
Received 3 March 2024, accepted 18 March 2024, date of publication 21 March 2024, date of current version 29 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380164

Infrared Object Detection Based on
Improved Twist Tensor Model
GAOSHAN FENG1, WENLIN QIN 2, ENYONG XU 1, ZIJUN SUN3,4,
XIANGSUO FAN 2,4, AND HUAJIN CHEN 1,3,4,5
1Dongfeng Liuzhou Motor Company Ltd., Liuzhou 545005, China
2School of Automation, Guangxi University of Science and Technology, Liuzhou 545006, China
3School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
4Guangxi Key Laboratory of Multidimensional Information Fusion for Intelligent Vehicles, Liuzhou 545006, China
5School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Huajin Chen (hjchen@gxust.edu.cn)

This work was supported by Guangxi Science and Technology Project under Grant 2023GXNSFFA026002, Grant
2021GXNSFDA196001, Grant 2022AC21108, Grant AD22080042, and Grant AB21220052.

ABSTRACT Infrared object detection holds significant importance in automatic target search and tracking
system under complex background. The conventional structural tensor models have not harnessed the full
potential of spatio-temporal domain information in sequence scenes, and the strong edge contours in the
image often lead to false alarms. In order to tackle this problem, we propose an improved twist tensor model
based on the optimization of background constraints. Firstly, we propose a diffusion function according
to the gradient difference between the target and backgrounds, which preserves the target signal to a great
extent. Secondly, the spatio-temporal information of the sequence images is used to construct the twist tensor
objective constraint optimization function, and the improved twist tensor effectively distinguishes the sparse
components of the target and the low-rank components of the background. Finally, the optimized model is
solved using ADMM to obtain the final target signal. Eight sequence images and nine comparison methods
are performed for experimental validation, after improvement, the mean SSIM value reaches 0.9921, the
mean BSF value attains 126.1710, and the detection rate also surpasses 85%, experiment results demonstrate
that the proposed algorithm can effectively suppress the complex background while retaining the target well.

INDEX TERMS Complex background, twist tensor, background constraint, object detection.

I. INTRODUCTION
The utilization of infrared object detection extends to various
fields, including military, medical, and aerospace. Visible
light-based detection tends to perform poorly in detecting
surrounding obstacles during nighttime driving, making
infrared imaging technology a preferred choice due to its
all-weather capabilities and strong resistance to interference.
Infrared object detection is extensively utilized in appli-
cations like forest fire monitoring, wildlife tracking, and
unmanned vehicles for pedestrian and vehicle detection [1],
[2]. Rapid advancements in imaging techniques and complex
and dynamic background in sequence scenes pose increasing
challenges in object detection and tracking. Over the past
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few years, numerous scholars have dedicated their efforts
to infrared object detection and have achieved significant
results. These detection algorithms canmainly be categorized
into conventional methods and deep learning approaches [3].
Traditional object detection algorithms include frame dif-

ference methods [4], [5], background modeling methods [6],
[7], and detection methods based on image features. Frame
difference methods detect targets by subtracting two consec-
utive frames to highlight differences in target positions. For
instance, Gao proposed a motion object detection algorithm
that integrates the three-frame differencing method with an
optimized hybrid Gaussian background model. This method
effectively suppresses interference from sea ripples on object
detection by detecting changing regions and using adaptive
learning strategies. Experimental results demonstrate its
strong performance [4]. Li et al. introduced an infrared
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motion object detection algorithm that combines morpho-
logical top-hat transformation, frame difference methods,
adaptive region growing, and grayscale-level adaptive thresh-
old segmentation. This approach suppresses background
interference and allows for the extraction and detection of
single and multiple infrared moving targets [5].
Background modeling methods predict the grayscale

value of a central pixel by using the grayscale distribution
between target and its corresponding neighbor regions.
The background prediction image is then subtracted from
the original image, a residual image only containing the
target and a few noise points is then generated. This
process is usually followed by threshold segmentation to
accomplish object detection. For instance, He and Huang
proposed a moving object detection algorithm based on
Top-Hat filtering results. They achieved high-performance
and speed improvements for detecting moving small targets
using grayscale morphology and background modeling.
Compared to classical algorithms such as MoG2 and ViBe+,
this method demonstrates significant improvements in both
performance and speed [6]. To address issues related to
noise, breakpoints, and internal holes in motion object
detection using the three-frame difference method, Ding and
Lu introduced the Vibe background modeling method that
incorporates color and edge features. This approach combines
the Vibe algorithm with an enhanced three-frame difference
method for real-time motion object detection. Experiments
indicate a significant improvement in the performance of this
approach compared to the traditional three-frame difference
algorithm [7].

In addition to grayscale and motion features, differen-
tiation between targets and backgrounds can be achieved
through gradient and texture features, as well as scale
invariance. In regions where the gradient difference is
substantial, typically associated with target areas, gradients
can be used to extract target edges. Then target regions can
be filled to enhance target extraction. For instance, Lu and
Chen proposed a method for detecting weak small targets
based on gradient feature extraction. This method effectively
suppresses the background and enhances the targets, resulting
in significantly improved detection rates and background
suppression capabilities compared to other algorithms [8].
Zhang and Zhang introduced a prominent object detection
algorithm based on texture and color features. This algorithm
combines Gabor filters for texture feature extraction, color
contrast, and Bayesian enhancement methods. Experimental
results demonstrate superior comprehensive performance
compared to other algorithms in various aspects [9].
Luo and Liu presented an infrared object detection algorithm
based on fast spectral scale space, dynamic pipeline filtering,
and visual saliency analysis. They used global and local
saliency analysis and Gaussian difference theory to detect
weak small moving targets efficiently. The algorithm exhibits
excellent detection performance in complex background
conditions [10].

With advancements in computer vision technology, object
detection methods based on convolutional neural networks
have gained significant attention from experts and schol-
ars. Unlike traditional manual feature extraction, these
methods leverage convolutional neural networks (CNNs)
to automatically extract object features, and they train
on samples to achieve automatic detection. For instance,
Acremont proposed a compact fully convolutional neural net-
work(cfCNN), with global average pooling (GAP). Through
testing on various datasets, the results demonstrated that GAP
contributes to enhanced robustness in handling interrupted
inputs [11]. Xu et al. introduced a deep learning-based
infrared object detection framework called TF-SSD, which
uses transposed convolutions to enhance feature extrac-
tion and detection efficiency. They improved the network
structure through a visual approach and implemented a
multi-scale feature fusion model to establish a connection
between high-level and low-level networks. Experiments
showed that the TF-SSD effectively identifies infrared targets
at various flight attitudes, achieving a high level of detection
accuracy [12]. Ma et al. developed an infrared small object
detection network called GLFM, featuring scale-adaptive
feature extraction and a multi-layer joint up-sampled fea-
ture mapping network for sparse feature extraction and
background suppression. They introduced a 2D Gaussian
label generation strategy during model training to address
sample imbalance issue. Experimental results demonstrated
that the network effectively detects infrared objects in various
complex backgrounds, regardless of size and low SNR,
and exhibited better performance and robustness [13]. Dai
et al. proposed a novel deep network for infrared small
object detection, combining a discriminative network with
traditional model-driven approaches. They emphasized and
preserved small target features through feature map cyclic
movement and bottom-up attention adjustment. Through
ablation studies and performance comparisons, the effec-
tiveness and efficiency of this network architecture were
confirmed [14]. Yang et al. introduced two models, CMF
Net and CMF-3DLSTM, to address the challenges of target
multi-scale feature extraction and occlusion issues. CMF
Net, based on the VGG16 network, utilized a multi-scale
feature extraction mechanism and fused low-level visual
features with high-level semantic features. On the other
hand, CMF-3DLSTM improved the classification network by
employing a 3D long short-term memory (LSTM) network
to tackle target occlusion. By integrating multi-scale and
contextual features through an attention mechanism, these
models effectively leveraged spatiotemporal features [15].

However, deep learning-based methods for object detec-
tion rely heavily on extensive training data. Current datasets
often lack the diversity to cover a wide range of scenes.
When the scene changes, retraining the model with new
samples becomes necessary, posing challenges to real-
time applicability. Additionally, the lack of comprehensive
datasets hinders the progress of deep learning. Based on a
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comprehensive analysis of prior research efforts, this paper
presents a novel infrared object detection approach that
combines spatiotemporal information from sequence images
with the low-rank sparsity theory. The main contributions of
this paper are as follows:

(1) The background-constrained optimization algorithm
we presented in this paper aims to enhance the low-rank
properties of the backgrounds. Leveraging the advantages of
anisotropy for better background representation, a new dif-
fusion equation is proposed, further improving the constraint
capability on the background.

(2) Building upon the background-constrained optimiza-
tion, this paper combines spatio-temporal information from
sequence images to construct the twist tensor model.
By changing the observation perspective, this model effec-
tively suppresses strong edge contours in the images, enabling
the detection and extraction of targets.

(3) Finally, we solve the improved twist tensor model by
ADMM to extract the final target signal components and
realize the object detection.

II. METHODS
A. TWIST TENSOR MODEL
In traditional infrared object detection methods, single-
frame detection approaches rely solely on the spatial
information of the target. These methods perform well in the
background with relatively stable gray levels. However,
in real-world scenes, image backgrounds are becoming
increasingly complex, presenting challenges such as high-
intensity backgrounds, random noise, and low-contrast
targets. Conventional multi-frame methods combine the
spatiotemporal information of the object, which can effec-
tively improve the detection rate of the algorithm. However,
compared to single-frame detection methods, they also
require longer detection times and may lead to varying
degrees of missed detections in some scenes. To address
the issue of infrared object detection in the presence of
strong clutter interference in the complex background and to
incorporate both spatial and temporal information, a model
based on spatiotemporal twist tensor was constructed,
as described in reference [16]. This model constrains the
low-rank background to achieve infrared object detection.
The expression based on tensor is as follow:

D = B+ T + N (1)

In the equation above, D,B,T ,N ∈ Rn1∗n2∗n3 , D denotes
the original tensor, B is the background tensor, T represents
the target tensor and N denotes the noise tensor. The twist
tensor model transforms the original front view slices into
side view slices, allowing for a change in the viewing per-
spective, which can reduce some unnecessary interference.
The non-target sparse components in the front view slices of
the sequential images, when transformed through a change
in perspective, no longer exhibit sparse characteristics in
non-local areas. This reduces the complexity of the image
background, making it more conducive to object detection.

Assuming that X is a structure tensor of size n1 ∗ n2 ∗ n3,

rotating the direction of X to obtain the twist tensor Y =
−→
X ,

and the size of Y is n1 ∗ n3 ∗ n2, i.e., Y (:, k, :) = X (:, :, k).
To this end, the detection model based on the twist tensor is
obtained as follow:

−→
D =

−→
B +

−→
T +

−→
N (2)

−→
D represents original twist tensor,

−→
B denotes background

twist tensor,
−→
T denotes the target twist tensor and

−→
N

represents the noise twist tensor. The corresponding object
function is as follow:

min
−→
B ,

−→
T ,

−→
N
rank(

−→
B ) + λ1

∥∥∥−→
T

∥∥∥
1
+ λ2

∥∥∥−→
N

∥∥∥2
F

s.t.
−→
D =

−→
B +

−→
T +

−→
N

(3)

λ1 represents sparsity weights and λ2 represents noise
weights. To more effectively and comprehensively represent
the target, a joint regularization strategy is employed,
combining the l1 norm with structured sparsity-inducing
norms. Considering that utilizing the tensor nuclear norm
(TNN) based on the discrete cosine transform as a linear
transformation yields superior results compared to the tensor
nuclear norm based on the discrete Fourier transform, a linear
transformation constraint-induced tensor nuclear norm is
applied to the infrared background. Therefore, the object
function is updated as follow:

min
−→
B ,

−→
T ,

−→
N

∥∥∥−→
B

∥∥∥
TNNL

+λ1

∥∥∥−→
T

∥∥∥
l1/l∞

+λ2

∥∥∥−→
T

∥∥∥
1
+λ3

∥∥∥−→
N

∥∥∥2
F

s.t.
−→
D =

−→
B +

−→
T +

−→
N

(4)

B. TWIST TENSOR MODEL BASED ON BACKGROUND
CONSTRAINT OPTIMIZATION
1) BACKGROUND CONSTRAINT OPTIMIZATION MODEL
When there is prominent high-intensity noise or sparse strong
edge contours in the image, the low-rank characteristic of the
background is disrupted, which often leads to an increased
number of false alarms in object detection. Considering
that anisotropy has better representation capability in terms
of background features, this paper is based on anisotropy
to construct a more similar background tensor model,
thus enhancing the discrimination between the target and
background for more effective object detection. Anisotropy
was initially applied to background modeling of weak
infrared small targets. Since weak infrared small targets
occupy only a small number of pixels, based on the different
grayscale distribution of the different regions in the images,
the target could be separated from the smooth background.
In contrast to weak small infrared targets, pedestrian target
regions are relatively large. If the diffusion functions and
step sizes employed in the large object detection as same
as using in weak and small object detection, some of the
target information will be lost. The key to anisotropy lies
in the selection of the diffusion equation and step size,
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as the calculation of diffusion coefficients depends on the
construction of the diffusion function. If the step size is
too large, more background information will be retained,
which can interfere with subsequent object detection. If the
step size is too small, some target information will be
smoothed out just like the smooth background. Zhang and
Ling respectively improved the diffusion functions and
proposed new diffusion functions for background modeling
of weak small targets under a smooth background [17],
[18]. These diffusion functions achieved good results in
those scenes. However, when applying them to infrared
pedestrian detection, the varying scale of the targets results in
a decrease in background modeling effectiveness. Therefore,
based on an analysis of previous work and taking advantage
of the characteristics of anisotropy, this paper improves
a background-constrained optimization model to further
enhance its ability for background constraint. The specific
approach is detailed in the following expressions.

The first step is to compute the gradient between pixels,
and in this paper we chose 3 as a moving step size.

∇up = H (i, j) − H (i− l, j)
∇down = H (i, j) − H (i+ l, j)
∇left = H (i, j) − H (i, j− l)
∇right = H (i, j) − H (i, j+ l)

(5)

H (i, j) denotes the center pixel position, l denotes the
moving step, ∇up, ∇down, ∇left , ∇right denotes the gradient
in the direction of the four neighbors of the center pixel,
respectively. The improved diffusion function in this paper
is as follow:

C =
e−(∇f /k)2

e−(∇f /k)2 + 1
(6)

∇f denotes the gradient, k denotes a constant, and in this
paper k = 120 was chosen in the experiment. Substituting the
gradient into the diffusion equation to calculate the diffusion
coefficients:

cu = (e−(∇up/k)2 )/(e−(∇up/k)2 + 1)

cd = (e−(∇down/k)2 )/(e−(∇down/k)
2
+ 1)

cl = (e−(∇left/k)2 )/(e−(∇left/k)2 + 1)

cr = (e−(∇right/k)2 )/(e−(∇right/k)2 + 1)

(7)

cu, cd , cl , cr denotes the diffusion coefficients corresponding
to the gradients in the four directions. According to
Equation (8), taking the reciprocal of the diffusion coefficient
and multiplying it with the corresponding gradient, then
averaging them, the background-constrained optimization
function is obtained.

∥B∥ANIS

=

( 1
cu

∗ ∇up +
1
cd

∗ ∇down +
1
cl

∗ ∇left +
1

cright
∗ ∇right )

4
(8)

In the above equation, due to the large scale of the infrared
target, small diffusion weight value may lead to the loss of
target information. Therefore, in this article, the calculation
of diffusion coefficient is taken as the inverse of the diffusion
coefficient to obtain a larger weight to highlight the target
signal. Here, ∥B∥ANIS represents the background-constrained
optimization function.

2) IMPROVED TWIST TENSOR MODEL(ITTM)
The improved background-constrained optimization model
rewrites the objective function to better describe the degree
of feature correlation among backgrounds and enhance the
low-rank properties of backgrounds. The specific improved
model is as follow:

min
−→
B ,

−→
T ,

−→
N

∥∥∥−→
B

∥∥∥
ANIS

+λ1

∥∥∥−→
T

∥∥∥
l1/l∞

+λ2

∥∥∥−→
T

∥∥∥
1
+ λ3

∥∥∥−→
N

∥∥∥2
F

s.t.
−→
D =

−→
B +

−→
T +

−→
N

(9)

The above equation shows the improved twist tensor model
in this paper, and auxiliary variables

−→
Z and

−→
S are introduced

to facilitate the solution of
−→
T . The target function is rewritten

as the following expression (10), as shown at the bottom of
the next page.

The corresponding augmented Lagrangian function of the
above equation could be expressed as follow:

L(
−→
B ,

−→
T ,

−→
N ,

−→
Z ,

−→
S )

=

∥∥∥−→
B

∥∥∥
ANIS

+ λ1

∥∥∥−→
Z

∥∥∥
1
+ λ2

∥∥∥−→
S

∥∥∥
l1/∞

+ λ3

∥∥∥−→
N

∥∥∥2
F

+

〈
y1,

−→
Z −

−→
T

〉
+

〈
y2,

−→
S −

−→
T

〉
+

〈
y3,

−→
D −

−→
B −

−→
T −

−→
N

〉
+

µ

2
(
∥∥∥−→
Z −

−→
T

∥∥∥2
F

+

∥∥∥−→
S −

−→
T

∥∥∥2
F

+

∥∥∥−→
D −

−→
B −

−→
T −

−→
N

∥∥∥2
F
) (11)

µ > 0 is a penalty parameter. By solving the
object function using the Alternating Direction Method of
Multipliers (ADMM), we can reconstruct the target twist
tensor

−→
T . When compressing

−→
T back to the frontal view,

the corresponding frontal slice represents the detected target
image. Equation (11) is decomposed into a number of sub-
problems, one sub-problem corresponds to one variable, all
the variables are updated in each round of iteration, and the
other variables should be kept unchanged when solving one
of them, and the specific solution process is as follow:
(1) The solution of

−→
B k+1

−→
B k+1

= argmin
−→
B

∥∥∥−→
B

∥∥∥
ANIS

+

〈
yk3,

−→
D −

−→
B −

−→
T
k

−
−→
N

k
〉

+
µk

2

∥∥∥∥−→
D −

−→
B −

−→
T
k

−
−→
N

k
∥∥∥∥2
F
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= argmin
−→
B

∥∥∥−→
B

∥∥∥
ANIS

+
µk

2

∥∥∥∥∥−→
B − (

−→
D −

−→
T
k

−
−→
N

k
+

yk3
µk )

∥∥∥∥∥
2

F

(12)

−→
B k+1 can be solved by the tensor singular value threshold

operator Dτ (·) [19], the resulting solution is:

−→
B k+1

= D 1
µk
(
−→
D −

−→
T k

−
−→
N k

+
yk3
µk ) (13)

(2) The solution of
−→
Z k+1

−→
Z k+1

= argmin
−→
Z

λ1

∥∥∥−→
Z

∥∥∥
1
+

〈
yk1,

−→
Z −

−→
T

〉
+

µk

2

∥∥∥−→
Z −

−→
T

∥∥∥2
F

= argmin
−→
Z

λ1

∥∥∥−→
Z

∥∥∥
1
+

µk

2

∥∥∥∥∥−→
Z −

−→
T
k

+
yk1
µk

∥∥∥∥∥
2

F

(14)

−→
Z k+1 can be solved by the soft threshold operator

Softτ (·) [20], the resulting solution is:

−→
Z k+1

= Softλ1
µk
(
−→
T k

−
yk1
µk ) (15)

(3) The solution of
−→
S k+1

−→
S k+1

= argmin
−→
S

λ2

∥∥∥−→
S

∥∥∥ l1/l∞ +

〈
yk2,

−→
S −

−→
T
k
〉

+
µk

2

∥∥∥∥−→
S −

−→
T
k
∥∥∥∥2
F

= argmin
−→
S

λ2

∥∥∥−→
S

∥∥∥ l1/l∞
+

µk

2

∥∥∥∥∥−→
S −

−→
T
k

+
yk2
µk

∥∥∥∥∥
2

F

(16)

−→
S k+1 can be solved by the proximal operator Proxg(·) [21],

the resulting solution is:

−→
S k+1

= Proxg(
−→
T −

yk2
µk ) (17)

(4) The solution of
−→
T k+1

−→
T k+1

= argmin
−→
T

〈
yk1,

−→
Z
k+1

−
−→
T

〉
+

〈
yk2,

−→
S
k+1

−
−→
T

〉

+

〈
yk3,

−→
D −

−→
B
k+1

−
−→
T −

−→
N

k
〉

+
µk

2

∥∥∥∥−→
Z
k+1

−
−→
T

∥∥∥∥2
F

+
µk

2

∥∥∥∥−→
S
k+1

−
−→
T

∥∥∥∥2
F

+
µk

2

∥∥∥∥−→
D −

−→
B
k+1

−
−→
T −

−→
N

k
∥∥∥∥2
F

(18)

Derivation of
−→
T makes the equation equal to 0, and the

resulting solution is:

−→
T k+1

=
1

3µk (y
k
1 + yk2 + yk3)

+
1
3
(
−→
Z k+1

+
−→
S k+1

+
−→
D −

−→
B k+1

−
−→
N k )

(19)

(5) The solution of
−→
N k+1

−→
N k+1

= argmin
−→
N

λ3

∥∥∥−→
N

∥∥∥2
F

+

〈
yk3,

−→
D −

−→
B
k+1

−
−→
T
k+1

−
−→
N

〉
+

µk

2

∥∥∥∥−→
D −

−→
B
k+1

−
−→
T
k+1

−
−→
N

∥∥∥∥2
F

(20)

Derivation of
−→
N makes the equation equal to 0, and the

resulting solution is:

−→
N k+1

=
yk3 + µk (

−→
D −

−→
B
k+1

−
−→
T
k+1

)

µk + 2λ3
(21)

(6) The solution of yk+1
i (i = 1, 2, 3) and µk+1


yk+1
1 = yk1 + uk (

−→
Z k+1

−
−→
T k+1)

yk+1
2 = yk2 + uk (

−→
S k+1

−
−→
T k+1)

yk+1
3 = yk3 + uk (

−→
D −

−→
B k+1

−
−→
T k+1

−
−→
N k+1)

(22)

µk+1
= µk

∗ ρ (23)

The above describes the solution process of the improved
twist tensor model(ITTM) we proposed in the article.
In Figure 1, (A1) and (A2) are detection results of the
pre-improved twist tensor model and their corresponding 3D
diagrams, respectively. (B1) and (B2) are object detection


min

−→
B ,

−→
T ,

−→
N ,

−→
Z ,

−→
S

∥∥∥−→
B

∥∥∥
ANIS

+λ1

∥∥∥−→
Z

∥∥∥
1
+ λ2

∥∥∥−→
S

∥∥∥
l1/l∞

+ λ3

∥∥∥−→
N

∥∥∥2
F

s.t.
−→
Z =

−→
T

−→
S =

−→
T

−→
D =

−→
B +

−→
T +

−→
N

(10)
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results of the ITTM based on the background constraint
optimization model and their corresponding 3D diagrams
in this paper. The pre-improved twist tensor model, despite
removing most of the background clutters, enhances the
signal intensity of the objects. However, for targets with little
difference in gray level compared to the background, strong
edge contours result in a large number of false alarms due
to the disruption of the background low-rank property in the
image structure. After applying the background constraint
optimization algorithm we presented to further restrict the
background and then solving with the twist tensor model,
the ITTM has a stronger background suppression ability,
eliminating background clutter interference and achieving
infrared object detection with low false alarms. Table 1 shows
the pseudo-code for the solving process of our algorithm.

TABLE 1. The model solving process.

III. EXPERIMENT
A. EXPERIMENTAL SETTING
The previous section introduced specific methodology we
proposed. This section focuses on introducing the datasets
used in the experiments [22], more information shows in
Table 2. Furthermore, to validate the effectiveness and
feasibility of our algorithm, we compared it with nine com-
monly used infrared object detection algorithms, including
bilateral Filtering [23], multiscale gray difference weighted
entropy(MGDWE) [24], top-hat transform(Top-hat) [25],
partial sum of the tensor nuclear norm(PSTNN) [26], absolute
directional mean difference(ADMD) [27], nonconvex tensor
fibered rank approximation(NTFRA) [28], and tri-layer
template local difference measure(TLLDM) [29], YOLO
v5 [30] and YOLO v7 [31], the parameter settings are shown
in Table 3.Three commonly used evaluationmetrics for object

detection are selected for evaluation, which are background
structural similarity (SSIM), background suppression factor
(BSF), detection rate Pd , and false alarm rate PF , the related
formulas are as follows [22]:

SSIM =
(2µRµF + ε1 )(2σRF + ε2 )

(µ2
R + µ2

F + ε1 )(σ
2
R + σ 2

F + ε2 )
(24)

BSF = σin/σout (25)
Pd =

NTDT
NT

× 100%

Pf =
NFDT
NP

× 100%
(26)

where µR denotes mean value of the original image,
σR represents standard deviation of the original image. σRF
denotes the covariance between the original image and the
background modeling image. ε1 and ε2 are small constants
to ensure that the denominator is not 0. σin denotes standard
deviation of the input image, σout represents standard
deviation of the difference map. BSF denotes background
suppression factor. NTDT represents the number of detected
targets, and NFDT denotes the number of false alarm, NT
denotes the total number of real targets in the sequence scene,
NP represents the sum of all pixels in the sequence scene.
In Figure 2, scene 1 involves three pedestrians as

targets, and the targets have significant differences from
the background, making them easy to recognize. Scene 2
features six pedestrians as targets, similar to Scene 1, with
significant differences between the targets and the back-
ground. However, some parts of the background are similar
to the target features, making recognition more challenging.
In Scene 3, there are two pedestrians as targets, but the
background includes a car, making the target recognition
process susceptible to interference. Scene 4 targets are three
pedestrians, but one of them is similar to the background
interference. Scene 5 targets are five easily recognizable
pedestrians. Scene 6 targets are three people, one of which
is almost submerged in the background. The targets in
the Scene 7 are three airplanes, sometimes the targets are
submerged by the clouds. In Scene 8, the target is an airplane,
there is serious noises in the image.

TABLE 2. Detailed information of the sequences, includes the size of the
target, the resolution and the number of images, and the types of the
target.

B. PARAMETER ANALYSIS
This section focuses on the analysis of the smoothing
parameter K in the background constrained optimization
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FIGURE 1. Comparison of object detection effect before and after model improvement. The size of (A1) and (B1) is 360*240. (A1)
result of the twist tensor model. (B1) result of the improved Twist Tensor Model(ITTM) proposed in this paper. (A2) corresponding
3D map of (A1). (B2) corresponding 3D map of (B1).

FIGURE 2. Input images and the corresponding 3D map. (I1)-(I8) is the
original image, (i1)-(i8) is the corresponding 3D map of the original
image, respectively. Where the image size of (I1)-(I6) is 360*240, the
image size of (I7) is 641*513 and the image size of (I8) is 278*246.

TABLE 3. Parameter settings.

model and λ1 in the ITTM. We introduce a new diffusion
function in the background constrained optimization model,
where the value of K plays a critical role. Generally, K is
constrained within the ranges from 100 to 150. If K is
too small, the diffusion function exhibits strong inhibition,
resulting in excessive smoothing of the target. Conversely,
a larger K weakens the inhibition, and the target information

FIGURE 3. Relationship between k and detection rate.

is retained while there are more false alarms, which interferes
with the detection results. The relationship between the value
of K and the detection rate Pd is depicted in Figure 3,
and K = 120 is the optimal value. Similar to the role
of K in the background optimization model, λ1 is the
regularization parameter. A larger λ1 corresponds to a
stronger smoothing ability of the background, which can
easily result in the loss of target information. A smaller λ1 is,
the more false alarms will be retained, causing interference
to the detection results. For this reason, different values of
λ1 are chosen to illustrate the relationship between λ1 and
detection rate Pd (as shown in Figure 4), and it is found
that the detection rate Pd is the highest when λ1 = 0.04.
With the increase of λ1, the rate Pd gradually decreases,
therefore, λ1 = 0.04 is chosen for the experiments in
this paper. Furthermore, we plotted the relationship curve
between λ2 and BSF . In infrared object detection, a larger
λ2 can induce sparsity in the target region, making it easier
for the model to distinguish it from the background, thus
better suppressing the influence of non-target areas and
highlighting the target region. Conversely, a smaller λ2 may
allow more non-target areas to be retained, including some
areas that may be background or noise, potentially leading to
these non-target areas being incorrectly identified as targets,
thereby reducing the ability of background suppression and
subsequently affecting the accuracy and reliability of object
detection. From Figure 5, it can be observed that when
λ2 = 0.16, the background suppression effect reaches its
optimum. At this point, both sparsity considerations and the
accuracy and robustness of detection results are taken into
account.
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FIGURE 4. Relationship between λ1 and detection rate.

FIGURE 5. Relationship between λ2 and BSF .

C. BACKGROUND MODELING EFFECT ANALYSIS
Figure 6 shows the comparison of background suppression
effects for Scene 1. In this case, the details of the background
prediction image obtained by bilateral filtering are blurred,
and the target information retention ability in the difference
map is limited. The extracted target shape is incomplete,
and more clutter is retained in the 3D map. Similarly,
prediction map of Top-hat filtering is poor. Although the
target contour can be seen to be better retained in the
difference map, there is more serious interference in the
3D map. Prediction map of MGDWE is better, with a
significant increase in the target energy. TLLDM has some
missing target information in the difference map, while the
3D map shows less background clutter. PSTNN, ADMD, and
NTFRA have strong background clutter suppression ability,
and there is almost no clutter in the 3D map. However, the
strong suppression ability also weakens part of the target
energy, which leads to less complete target information. The
differential map obtained by the algorithmwe proposed in the
article has a complete shape of the target and less clutter, but
the energy of the object is lower.

Figure 7 illustrates the comparison of background sup-
pression effects for Scene 2. In this scene, the difference
maps obtained by bilateral filtering and Top-hat filtering have
incomplete target information, and strong edge contours are
more pronounced. Additionally, the background prediction
map of bilateral filtering retainsmore target information com-
pared to the background prediction map of Top-hat filtering,
indicating that Top-hat has better target retention ability.

The difference images of MGDWE, PSTNN, and NTFRA
show complete target shapes, and their background prediction
is more effective. However, the 3D map of MGDWE contain

some background clutter. In the background prediction
images of ADMD and TLLDM, the target information
is corrupted. The difference maps have incomplete target
shape contours and the background suppression ability is
better without more clutter interference. The difference map
obtained by the ITTM has complete target shapes, however,
its suppression capability for strong edge contours is poor,
and the target energy is weak.

Figure 8 compares the background suppression effects
for Scene 3. Bilateral filtering, MGDWE, and Top-hat
leave considerable strong edge contours in the difference
maps. However, the 3D map of MGDWE contains fewer
clutters. On the other hand, PSTNN, ADMD, NTFRA, and
TLLDM effectively remove background clutter. Due to the
similarity between the target and some background regions,
the difference maps show that target information is missing,
and the 3D maps retain varying degrees of clutter. The
difference image of ITTM has a clearer extracted target
contour. However, its ability to suppress the background with
strong edge contours is slightly insufficient, and the target
energy is lower.

Figure 9 shows the comparison of the background suppres-
sion effect for scene 4. Bilateral filtering target information
retention ability has limitations, although the target shape is
not complete enough, but it effectively removes the strong
clutter interference.Top-hat, on the other hand, can better
retain the target texture information, but the image also
retains more background edges, which will affect the further
detection work. While algorithms such as MGDWE, ADMD,
PSTNN, etc., all obtain better background suppression, but
these algorithms can also retain only part of the target shape,
which is due to the presence of background interference in
the scene that is very similar to the target, which leads to false
alarms.Meanwhile, the backgroundmodeling effect of ITTM
in this scene is poor, as can be clearly seen from the 3D image,
only one target signal is stronger, while the other two targets
are almost smoothed.

Figure 10 shows the comparison of the background
suppression effect of scene 5. The contrast of the target is high
in the scene, and all algorithms achieve better background
modeling effect. However, due to the characteristics of the
spatio-temporal filtering algorithms themselves, which result
in the inability to completely remove the clutter from the
image, there are still more clutter residues, such as bilateral
filtering and Top-hat algorithms. In contrast, algorithms such
as PSTNN, TLLDM, and NTFRA show strong background
suppression ability, but it should be noted that the target
texture shapes obtained by ADMD and TLLDM algorithms
are incomplete. The ITTM also achieve better background
results.

Figure 11 shows the comparison of the background
suppression effect of scene 6. The target has low contrast
and large gray span in the scene. All algorithms successfully
localize the target even though the target texture shape is
less complete.Top-hat and MGDWE algorithms have better
background modeling effect in this scene. PSTNN, TLLDM,
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FIGURE 6. Background modeling effect of scene 1. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], and ITTM, respectively.

FIGURE 7. Background modeling effect of scene 2. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], and ITTM, respectively.

and NTFRA algorithms show strong background suppression
ability, but there is still a small amount of noise interference.
In contrast, the bilateral filtering effect is poor and the clutter
interference is serious. And the algorithm of this paper has

better clutter suppression effect, but some targets have lower
energy.

Figure 12 presents the comparison of background sup-
pression effects in scene 7. In this scene, the target scale is
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FIGURE 8. Background modeling effect of scene 3. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], and ITTM, respectively.

FIGURE 9. Background modeling effect of scene 4. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], and ITTM, respectively.

relatively small, and there is significant interference from
cloud, which often obscures the target during its motion
due to complex backgrounds. MGDWE and Top-hat algo-
rithms exhibit poor clutter suppression performance, whereas

bilateral filtering, PSTNN, ADMD, and TLLDM algorithms
demonstrate better background suppression effect. However,
due to the small target scale and low grayscale intensity, some
algorithms tend to smooth out low-intensity targets, such as
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FIGURE 10. Background modeling effect of scene 5. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], and ITTM, respectively.

FIGURE 11. Background modeling effect of scene 6. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], and ITTM, respectively.

NTFRA failing to correctly identify targets, leaving behind
substantial residual background clutter. The ITTM achieves
effective background suppression in this scene, eliminating
strong clutter interference while preserving the target.

Figure 13 presents the comparison of background sup-
pression effectiveness in scene 8. In this scene, the target
size is relatively small, and the image contains a sig-
nificant amount of high-intensity noise, which can lead
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FIGURE 12. Background modeling effect of scene 7. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26],
ADMD [27], TLLDM [29], NTFRA [28], and ITTM, respectively.

FIGURE 13. Background modeling effect of scene 8. a-h represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26],
ADMD [27], TLLDM [29], NTFRA [28], and the proposed algorithm, respectively.

to issues such as misjudgment. Consequently, although
all algorithms effectively preserve target information in

this scene, there is also a noticeable amount of residual
clutter, as observed in algorithms like bilateral filtering
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TABLE 4. Evaluation indicators.

FIGURE 14. Detection result of scene 1. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27],
TLLDM [29], NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

FIGURE 15. Detection result of scene 2. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27],
TLLDM [29], NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

and Top-hat. The object detection like YOLO v5 and
YOLO v7 yield detection results directly and therefore
does not involve background modeling. ITTM demonstrates
strong clutter suppression capabilities, effectively reducing

clutter while slightly attenuating target energy, resulting
in fewer clutter artifacts. Additionally, comparative exper-
iments on evaluation metrics have been conducted in the
paper(Table 4). Except for the BSF being lower than
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FIGURE 16. Detection result of scene 3. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27],
TLLDM [29], NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

FIGURE 17. Detection result of scene 4. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27],
TLLDM [29], NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

FIGURE 18. Detection result of scene 5. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27],
TLLDM [29], NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

PSTNN in scene 1 and SSIM being lower than the ADMD
algorithm in scene 8, ITTM outperforms other comparative
algorithms in terms of evaluation metrics across other
scenes. Overall, the ITTM exhibits favorable background
suppression effectiveness across the eight experimental
scenes.

D. DETECTION RESULT
The previous section analyzed the background modeling
effects, this section provides an analysis of the detection
results for the ITTM and other comparison methods, the
comparison methods align with Section III-B. Figure 14
depicts the detection results of Scene 1. Bilateral filtering,
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FIGURE 19. Detection result of scene 6. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27],
TLLDM [29], NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

FIGURE 20. Detection result of scene 7. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

FIGURE 21. Detection result of scene 8. A-K represent bilateral filtering [23], MGDWE [24], Top-hat [25], PSTNN [26], ADMD [27], TLLDM [29],
NTFRA [28], ITTM, YOLO v5 [30] and YOLO v7 [31], respectively.

MGDWE, and Top-hat filtering can detect the target well,
but there is some loss of target texture information, and
residual noise interference remains. On the other hand,
PSTNN, ADMD, TLLDM, andNTFRA exhibit strong clutter

suppression abilities, which enables them to remove more
background clutter interference. However, this comes at the
cost of retaining only a portion of the target information.
Figure 15 displays the detection results of Scene 2. In this
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FIGURE 22. ROC curves. (I)ROC curve of scene 1, (II)ROC curve of scene 2, (III)ROC curve of scene 3, (IV)ROC curve of scene 4, (V)ROC
curve of scene 5, (VI)ROC curve of scene 6, (VII)ROC curve of scene 7, (VIII)ROC curve of scene 8.

case, bilateral filtering, MGDWE, Top-hat filtering, PSTNN,
andNTFRA can effectively detect the object while preserving
the target’s texture and shape. However, these methods
still contain varying degrees of noise interference. On the
contrary, ADMD and TLLDM can also detect the target but
tend to have more noise interference, which can be mistaken
as the real target. Figure 16 presents the detection results
for Scene 3. Bilateral filtering, MGDWE, Top-hat filtering,
and TLLDM can detect the target but contain minor noise
interference. However, the target contour in bilateral filtering,
Top-hat, and TLLDM is not as clear or complete. ADMD,
PSTNN, and NTFRA can effectively eliminate noise and
effectively detect the target. However, target texture shape
obtained by ADMD is incomplete. Figure 17 shows the
detection results of Scene 4. Bilateral filtering and MGDWE
can detect the target better, but the false alarm rate is higher.
Except for ADMD as well as TLLDM algorithms that leave
a small amount of noise interference, the other algorithms

detect the target more completely. Figure 18 shows the
detection results of Scene 5, which has an obvious target,
all algorithms can detect the target, but the bilateral filtering,
ADMD and TLLDM algorithms have a small amount of false
alarms. Figure 19 shows the detection results of Scene 6,
bilateral filtering fails to detect all targets successfully, and
the detection results of MGDWE and Top-hat filtering have
serious clutter interference and high false alarm rate. The
other comparison algorithms can detect the targets, but
contain a small amount of noise in different degrees.

Figure 20 shows the detection results of Scene 7.
In this scene, although there are some grayscale differences
among the targets, most of the comparative algorithms
can correctly identify them. Algorithms such as bilateral
filtering, MGDWE, and Top-hat perform well in object
detection, while PSTNN and ADMD algorithms exhibit
more satisfactory detection results. In contrast, the TLLDM
fails to completely detect the targets, and the NTFRA
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TABLE 5. Execution efficiency of different algorithms in a frame(Seq.8).

fails to converge rapidly due to the similarity between
the target grayscale and the cloud grayscale, resulting in
detection failure. Figure 21 displays the detection results of
Scene 8. Despite significant noise interference in this scene,
all algorithms successfully detect target points. However,
there are varying numbers of false targets present, which
can affect target identification to some extent. From the
above figures, it is evident that deep learning-based object
detection algorithms like YOLO v5 and YOLO v7 achieve
satisfactory detection results in the first six scenes, while
failing to detect objects in the last two scenes. This is
because the objects in the first six scenes are relatively
large, allowing convolutional neural networks to achieve
good results with limited training samples. However, in the
last two scenes, the objects have fewer texture details and
weaker signal intensity. Additionally, both datasets have
fewer samples, which prevents convolutional neural networks
from adequately learning the target features and thus leading
to detection failure. Therefore, in infrared small object
detection, traditional detection methods are still necessary to
complete the detection task. As shown in Table 5, the YOLO
object detection algorithm has a fast model inference speed.
However, due to its direct output of detection results, it cannot
generate its corresponding ROC curve in Figure 22.
Compared with the other algorithms, the ITTM is based

on the optimization of the background constraints, it can
better retain the target texture shape while removing the noise
interference. In addition, this paper also depicts the ROC
curve, in which the horizontal coordinate indicates the false
alarm rate and the vertical coordinate indicates the detection
rate, and the larger the area enclosed by the horizontal
and vertical coordinates, the better the detection effect.
In Figure 22, compared with other comparative algorithms,
the ITTM achieves better results in both detection rate and
false alarm rate in eight scenes. Finally, the abundance of
experimental findings underscores the effectiveness of our
proposed algorithm. However, it remains subject to certain
limitations. Notably, our algorithm exhibits a longer process-
ing time compared to all comparative algorithms(Table 5),
primarily due to the construction and resolution of the twist
tensor model. This observation serves as a guiding principle
for future endeavors, emphasizing the necessity to prioritize
the selection of optimal parameters to attain a more efficient
iteration of our algorithm.

IV. CONCLUSION
To enhance the detection capability of a photoelectric detec-
tion system for infrared targets, this paper introduces a novel
detection method that combines spatio-temporal information

from the image with the low-rank sparse theory for infrared
object detection. Initially, to improve the low-rank charac-
teristics of the infrared image, a background constrained
optimization model is constructed based on anisotropy. Then
the background-constrained optimization model is combined
with the low-rank sparse theory to construct an improved
twist tensor model based on background-constrained opti-
mization. This effectively suppresses strong edge clutter to
achieve more accurate object detection. Finally, the model
of this paper is solved to obtain the effective target signal
components. Through experimental validation, the ITTM
demonstrated SSIM of 0.9818, 0.9907, 0.9943, 0.9968,
0.9869, 0.9892, 0.9997 and 0.9973, respectively. The BSF
of 50.0513, 75.0252, 96.4068, 126.8379, 57.2765, 70.1558,
405.6008 and 128.0142, respectively. And the detection rate
exceeding 85% in the eight scenes. The experimental results
confirm the feasibility of our approach. In future endeavors,
there is a necessity for optimizing the solving methodology
of the ITTM.
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