qi) ]vj ),min([n

Mκ⋆

v(ij)
(qi) ]vj )}

(9)

The PFHSSs negative ideal solution is given as

Mκ⋆−

j = {[m
Mκ⋆−

v(ij)
(qi) ]vj , [t

Mκ⋆−

v(ij)
(qi) ]vj , n

Mκ⋆−

v(ij)
(qi) ]vj}

= {min([m
Mκ⋆

v(ij)
(qi) ]vj ),min([t

Mκ⋆

v(ij)
(qi) ]vj ),max([n

Mκ⋆

v(ij)
(qi) ]vj )}

(10)

Step 6 : We should now calculate the normalised Hamming
distance with respect to the positive ideal solution and the
alternatives using

Dj(Mκ⋆

(ij),M
κ⋆+

j )

=
1
3β

β∑
j=1


|[m

Mκ⋆

v(ij)
(qi) ]vj − [[m

Mκ⋆+

v(ij)
(qi) ]vj |+

|[t
Mκ⋆

v(ij)
(qi) ]vj − [t

Mκ⋆

v(ij)
(qi) ]vj |+

|[n
Mκ⋆

v(ij)
(qi) ]vj − [n

Mκ⋆+

v(ij)
(qi) ]vj |

 (11)

We should now calculate the normalised Hamming distance
with respect to the negative ideal solution and the alternatives
using

Dj(Mκ⋆

(ij),M
κ⋆−

j )

=
1
3β

β∑
j=1


|[m

Mκ⋆

v(ij)
(qi) ]vj − [[m

Mκ⋆−

v(ij)
(qi) ]vj |+

|[t
Mκ⋆

v(ij)
(qi) ]vj − [t

Mκ⋆

v(ij)
(qi) ]vj |+

|[n
Mκ⋆

v(ij)
(qi) ]vj − [n

Mκ⋆−

v(ij)
(qi) ]vj |

 (12)

Step 7: Ranking the alternatives is achieved using the relative
closeness index, which is derived using

RK j
=

Dj(Mκ⋆

(ij),M
κ⋆−

j )

max[Dj(Mκ⋆

(ij),M
κ⋆−

j )]
−

Dj(Mκ⋆

(ij),M
κ⋆+

j )

min[Dj(Mκ⋆

(ij),M
κ⋆+

j )]

(13)

According to the relative closeness index, the set of chosen
alternatives are sorted in descending order. The pseudocode
based on the described procedural steps is given below:

Pseudo code of the proposed algorithm:
• Step 1: Start
• Step 2: GetIdealMatrix (decisionMatrices)

– Calculate the average of individual decision matri-
ces

– Return the ideal matrix
• Step 3: InputWeights (decisionMakers)

– Input the weights of decision-makers in MCDM
– Determine the similarity measure between each

decision matrix and the ideal matrix
• Step 4: AddAttributeWeights (decisionMakers)

– Add the weight of attributes based on the impor-
tance assigned by each decision-maker
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• Step 5: AddAggregatedMatrix (decisionMatrices,
attributeWeights)
– Add the aggregated decision matrix

• Step 6: CalculatePositiveNegativeIdeals (aggregated-
Matrix)
– Calculate positive ideal solution and negative ideal

solution
• Step 7: CalculateNormalizedHammingDistance (alter-
natives, positiveIdeal, negativeIdeal)
– Calculate the normalized Hamming distance with

respect to the positive ideal solution, negative ideal
solution, and the alternatives

• Step 8: RankAlternatives (normalizedHammingDis-
tances)
– Rank the alternatives using the relative closeness

index
Step 9: Stop

V. DESIGNING AN INVESTMENT SECTOR SELECTOR FOR
SELECTION OF MOST SUITABLE SECTOR FOR THEIR
INVESTMENT
In today’s dynamic and ever-evolving financial landscape,
making informed investment decisions has never been more
critical. The investment sector you choose can significantly
impact the success of your portfolio, and the factors affecting
these decisions are becoming increasingly complex. This is
where the ‘‘Investment Sector Selector’’ application becomes
a necessary and invaluable tool for investors. Traditional
investment strategies are often based on historical perfor-
mance and a narrow set of criteria. However, in an era charac-
terized by rapid technological advancements, global market
volatility, and a growing emphasis on ethical and sustainable
investing, the need for a more comprehensive, data-driven,
and adaptable approach has emerged. The ‘‘Investment Sector
Selector’’ application answers this need by harnessing the
power of multi-criteria decision making (MCDM). It enables
investors to evaluate, compare, and rank various sectors based
on a range of factors that truly matter to them, going beyond
mere past returns.The relationship between attributes and
alternatives is essential for determining the optimum course
of action in investment challenges and decision making
scenarios. Investing is a crucial part of building wealth
and achieving financial goals, but it comes with its share
of challenges and risks. Understanding these challenges is
essential for making informed investment decisions. Now,
consider Qκ

i = {q1 = Technology, q2 = Healthcare, q3 =

Real Estate, q4 = Finance} be a set of alternative possible
sectors in which an investment can be made. In investment
problems, attributes are characteristics or features associated
with various investment options or assets. These attributes
are essential for investors and financial analysts to eval-
uate and compare different investment opportunities. Let
Hκ
i = {hκ

1 = Return on Investment (ROI), hκ
2 = Risk

Tolerance, hκ
3 = Market Trends, hκ

4 = Financial Health} be
a attribute set whose corresponding sub attribute values are
{Hκ

1 ,H
κ
2 ,H

κ
3 ,H

κ
4} respectively. Here,

Hκ
1 = {g11 = Short-Term ROI, g12 = Long-Term ROI,

g13 = Dividend Yield, g14 = Historical Performance}

Hκ
2 = {g21 = Beta Value, g22 = Credit Risk,

g23 = Volatility, g24 = Market Correlation}
Hκ

3 = {g31 = Economic Indicators, g32 = Consumer
Behavior, g33 = Technological Advancements, g34 = Com-
petitive Landscape}
Hκ

4 = {g41 = Profitability, g42 = Debt-to-Equity Ratio,
g43 = Cash Flow, g44 = Liquidity}
Based on the attributes mentioned above, Hκ

i = Hκ
1 ×

Hκ
2 × Hκ

3 × Hκ
4 , there are two hundred and fifty six possible

outcomes but for but due to computational barrires and sake
of brevity, four of the possible outcomes are addressed below:

Hκ
ς

=

{
vκς 1= (g11, g21, g32, g44), vκς 2= (g14, g24, g33, g43),
vκς 3= (g12, g23, g31, g41). vκς 4= (g13, g22, g32, g42)

}
In the context of decision-making in investment problems,

observer (decision makers) plays a supervisory role in
the decision-making process. Observers are not directly
involved in making investment decisions but may have an
interest in or influence over the decisions being made. Their
involvement can contribute to more responsible and well-
informed investment decision-making. These observers in
this scenario and market experts and finacial guru’s that have
studied the economy and are well-aware of the developments
taking place around the glove. Now, the use of picture fuzzy
hypersoft matrices PFHSM in investment decision-making
suggests a more advanced and sophisticated approach to
gathering and presenting opinions from these expert decision-
makers. The structure allows for the incorporation of these
opinions in the decision mkaing process. These opinions are
then organized into PFHSSs. In this matrix
(i) Columns represent the alternatives.
(ii) Rows represent attributes being evaluated.
(iii) Each cell of thematrix contains a picture fuzzy hypersoft

number, which represents the degree of preference or
assessment of the corresponding decision-maker for a
specific attribute.

Step: 01 Finding the ideal matrix by averaging individual
decision matrices {Mκ

1 , M
κ
2 , M

κ
3 and Mκ

4 are given on next
page} using the formula (1):

[Mκ•

ij ]α×β = {[m
Mκ•

ij
(qi) ]vj , t

Mκ•

ij
(qi) ]vj , n

Mκ•

ij
(qi) ]vj}

=


(1 −

∏t
v=1(1 − [m

Mκ
v(ij

(qi) ]vj )
1
t ),∏t

v=1([t
Mκ
v(ij

(qi) ]vj )
1
t ,∏t

v=1([n
Mκ
v(ij

(qi) ]vj )
1
t


To make things easier for the reader, one computation is
presented.

Mκ•

(11)

= {[m
Mκ•

11
(q1)

]v1 , t
Mκ•

11
(q1)

]v1 , n
Mκ•

11
(q1)

]v1}

=


(1 −

∏4
v=1(1 − [mMκ

v(ij) (q1)]v1 )
1
4 ,∏4

v=1([t
Mκ
v(ij) (q1)]v1 )

1
4 ,∏4

v=1([n
Mκ
v(ij) (q1)]v1 )

1
4 )


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=


(1 − [(1 − 0.5)

1
4 (1 − 0.9)

1
4 (1 − 0.3)

1
4 (1 − 0.4)

1
4 ]),

[(0.2)
1
4 (0.0)

1
4 (0.3)

1
4 (0.2)

1
4 ],

[(0.1)
1
4 (0.1)

1
4 (0.4)

1
4 (0.2)

1
4 ]


=

(
0.6193, 0.0000, 0.1682

)
The ideal matrix [Mκ•

(ij)]4×4 (14), as shown at the bottom
of the page.
Step : 02 Determining the weights of decision-makers

in multi-criteria decision-making (MCDM) often involves
calculating the similarity measure between each decision
matrix and the ideal matrix by using the formula (3),

SPF
HS(M

κ
v(ij),M

κ•

(ij))

= 1 −
1

3αβ

α∑
i=1

β∑
j=1


|[m

Mκ
v(ij)

(qi)
]vj − [m

Mκ•

ij
(qi) ]vj |+

|[t
Mκ
v(ij)

(qi)
]vj − [m

Mκ•

ij
(qi) ]vj |+

|[n
Mκ
v(ij)

(qi)
]vj − [m

Mκ•

ij
(qi) ]vj |


For the convenience of the reader, one computation is
presented.

SPF
HS(M

κ
1(ij),M

κ•

(ij))

= 1 −
1

4(4)

4∑
i=1

4∑
j=1


|[m

Mκ
1(ij)

(qi) ]vj − [m
Mκ•

(ij)
(qi) ]vj |+

|[t
Mκ

1(ij)
(qi) ]vj − [t

Mκ•

(ij)
(qi) ]vj |+

|[n
Mκ

1(ij)
(qi) ]vj − [n

Mκ•

(ij)
(qi) ]vj |



=
1

4(4)

4∑
i=1




|[m

Mκ
1(i1)

(qi) ]v1 − [m
Mκ•

(i1)
(qi) ]v1 |+

|[t
Mκ

1(i1)
(qi) ]v1 − [t

Mκ•

(i1)
(qi) ]v1 |+

|[n
Mκ

1(i1)
(qi) ]v1 − [n

Mκ•

(i1)
(qi) ]v1 |


+


|[m

Mκ
1(i2)

(qi) ]v2 − [m
Mκ•

(i2)
(qi) ]v2 |+

|[t
Mκ

1(i2)
(qi) ]v2 − [t

Mκ•

(i2)
(qi) ]v2 |+

|[n
Mκ

1(i2)
(qi) ]v2 − [n

Mκ•

(i2)
(qi) ]v2 |


+


|[m

Mκ
1(i3)

(qi) ]v3 − [m
Mκ•

(i3)
(qi) ]v3 |+

|[t
Mκ

1(i3)
(qi) ]v3 − [t

Mκ•

(i3)
(qi) ]v3 |+

|[n
Mκ

1(i3)
(qi) ]v3 − [n

Mκ•

(i3)
(qi) ]v3 |


+


|[m

Mκ
1(i4)

(qi) ]v4 − [m
Mκ•

(i4)
(qi) ]v4 |+

|[t
Mκ

1(i4)
(qi) ]v4 − [t

Mκ•

(i4)
(qi) ]v4 |+

|[n
Mκ

1(i4)
(qi) ]v4 − [n

Mκ•

(i4)
(qi) ]v4 |





[Mκ
1 ]4×4 =


q1 q2 q3 q4

v1 (0.5, 0.2, 0.1) (0.5, 0.3, 0.1) (0.3, 0.5, 0.1) (0.4, 0.3, 0.2)
v2 (0.7, 0.1, 0.1) (0.2, 0.5, 0.2) (0.6, 0.1, 0.2) (0.4, 0.1, 0.3)
v3 (0.5, 0.2, 0.2) (0.6, 0.2, 0.1) (0.3, 0.4, 0.1) (0.5, 0.2, 0.2)
v4 (0.4, 0.4, 0.1) (0.6, 0.2, 0.1) (0.5, 0.3, 0.2) (0.5, 0.3, 0.1)



[Mκ
2 ]4×4 =


q1 q2 q3 q4

v1 (0.9, 0.0, 0.1) (0.2, 0.1, 0.7) (0.6, 0.3, 0.1) (0.7, 0.1, 0.1)
v2 (0.3, 0.3, 0.3) (0.4, 0.2, 0.4) (0.5, 0.3, 0.1) (0.1, 0.1, 0.8)
v3 (0.6, 0.1, 0.1) (0.7, 0.1, 0.2) (0.5, 0.2, 0.1) (0.4, 0.1, 0.4)
v4 (0.1, 0.4, 0.2) (0.2, 0.2, 0.2) (0.5, 0.1, 0.1) (0.4, 0.1, 0.2)



[Mκ
3 ]4×4 =


q1 q2 q3 q4

v1 (0.3, 0.3, 0.4) (0.6, 0.2, 0.1) (0.6, 0.1, 0.3) (0.3, 0.5, 0.2)
v2 (0.7, 0.2, 0.1) (0.3, 0.3, 0.2) (0.4, 0.1, 0.3) (0.5, 0.3, 0.1)
v3 (0.6, 0.2, 0.2) (0.8, 0.1, 0.1) (0.2, 0.6, 0.2)) (0.2, 0.3, 0.4)
v4 (0.4, 0.1, 0.2) (0.4, 0.1, 0.4) (0.5, 0.1, 0.2) (0.3, 0.3, 0.3)



[Mκ
4 ]4×4 =


q1 q2 q3 q4

v1 (0.4, 0.2, 0.2) (0.5, 0.2, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2)
v2 (0.8, 0.1, 0.1) (0.3, 0.4, 0.2) (0.4, 0.4, 0.2) (0.7, 0.3, 0.0)
v3 (0.3, 0.3, 0.4) (0.5, 0.2, 0.2) (0.6, 0.2, 0.1) (0.5, 0.2, 0.2)
v4 (0.8, 0.0, 0.1) (0.4, 0.2, 0.4) (0.5, 0.1, 0.2) (0.6, 0.3, 0.1)



[Mκ•

(ij)]4×4 =


(0.619, 0.000, 0.168) (0.468, 0.186, 0.162) (0.539, 0.259, 0.131) (0.499, 0.259, 0.168)
(0.665, 0.156, 0.131) (0.303, 0.331, 0.237) (0.482, 0.186, 0.186) (0.466, 0.173, 0.000)
(0.513, 0.186, 0.200) (0.669, 0.168, 0.141) (0.421, 0.313, 0.118) (0.411, 0.186, 0.282)
(0.495, 0.000, 0.141) (0.417, 0.168, 0.237) (0.500, 0.131, 0.168) (0.461, 0.228, 0.156)

 (14)
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= 1 −
1

4(4)
[



|[m
Mκ

1(11)
(q1)

]v1 − [m
Mκ

(11)
(q1)

]v1 |+

|[m
Mκ

1(21)
(q2)

]v1 − [m
Mκ

(21)
(q2)

]v1 |+

|[m
Mκ

1(31)
(q3)

]v1 − [m
Mκ

(31)
(q3)

]v1 |+

|[m
Mκ

1(41)
(q4)

]v1 − [m
Mκ

(41)
(q4)

]v1 |+

|[t
Mκ

1(11)
(q1)

]v1 − [t
Mκ

(11)
(q1)

]v1 |+

|[t
Mκ

1(21)
(q2)

]v1 − [t
Mκ

(21)
(q2)

]v1 |+

|[t
Mκ

1(31)
(q3)

]v1 − [t
Mκ

(31)
(q3)

]v1 |+

|[t
Mκ

1(41)
(q4)

]v1 − [t
Mκ

(41)
(q4)

]v1 |+

|[n
Mκ

1(11)
(q1)

]v1 − [n
Mκ

(11)
(q1)

]v1 |+

|[n
Mκ

1(21)
(q2)

]v1 − [n
Mκ

(21)
(q2)

]v1 |+

|[n
Mκ

1(31)
(q3)

]v1 − [n
Mκ

(31)
(q3)

]v1 |+

|[n
Mκ

1(41)
(q4)

]v1 − [n
Mκ

(41)
(q4)

]v1 |



+



|[m
Mκ

1(12)
(q1)

]v2 − [m
Mκ

(12)
(q1)

]v2 |+

|[m
Mκ

1(22)
(q2)

]v2 − [m
Mκ

(22)
(q2)

]v2 |+

|[m
Mκ

1(32)
(q3)

]v2 − [m
Mκ

(32)
(q3)

]v2 |+

|[m
Mκ

1(42)
(q4)

]v2 − [m
Mκ

(42)
(q4)

]v2 |+

|[t
Mκ

1(12)
(q1)

]v2 − [t
Mκ

(12)
(q1)

]v2 |+

|[t
Mκ

1(22)
(q2)

]v2 − [t
Mκ

(22)
(q2)

]v2 |+

|[t
Mκ

1(32)
(q3)

]v2 − [t
Mκ

(32)
(q3)

]v2 |+

|[t
Mκ

1(42)
(q4)

]v2 − [t
Mκ

(42)
(q4)

]v2 |+

|[n
Mκ

1(12)
(q1)

]v2 − [n
Mκ

(12)
(q1)

]v2 |+

|[n
Mκ

1(22)
(q2)

]v2 − [n
Mκ

(22)
(q2)

]v2 |+

|[n
Mκ

1(32)
(q3)

]v2 − [n
Mκ

(32)
(q3)

]v2 |+

|[n
Mκ

1(42)
(q4)

]v2 − [n
Mκ

(42)
(q4)

]v2 |



+



|[m
Mκ

1(13)
(q1)

]v3 − [m
Mκ

(13)
(q1)

]v3 |+

|[m
Mκ

1 (23)
(q2)

]v3 − [m
Mκ

(23)
(q2)

]v3 |+

|[m
Mκ

1(33)
(q3)

]v3 − [m
Mκ

(33)
(q3)

]v3 |+

|[m
Mκ

1(43)
(q4)

]v3 − [m
Mκ

(43)
(q4)

]v3 |+

|[t
Mκ

1(13)
(q1)

]v3 − [t
Mκ

(13)
(q1)

]v3 |+

|[t
Mκ

1 (23)
(q2)

]v3 − [t
Mκ

(23)
(q2)

]v3 |+

|[t
Mκ

1(33)
(q3)

]v3 − [t
Mκ

(33)
(q3)

]v3 |+

|[t
Mκ

1(43)
(q4)

]v3 − [t
Mκ

(43)
(q4)

]v3 |+

|[n
Mκ

1(13)
(q1)

]v3 − [n
Mκ

(13)
(q1)

]v3 |+

|[n
Mκ

1 (23)
(q2)

]v3 − [n
Mκ

(23)
(q2)

]v3 |+

|[n
Mκ

1(33)
(q3)

]v3 − [n
Mκ

(33)
(q3)

]v3 |+

|[n
Mκ

1(43)
(q4)

]v3 − [n
Mκ

(43)
(q4)

]v3 |



+


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Mκ

(24)
(q2)

]v4 |+

|[m
Mκ

1(34)
(q3)

]v4 − [m
Mκ

(34)
(q3)

]v4 |+

|[m
Mκ

1(44)
(q4)

]v4 − [m
Mκ

(44)
(q4)

]v4 |+

|[t
Mκ

1(14)
(q1)

]v4 − [t
Mκ

(14)
(q1)

]v4 |+

|[t
Mκ

1(24)
(q2)

]v4 − [t
Mκ

(24)
(q2)

]v4 |+

|[t
Mκ

1(34)
(q3)

]v4 − [t
Mκ

(34)
(q3)

]v4 |+

|[t
Mκ

1(44)
(q4)

]v4 − [t
Mκ

(44)
(q4)

]v4 |+

|[n
Mκ

1(14)
(q1)

]v4 − [n
Mκ

(14)
(q1)

]v4 |+

|[n
Mκ

1(24)
(q2)

]v4 − [n
Mκ

(24)
(q2)

]v4 |+

|[n
Mκ

1(34)
(q3)

]v4 − [n
Mκ

(34)
(q3)

]v4 |+

|[n
Mκ

1(44)
(q4)

]v4 − [n
Mκ

(44)
(q4)

]v4 |



]
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= 1 −
1

4(4)





|0.5 − 0.619| + |0.5 − 0.468|+
|0.3 − 0.539| + |0.4 − 0.499|+
|0.2 − 0.000| + |0.3 − 0.186|+
|0.5 − 0.259| + |0.3 − 0.259|+
|0.1 − 0.168| + |0.1 − 0.162|+
|0.1 − 0.131| + |0.2 − 0.168|


+



|0.7 − 0.665| + |0.2 − 0.303|+
|0.6 − 0.482| + |0.4 − 0.466|+
|0.1 − 0.156| + |0.5 − 0.331|+
|0.1 − 0.186| + |0.1 − 0.173|+
|0.1 − 0.131| + |0.2 − 0.237|+
|0.2 − 0.186| + |0.3 − 0.000|


+



|0.5 − 0.513| + |0.6 − 0.669|+
|0.3 − 0.421| + |0.5 − 0.411|+
|0.2 − 0.186| + |0.2 − 0.168|+
|0.4 − 0.313| + |0.2 − 0.118|+
|0.2 − 0.200| + |0.1 − 0.141|+
|0.1 − 0.118| + |0.2 − 0.282|


+



|0.4 − 0.495| + |0.6 − 0.417|+
|0.5 − 0.500| + |0.5 − 0.461|+
|0.4 − 0.000| + |0.2 − 0.168|+
|0.3 − 0.131| + |0.3 − 0.228|+
|0.1 − 0.141| + |0.1 − 0.237|+
|0.2 − 0.168| + |0.1 − 0.156|




SPF

HS(M
κ
1(ij),M

κ•

(ij)) = 0.732, SPF
HS(M

κ
2(ij),M

κ•

(ij)) = 0.131,

SPF
HS(M

κ
3(ij),M

κ•

(ij)) = 0.087 SPF
HS(M

κ
4(ij),M

κ•

(ij)) = 0.068

we now determine the weight ϒκ
v for (v = 1, 2, 3, 4) of each

decision-makers by using formula (4).

ϒκ
1 ==

0.7327
0.732 + 0.131 + 0.087 + 0.068

= 0.718

ϒκ
2 ==

0.131
0.732 + 0.131 + 0.087 + 0.068

= 0.128

ϒκ
3 =

0.087
0.732 + 0.131 + 0.087 + 0.068

= 0.085

ϒκ
4 =

0.068
0.732 + 0.131 + 0.087 + 0.068

= 0.067

The construction of an aggregated picture fuzzy hypersoft
decision matrix is a key step in obtaining a group decision
MCDM using picture fuzzy hypersoft numbers. The aggre-
gated picture fuzzy hypersoft decision matrix is obtained by
using formula (5)

Mκag

℘(ij) = {[m
Mκag

℘ij
(qi) ]vj , t

Mκag
℘ij

(qi) ]vj , n
Mκag

℘ij
(qi) ]vj}

=


(1 −

∏t
v=1(1 − [m

Mκ
v(ij)

(qi) ]vj )
ϒκ
v ),∏t

v=1([t
Mκ
v(ij)

(qi) ]vj )
ϒκ
v ,∏t

v=1([n
Mκ
v(ij)

(qi) ]vj )
ϒκ
v



For the reader’s convenience, one computation is presented.

{[m
Mκag

℘11
(q1)

]v1 , t
Mκag

℘11
(q1)

]v1 , n
Mκag

℘11
(q1)

]v1}

=



1 − ((1 − [m
Mκ

1(11)
(q1)

]v1 )
ϒκ
1

(1 − [m
Mκ

2(11)
(q1)

]v1 )
ϒκ
2

(1 − [m
Mκ

3(11)
(q1)

]v1 )
ϒκ
3

(1 − [m
Mκ

4(11)
(q1)

]v1 )
ϒκ
4 ),

([t
Mκ

1(11)
(q1)

]v1 )
ϒκ
1 ([t

Mκ
2(11)

(q1)
]v1 )

ϒκ
2

([t
Mκ

3(11)
(q1)

]v1 )
ϒκ
3 ([t

Mκ
4(11)

(q1)
]v1 )

ϒκ
4 ,

([n
Mκ

1(11)
(q1)

]v1 )
ϒκ
1 ([n

Mκ
2(11)

(q1)
]v1 )

ϒκ
2

([n
Mκ

(3(11)
(q1)

]v1 )
ϒκ
3 ([n

Mκ
4(11)

(q1)
]v1 )

ϒκ
4



=


1 − ((1 − 0.5)0.718

(1 − 0.9)0.128(1 − 0.3)0.085(1 − 0.4)0.067),
(0.2)0.718(0.0)0.128(0.3)0.085(0.2)0.067,
(0.1)0.718(0.1)0.128(0.4)0.085(0.2)0.067


An aggregate matrix (15), as shown at the bottom of the next
page.
Step 3: During the decision-making process, decision-

makers could believe that not all attributes are equally
important. Each decision-maker can then form their own
opinion about the relative importance of certain attributes.
The opinions of all the decision-makers regarding the
significance of each attribute must be combined in order to
obtain the collective judgement of the attributes that have
been chosen. For this purpose, to calculate the weight of
attributes based on the importance assigned by each decision-
maker is given as shown in the equation at the bottom of the
next page.

The weight r⋄κ
j of attributes Hκ

j can be calculated by (7),

r⋄κ
j = {[m⋄

(qi)]vj , [t
⋄

(qi)]vj , [n
⋄

(qi)]vj}

=


(1 −

∏t
v=1(1 − [m

Mκ∗

v(ij)
(qi) ]vj )

ϒκ
v ),∏t

v=1([t
Mκ∗

v(ij)
(qi) ]vj )

ϒκ
v ,∏t

v=1([n
Mκ∗

v(ij)
(qi) ]vj )

ϒκ
v


For the reader’s convenience, one computation is presented.

r⋄κ
1 =



1 − ((1 − [mMκ∗

1(11) (q1)]v1 )
ϒκ
1

(1 − [mMκ∗

2(11) (q1)]v1 )
ϒκ
2

(1 − [mMκ∗

3(11) (q1)]v1 )
ϒκ
3

(1 − [mMκ∗

4(11) (q1)]v1 )
ϒκ
4 ),

([tM
κ∗

1(11) (q1)]v1 )
ϒκ
1 ([tM

κ∗

2(11) (q1)]v1 )
ϒκ
2

([tM
κ∗

3(11) (q1)]v1 )
ϒκ
3 ([tM

κ∗

4(11) (q1)]v1 )
ϒκ
4 ,

([nM
κ∗

1(11) (q1)]v1 )
ϒκ
1 ([nM

κ∗

2(11)(q1)]v1 )
ϒκ
2

([nM
κ∗

(3(11)(q1)]v1 )
ϒκ
3 ([nM

κ∗

4(11) (q1)]v1 )
ϒκ
4



=


1 − ((1 − 0.7)0.718(1 − 0.6)0.128

(1 − 0.5)0.085(1 − 0.1)0.067),
(0.2)0.718(0.1)0.128(0.2)0.085(0.2)0.067,
(0.1)0.718(0.1)0.128(0.1)0.085(0.7)0.067


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= (0.649, 0.182, 0.114)

r⋄κ
2 = (0.541, 0.198, 0.215)

r⋄κ
3 = (0.740, 0.129, 0.115)

r⋄κ
4 = (0.252, 0.240, 0.396)

Step 4: After establishing the weights for individual
attributes, we apply them to each row of the aggregated
decision matrix with the help of formula (8).

[Mκ⋆

(ij)]α×β = {[m
Mκ⋆

v(ij)
(qi) ]vj , [t

Mκ⋆

v(ij)
(qi) ]vj , n

Mκ⋆

v(ij)
(qi) ]vj}

=


(([m

Mκag
v(ij)

(qi) ]vj ).([m
⋄

(qi)]vj ),

([t
Mκag
v(ij)

(qi) ]vj + [t⋄(qi)]vj − [t
Mκag
v(ij)

(qi) ]vj .[t
⋄

(qi)]vj ),

([n
Mκag
v(ij)

(qi) ]vj + [n⋄

(qi)]vj − [n
Mκag
v(ij)

(qi) ]vj .[n
⋄

(qi)]vj ))


The matrix [Mκ⋆

(ij)]α×β (16), as shown at the bottom of the
page.
Step 5: The PFHSSs positive ideal solution calculated by

using the formula (9)

Mκ⋆+

j = {[m
Mκ⋆+

j
(qi) ]vj , [t

Mκ⋆+

j)
(qi) ]vj , n

Mκ⋆+

j
(qi) ]vj}

= {max([m
Mκ⋆+

v(ij)
(qi) ]vj ),min([t

Mκ⋆+

v(ij)
(qi) ]vj ),min([n

Mκ⋆+

v(ij)
(qi) ]vj )}

=

[
(0.379, 0.182, 0.218) (0.467, 0.279, 0.216)
(0.304, 0.299, 0.209) (0.346, 0.293, 0.215)

]

The PFHSSs negative ideal solution calculated by (10

Mκ⋆−

j = {[m
Mκ⋆−

j
(qi) ]vj , [t

Mκ⋆+

j
(qi) ]vj , n

Mκ⋆−

j
(qi) ]vj}

= {min([m
Mκ⋆−

v(ij)
(qi) ]vj ),min([t

Mκ⋆−

v(ij)
(qi) ]vj ),max([n

Mκ⋆−

v(ij)
(qi) ]vj )}

=

[
(0.104, 0.182, 0.466) (0.132, 0.279, 0.478)
(0.126, 0.299, 0.507) (0.121, 0.293, 0.469)

]
Step 6: We should now calculate the normalised Hamming
distance with respect to the positive ideal solution and the
alternatives using formula (11)

Dj(Mκ⋆

(ij),M
κ⋆+

j )

=
1
3β

β∑
j=1

{|[m
Mκ⋆

v(ij)
(qi) ]vj − [m

Mκ⋆+

j
(qi) ]vj | + |[t

Mκ⋆

v(ij)
(qi) ]vj − [t

Mκ⋆+

j
(qi) ]vj |

+ |[n
Mκ⋆

v(ij)
(qi) ]vj − [n

Mκ⋆+

j
(qi) ]vj |}

D1(Mκ⋆

(ij),M
κ⋆+

j )

=
1
12


(|0.374 − 0.379| + |0.182 − 0.182|+
|0.218 − 0.218| + |0.311 − 0.467|+
|0.382 − 0.279| + |0.227 − 0.216|+
|0.262 − 0.304| + |0.504 − 0.299|+
|0.211 − 0.209| + |0.292 − 0.346|+
|0.405 − 0.293| + |0.276 − 0.215|)


D1(Mκ⋆

(ij),M
κ⋆+

j ) = 0.062

[Mκ∗

1(ij)]1×4 = {m
Mκ∗

1(ij)
(qi) , t

Mκ∗

1(ij)
(qi) , n

Mκ∗

1(ij)
(qi) }

=
[
(0.7, 0.2, 0.1) (0.6, 0.2, 0.2) (0.8, 0.1, 0.1) (0.2, 0.3, 0.5)

]
[Mκ∗

2(ij)]1×4 = {m
Mκ∗

2(ij)
(qi) , t

Mκ∗

2(ij)
(qi) , n

Mκ∗

2(ij)
(qi) }

=
[
(0.6, 0.1, 0.1) (0.2, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.2)

]
[Mκ∗

3(ij)]1×4 = {m
Mκ∗

3(ij)
(qi) , t

Mκ∗

3(ij)
(qi) , n

Mκ∗

3(ij)
(qi) }

=
[
(0.5, 0.2, 0.1) (0.5, 0.1, 0.1) (0.4, 0.4, 0.1) (0.6, 0.1, 0.2)

]
[Mκ∗

4(ij)]1×4 = {m
Mκ∗

4(ij)
(qi) , t

Mκ∗

4(ij)
(qi) , n

Mκ∗

4(ij)
(qi) }

=
[
(0.1, 0.2, 0.7) (0.4, 0.2, 0.4) (0.6, 0.2, 0.1) (0.3, 0.1, 0.3)

]

[Mκag

ij ]α×β =


(0.576, 0.000, 0.118) (0.478, 0.244, 0.128) (0.404, 0.394, 0.109) (0.450, 0.272, 0.182)
(0.674, 0.122, 0.115) (0.244, 0.419, 0.218) (0.562, 0.126, 0.189) (0.406, 0.118, 0.000)
(0.512, 0.188, 0.191) (0.631, 0.172, 0.114) (0.347, 0.361, 0.106) (0.467, 0.189, 0.232)
(0.413, 0.000, 0.116) (0.525, 0.182, 0.135) (0.500, 0.220, 0.182) (0.481, 0.260, 0.120)

 (15)

[Mκ⋆

(ij)]4×4 =


(0.374, 0.182, 0.218) (0.311, 0.382, 0.227) (0.262, 0.504, 0.211) (0.292, 0.405, 0.276)
(0.365, 0.296, 0.306) (0.132, 0.534, 0.387) (0.304, 0.299, 0.364) (0.220, 0.293, 0.215)
(0.379, 0.292, 0.284) (0.467, 0.279, 0.216) (0.257, 0.443, 0.209) (0.346, 0.294, 0.320)
(0.104, 0.240, 0.466) (0.132, 0.379, 0.4784) (0.126, 0.407, 0.507) (0.121, 0.438, 0.469)

 (16)
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TABLE 1. A comprehensive comparison of the proposed structure with hybrid fuzzy structures reported in literature.

Similarly

D2(Mκ⋆

(ij),M
κ⋆+

j ) = 0.104

D3(Mκ⋆

(ij),M
κ⋆+

j ) = 0.039

D4(Mκ⋆

(ij),M
κ⋆+

j ) = 0.207

The normalised Hamming distance with respect to the
positive ideal solution and the alternatives can be calculated
by using formula (12)

Dj(Mκ⋆

(ij),M
κ⋆−

j )

=
1
3β

β∑
j=1

{|[m
Mκ⋆

v(ij)
(qi) ]vj − [m

Mκ⋆−

j
(qi) ]vj | + |[t

Mκ⋆

v(ij)
(qi) ]vj − [t

Mκ⋆−

j
(qi) ]vj |

+ |[n
Mκ⋆

v(ij)
(qi) ]vj − [n

Mκ⋆−

j
(qi) ]vj |}

D1(Mκ⋆

(ij),M
κ⋆−

j )

=
1
12

|0.374−0.104|+|0.182 − 0.182|+|0.218 − 0.466|
+|0.311−0.132|+|0.382 − 0.279|+|0.227−0.478|
+|0.262−0.126|+|0.504 − 0.299|+|0.211−0.507|
+|0.292−0.121|+|0.405 − 0.293|+|0.276−0.469|


D1(Mκ⋆

(ij),M
κ⋆−

j ) = 0.180

Similarly

D2(Mκ⋆

(ij),M
κ⋆−

j ) = 0.129

D3(Mκ⋆

(ij),M
κ⋆−

j ) = 0.175

D4(Mκ⋆

(ij),M
κ⋆−

j ) = 0.034

Step 7: Ranking the alternatives is achieved using the relative
closeness index, which is derived using (13)

RK j
=

Dj(Mκ⋆

(ij),M
κ⋆−

j )

max[Dj(Mκ⋆

(ij),M
κ⋆−

j )]
−

Dj(Mκ⋆

(ij),M
κ⋆+

j )

min[Dj(Mκ⋆

(ij),M
κ⋆+

j )]

RK 1
= −0.588

RK 2
= −1.942

RK 3
= −0.024

RK 4
= −5.066

According to the relative closeness index, the set of chosen
alternatives are sorted in descending order.

RK 3
≥ RK 1

≥ RK 2
≥ RK 4

RK 3 corresponds to q3, so q3 is the best choice. Based on this
ranking, real estate has been identified as the best alternative
for designing an Investment Sector Selector for selecting the
most suitable sector for investment.

VI. COMPARATIVE ANALYSIS
The inclusion of MD, NMD, and AD values in PFHSSs
allows for handling uncertainty and vagueness in data. This
is particularly valuable in real-world scenarios where data
may not be precise but instead exists along a spectrum of
membership and non-membership. The attributes and criteria
considered in decision scenarios are often interconnected,
meaning that changes or variations in one attribute may affect
others. This interdependency makes it difficult to isolate and
compare individual attributes in isolation. In some cases, the
relationships between attributes and criteria may be complex
and nonlinear. Factors that influence the decision may not be
linearly related, making direct comparisons less meaningful.
To address these challenges, we used TOPSIS that involve
distance and similarity measures to compare alternatives. The
PFHSSs TOPSIS based on similarity measures is especially
beneficial when dealing with complex decision scenarios
where attributes are further divided into subcategories, and
each attribute and subattribute has MD, NMD, and AD
values. The superiority of the PFHSSs TOPSIS technique
can be attributed to several factors that make it a powerful
approach for multi-criteria decision-making in complex and
uncertain environments. Here are some of the advantages and
strengths of PFHSSs TOPSIS:

(i) By describing the degrees of membership, non-
membership, and neutral values for attributes and
subattributes, PFHSSs allows for a more comprehensive
analysis. Decision-makers can account for various
shades of relevance, irrelevance, and neutrality, which
is essential when dealing with complex, multifaceted
attributes.
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TABLE 2. Numerical analysis with existing structures.

(ii) By considering the importance of attributive values
by multiplying each attribute’s value by its weight
before calculating the overall similarity or distance,
decision-makers can make more informed comparisons,
especially when assessing the similarity or dissimilarity
between sets is a critical aspect of the decision-making
process.

(iii) Themethod provides an objective ranking of alternatives
based on their similarity to an ideal solution, taking into
account the specific values of MD, NMD, and AD for
attributes and subattributes. This objectivity is valuable
in promoting transparency and fairness in decision-
making.

(iv) PFHSSs TOPSIS is not limited to specific domains. It can
be applied to a wide range of fields, including finance,
healthcare, engineering, and more, where complex
decisions need to be made based on multi-dimensional
data.

A comparison made in Table 1. Also a numerical analysis of
the devolped PFHSSs TOPSIS with some existing structures
from the Hypersoft set is provided in Table 2. The PFHSSs
TOPSIS has benefits because neutrality is involved, which
is helpful in providing the best optimal for decision-
making. From these tables likely compares the newly
proposedPFHSSs-TOPSIS approach with existingmethods or
approaches used in similar decision-making scenarios. The
purpose is to evaluate how the proposed method stacks up
against other approaches.

VII. CONCLUSION
PFHSSs are especially valuable when dealing with incom-
plete, inconsistent, and multi-argument data, which are com-
mon in real-world scenarios. By accommodating member-
ship, non-membership, and abstention degrees, PFHSSs offer
a comprehensive representation of information, allowing for
a more accurate analysis and decision-making process. In this
paper we introduced new distance and similarity measures
specifically designed for PFHSSs. These measures are crucial
for quantifying the relationships and similarities between
alternatives in a decision-making context. The TOPSIS
technique is extended to PFHSSs TOPSIS, allowing it to
handle decision problems involving PFHSSs information.
In this paper we utilizes Hamming distance to calculate
the dissimilarity of alternatives from the positive ideal and
negative ideal solutions. After calculating the similarity and
dissimilarity of each alternative to the ideal and negative
ideal solutions using the Hamming distance for PFHSSs,
a relative closeness index is computed. This index quantifies
how close each alternative is to the ideal solution relative

to all other alternatives. By applying the PFHSSs-TOPSIS
technique to investment decision-making involves a crucial
step of representing data using PFHSSs. This representation
captures the inherent uncertainty and vagueness associated
with the data used in investment analysis.
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