
Received 25 February 2024, accepted 10 March 2024, date of publication 21 March 2024, date of current version 9 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380159

Energy Efficient Load Balancing Algorithm
for Cloud Computing Using Rock
Hyrax Optimization
SAURABH SINGHAL 1, (Member, IEEE), ASHISH SHARMA1, ANUSHREE 1,
PAWAN KUMAR VERMA 2, MOHIT KUMAR 3, (Member, IEEE),
SAHIL VERMA 4,5, (Senior Member, IEEE), KAVITA 6, (Senior Member, IEEE),
MANINDER KAUR7, JOEL J. P. C. RODRIGUES 8, (Fellow, IEEE),
RUBA ABU KHURMA9, AND MARIBEL GARCÍA-ARENAS 10,11
1Department of Computer Engineering & Applications, GLA University, Uttar Pradesh 281406, India
2Department of Computer Science & Engineering, Sharda University, Uttar Pradesh 201310, India
3Department of Information Technology, MIT Art, Design & Technology University, Maharashtra 412201, India
4Manipal University, Rajasthan 303007, India
5Universidade Federal do Piauí, Teresina, Piauí 64049-550, Brazil
6Uttaranchal University, Dehradun, Uttarakhand 248007, India
7Guru Gobind Singh College for Women, Chandigarh 160019, India
8Amazonas State University, Manaus, Amazonas 69060-001, Brazil
9MEU Research Unit, Faculty of Information Technology, Middle East University & Applied Science Research Center, Applied Science Private University,
Amman 11831, Jordan
10Department of Computer Engineering, Automatics and Robotics, University of Granada, 18012 Granada, Spain
11Centro de Investigación en Tecnologías de la información y las Comunicaciones de la Universidad de Granada (CITIC-UGR), 18071 Granada, Spain

Corresponding author: Maribel García-Arenas (mgarenas@ugr.es)

This work is part of the Grant C-ING-027-UGR23 funded by la Consejería de Universidad, Investigación e Innovación and by European
Regional Development Fund (ERDF) Andalusia Program 2021-2027; in part by Ministerio Español de Ciencia e Innovación funded by
MICIU/AEI/10.13039/501100011033 under Projects PID2020-115570GB-C22 and PID2022-137461NB-C31 and finally in part by Cátedra
de Empresa Tecnología para las Personas (UGR-Fujitsu).

ABSTRACT Cloud computing offers dynamic, scalable, and virtualized computing resources to end users
over the internet. Load balancing is crucial for efficient resource use, distributing workloads across multiple
resources to prevent overloading. Load balancing is crucial for resource utilization and processing time
reduction, but traditional algorithms are often stuck at local maxima, leading to unequal allocation and
performance decline. A metaheuristic based algorithm is proposed to dynamically adjust load distribution,
ensuring resilience and sensitivity to changing workloads while managing energy consumption. This research
presents a Rock Hyrax-based load balancing algorithm that addresses local maxima and power efficiency
issues using QoS parameters. The algorithm’s performance is evaluated qualitatively and statistically,
considering both static and dynamicmodes of jobs and virtual machines. Comparing it with existing scheduling
algorithms, the algorithm reduces makespan by 10%–15% and total energy consumption in data centers by
8%–13%. These results demonstrate the effectiveness of the Rock Hyrax-based load balancing algorithm in
improving performance and energy efficiency in data centers, highlighting its potential impact on optimizing
resource allocation and enhancing overall system performance.

INDEX TERMS Cloud computing, energy consumption, load balancing, makespan, rock hyrax.

I. INTRODUCTION
With the availability of the Internet and the increasing
demand for high-performance computing, cloud computing

The associate editor coordinating the review of this manuscript and

approving it for publication was Mueen Uddin .

has grown very quickly. The cloud computing provides
hardware and software resources to perform their tasks. Cloud
computing can be defined as an internet-based model that
provides shareable resources such as memory, network, and
applications on demand by end users [1]. Cloud service
providers dynamically allocate tasks on a virtual machine that

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 48737

https://orcid.org/0000-0002-3117-8085
https://orcid.org/0000-0003-2360-1426
https://orcid.org/0000-0002-2189-3974
https://orcid.org/0000-0002-9004-5856
https://orcid.org/0000-0003-3136-4029
https://orcid.org/0000-0001-5422-1659
https://orcid.org/0000-0001-8657-3800
https://orcid.org/0000-0001-7600-1374
https://orcid.org/0000-0003-1919-3407

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

is easily accessible to end users. This includes scheduling
and allocating available resources for end-user-submitted
tasks [2]. The result of this process can be skewed resource
utilization, where some resources are overused while others
remain unused [3]. If errors such as machine failure are
encountered and, additionally, resource usage may not be more
appropriate, load balancing among resources becomes critical.
Cloud load balancing has an impact on the overall performance
of the system. It acts as a compromise between the financial
interests of the cloud service provider and the level of end-user
satisfaction. Agreements between the cloud service provider
and the end user, known as Service Level Agreements (SLAs),
are also considered during load balancing.
Most cloud data centers are made to handle a large

number of requests. Allocation requests result in high power
consumption and low utilization. Resource usage leads to
energy consumption, so it must be optimized [5]. Load
balancing can be used to balance the load between physical and
virtual machines as the tasks are assigned to a cloud data center
so that nodes have having equal load. The mapping of tasks
to different resources is done to maintain optimized energy
consumption [6]. An efficient load-balancing algorithm can
enable better resource utilization, helping to reduce the data
center’s carbon footprint as well as machine cooling require-
ments. Every physical machine operating in a data center
generates heat. When these physical machines have been in
use for some time, hot spots are visible in the data centers.
Load balancing can be done in both static and dynamic

ways. Static algorithms only work well on nodes where the
load doesn’t change much. Because of this, these strategies
are not efficient in cloud systems that have varied workload
requirements. Dynamic algorithms can manage unpredictable
workloads and are better than static algorithms [4]. On the
other hand, the dynamic algorithm has an additional cost that
includes the cost of collecting and storing load information.
Dynamic techniques are used to get the right amount of work
done on different types of resources.
Load balancing problems can be solved in different ways,

which can be grouped into heuristic scheduling, metaheuristic-
based scheduling, and hybrid metaheuristics [7]. Each of these
methods has its advantages and disadvantages. Metaheuristic
scheduling methods may use optimization algorithms like
Simulated Annealing (SA) and Ant Colony Optimization
(ACO) tomake the best schedules. Inmetaheuristic scheduling,
goals are included in the fitness function of the algorithm.
Because of this, several objectives are passed to the scheduling
process, where each function is distinct. This affects the overall
schedule and their respective outcomes. These algorithms
were also utilized to explore solutions for a wide range of
optimization problems [8]. In the last 20 years, metaheuristic
optimization algorithms have become very popular. Some
of these algorithms are so well-known that scientists in
other fields are familiar with them. They usually get ideas
from natural things and how animals act. In addition, these
algorithms are easy to understand, use, and put together. The
reason to use these algorithms is that they are random and work

better than traditional ways of optimizing when compared
to local optimizations. One thing that all meta-heuristic
approaches have in common is that they divide the problem
into two phases: exploration and exploitation [8].
Swarm intelligence (SI) is one of the best-known fields

of meta-heuristic algorithms, which have been used in
many different ways over the past few decades. The main
reason that gave rise to the idea of swarm intelligence was
the fact that different types of social swarms behave as a
group [9]. The individuals in these swarms work together
in a coordinated, interactive system to reach different kinds of
goals. The natural behavior of each swarm within the swarms
is what makes the interactive system work. SI techniques
have been increasingly used recently to solve different
kinds of problems in different fields, such as robot control
systems and optimization problems for resource management
like load balancing problems that require robustness and
flexibility. To solve optimization problems, SI techniques
such as Particle Swarm Optimization (PSO) [10], Algorithmic
Colony Optimization (ACO) [11], and Artificial Bee Colony
Optimization (ABC) [12] have been developed. Recent
years have seen the development of more complex swarm
intelligence optimization algorithms such as the Grey Wolf
optimizer [13], the Cuckoo search [14], the Bat algorithm [15],
the Firefly algorithm [16] and the Whale optimization
algorithm [17], FOX [18], [19], Eagle Strategy [20], [21].
To balance the load on cloud servers, a meta-heuristic
optimization method inspired by the behavior of the Rock
Hyrax, an African mammal, is proposed in the paper. The
proposed algorithm will resolve the following issues:

1) Balance the load on the VM as the tasks and machines
vary.

2) Execution of submitted tasks within the deadline while
maintaining SLA.

3) A multi-objective load balancing algorithm to balance
the load that considers both users and service providers.

Load balancing in the cloud is an NP-complete problem.
The task is assigned to the virtual machine using cloud
resource scheduling. The purpose of balancing is to efficiently
utilize the available resources. However, load balancing is
critical for both end users and service providers. As a result,
this research takes into account both of their objectives.
The paper proposes a meta-heuristic algorithm that helps in
achieving objective functions.

The contributions of the paper are the following:
1) A meta-heuristic load-balancing method for cloud

environments considering job and resources dynamic
and heterogeneous in nature.

2) A multi-objective algorithm considering both users and
service providers to minimize energy consumption and
makespan.

3) The effectiveness of the proposed algorithm is tested
with different tasks and resources.

The rest of the paper is structured as follows: Section II is
devoted to the revision of previous relevant works, Section III
offers a detailed description of the proposed work, Section IV

48738 VOLUME 12, 2024

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

provides an analysis of the results and, finally, Section VI
presents the conclusions of this piece of research.

II. RELATED WORK
The authors in [10] proposed a load balancing algorithm based
on Particle Swarm Optimization. This algorithm transfers
extra tasks from an overloaded virtual machine. In [28], the
authors have used a hybrid algorithm combining cuckoo
search with ACO to balance load in a cloud environment.
The authors in [29] have used the BAT optimization algorithm
for balancing load in the cloud environment.
In [12] the authors have proposed a technique for load

balancing that is based on the foraging behavior of honey
bees. The algorithm considers the priorities of tasks while
balancing the load across VMs. The tasks removed are
considered honey bees, and the information is updated globally.
The algorithm improves overall throughput by reducing
the waiting time for a job. To minimize makespan and
execution time, the authors in [15] used the BAT algorithm
for balancing load in cloud computing. In [24] the authors
gave diary wise cloud calculations for adjusting load issues,
including GC (Genetic Calculations), ACO (Ant Colony
Optimization), ABC (Artificial Bee Colony) and PSO (Particle
Swarm Optimization). They presented another idea, Ant Lion
Optimizer (ALO) based for the most part on distributed
computing environments, as an affordable standard that was
expected to give results in adjusting the heap.

The authors of [30] propose a reinforcement Learning-based
parallel PSO for Intelligent Decision-Making. The authors
of [26] presented a hybrid algorithm that combines Harries
Hawks Optimisation (HHO) with Ant Colony Optimisation
(ACO). In [41], the authors provided multi-objective load
balancing using fuzzy decision-making and GA.
A load-balancing algorithm in cloud computing was

proposed by authors [11] that use the Ant colony optimization
technique. They have updated the pheromone mechanism to
balance the load and minimize CPU. For detecting hosts that
are overutilized, the authors [14] followed an approach based
on the Cuckoo Optimization Algorithm and have migrated
jobs from such hosts to others. The parameter considered for
load balancing is energy consumption.
The authors in [25] proposed a load balancing method

based on the hybrid dingo and whale optimisation algorithms
(HDWOA-LBM) for optimal throughput and resource
utilisation in cloud computing environments. The authors
in [26] proposed a method that combines Harries Hawks
Optimisation and Ant Colony Optimisation to increase
multi-QoS parameter performance. The authors in [27]
developed an optimal fuzzy-based load balancing model
for effective resource allocation that uses fuzzy variables
such as memory, bandwidth, and disc space, implements
categorization-based limitations, and assigns jobs to virtual
devices.
Heuristics and metaheuristic algorithms are crucial for

solving complex problems in fields like logistics, finance,
engineering, and AI. The impact of these technologies

on optimizing delivery routes and resource allocation is
unparalleled. They find quick solutions for large-scale
problems, adapt to constraints, and handle uncertainties. They
are continuously improved through research and integration
with other AI techniques. As the world becomes increasingly
complex, heuristics and metaheuristics still remain relevant
due to their ability to efficiently tackle the complexities of
the ever-evolving world. Heuristic-based stitching is an image
processing technique that uses heuristic algorithms and refined
rules to create seamless panoramas from multiple images [22].

Load-balancing algorithms in cloud computing are essential
for optimizing resource utilization and ensuring high
performance. However, they face challenges in handling
dynamic workloads, which can lead to suboptimal resource
allocations and performance degradation. The heterogeneity of
cloud resources, including variations in computing power and
network capabilities, also affects load-balancing decisions.
The work done in the past considers a single objective
function around which the algorithm works. To address these
weaknesses, more effective load balancing algorithms are
required, including dynamic strategies considering cloud
resource heterogeneity and multi-objective functions to
support different QoS. We have proposed a Rock Hyrax load
balancing algorithm that is dynamic, considers heterogeneous
resources and jobs, and supports multiple QoS requirements.

III. ROCK HYRAX ALGORITHM
This section is aimed at proposing an algorithm for load
balancing in cloud computing, where the user submits their
tasks to the broker. The broker schedules these jobs on the
cloud and allocates resources to them. During the runtime,
if the load on any server goes beyond the threshold limit,
then the proposed algorithm for load balancing is executed.
A framework describing the entire process is shown in
Figure 1.

FIGURE 1. Proposed Framework for Load Balancing Algorithm.

The proposed Rock Hyrax algorithm considers QoS
parameters such as makespan, response time, throughput and
energy efficiency and balances the load on an overloaded
server. The workload of the server and its available capacity

VOLUME 12, 2024 48739

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

are fed back up to the broker, who reallocates the waiting tasks
on different servers for their execution.
The broker has some m jobs that have to be allocated to n

servers. The problem is that before one job executes, another
job may come to the server, and the arrival rate of jobs is not
fixed. Therefore, it becomes very difficult for the broker to
keep track of the number of jobs that have not been allocated
to a server. The worst possible scenario is that the arrival rate
of jobs can be much faster than the rate of executing the tasks.

One approach can be used to fix a server ni for similar kinds
of jobs mi. The problem with this approach is that the jobs
that are being submitted are different, and each has its own
demand for resources for execution. Also, if the number of
similar jobs is too high, the server ni will be overloaded, while
other servers nn − i will be underloaded. Thus, allocating one
server for a similar kind of job is no longer feasible. The load
balancing algorithm will fail if any server ni gets more than
(m/n) requests, wherem is the total number of requests coming
to the broker. If the jobs that are coming are similar, then,
as per the approach, the majority of jobs will be allocated to a
single resource, increasing its chance for failure. Therefore, the
proposed Rock Hyrax Algorithm calculates an upper bound
on the expected load of a server, ni such that the server is not
overloaded. The proposal uses the hash function h to achieve
optimal load on the server.
The proposed algorithm works in two phases: estimation

of server capacity and load balancing by the Rock Hyrax
algorithm. The detailed computation and algorithm are
presented in the next subsections:

A. ESTIMATION OF SERVER CAPACITY
For allocating a job to a server from m number of jobs, a job
mi is selected in such a way that mi hashes to 1 for the chosen
hash function h. A modulo operator is applied to the hash
function where the modulus value is equal to the resources
available. The upper bound on other jobs is also calculated so
that all jobs that hash to 1 are found. All those jobs that will
hash to 1 will be allocated to a server, while others will wait in
the waiting queue. The performance of the algorithm depends
on the value of the threshold. If the value of the threshold
is too small, the load balancing algorithm will be called too
frequent, and if it is too high, then the makespan will become
high. Therefore, it is important to choose an optimal value for
the threshold.

B. CALCULATION OF HASH FUNCTION AND JOB
ASSIGNMENT
To calculate the threshold value of the server for defining
its load capacity, a random variable t is chosen. For the
calculation of random variables, several equations were used.
The broker can do some basic calculations of mapping the job
mi to a server ni by any mathematical function f(i), where f
is a mapping function. Equation 1 selects all the jobs that
hash to 1 so that the broker can allocate the resources to
them. The selection of the random variable t is crucial in
determining the threshold value for the server’s load capacity.

By utilizing various equations, the calculation of random
variables becomes possible. These equations aid in accurately
mapping each job mi to its corresponding server ni through
the mathematical function f(i).

fh(y)=1 =

{
0, if h(y) ̸= 1.
1, if h(y) = 1.

(1)

The mapping function only considers the job for the allocation
of resources if the value of the hash function is 1; otherwise,
it places the job in the waiting queue. The same is illustrated in
Equation 1. All those jobs that hash to a value of 1 calculated
in Equation 1 are collected in H. H is calculated as

H =
∑
y∈U

fh(y)=1 (2)

where U is the universal set and U = 1, 2, 3m.
The set of all jobs that satisfy the condition of having a

hash value of 1. This set is then used for further processing
and allocation of resources, while the remaining jobs are kept
in the waiting queue until their hash value becomes 1. H is
the subset of submitted jobs such that all jobs that hash to one
are included in H. When the hash function is calculated for
the jobs, all jobs that have a hash value of 1 are assigned to a
server. Such jobs are kept in the subset given by H .

C. JOB LIMIT PER SERVER
As jobs m varies with servers n are fixed, and the mapping
of jobs to a server is one to many, we need to find the load
on a server that can it take. For estimating the expected load
on a server, a variable Eh is defined. The value of Eh will
be different for each server depending upon various factors,
such as processor speed. To estimate the load on server h, the
number of jobs assigned to it by the broker, the value of the
expected load on servers Eh can be defined as:

Eh[H] = E[
∑
y∈U

fh(y)=1] (3)

D. PROBABILITY OF ASSIGNING A JOB
The expected value is the probability of multiple occurrences
of an event. So, the estimated load on server h can be
calculated by converting E into a probability function, where
the probability function defines the probability of a job mi
allocated to a server h. Thus, by convertingE into a probability
function, Equation 4 mathematically is expressed as:

Eh[H] = E[
∑
y

Pr[h(y) = 1]] (4)

Since the jobs are considered to be heterogeneous, for
calculation, we define two sets of jobs x and y such that y ̸= x.
Thus, the probability function calculated in Equation 4 is a
combination of two probabilities for job x and job y. The
estimated probability of the hash function that hashes to 1
Pr[h(y) = 1] for all jobs y ̸= x can be given by adding the
probability of job x and job y. Mathematically, this is expressed

48740 VOLUME 12, 2024

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

as:

Eh[H] = Pr(h(x) = 1)+ E[
∑
y̸=x

Pr[h(y) = 1]] (5)

This allows to account for the different characteristics and
requirements of each job in the calculation of the probability
function. By considering both job x and job y, we can obtain
a more comprehensive estimate of the probability of the hash
function resulting in 1 for all jobs except x.
Expressing the estimated probability for the hash function

E[H], in terms of total requests received by the broker and
total requests handled by a server h, can be further expressed
as:

Eh[H] ≤ 1+
tr − 1
m

(6)

where, tr is the total requests handled by a particular server 1,
and m is the total number of requests received by the cloud
broker.
To estimate the deviation of load t on servers, it can be

expressed by the difference of total jobs that hashes to 1 from
H and the estimated probability of a job being allocated to
server E[H]. For any server h, this can be mathematically
written as:

H − Eh[H] > t (7)

The goal of the load balancing algorithm is to minimize
this value of t because a higher value of t indicates a
load imbalance on the server. This can be calculated as a
probability of deviation on load. Thus, we have to calculate
the variance of the load on the server. Using Chebyshev’s
inequality statement [31] which states that for any probability
distribution, there can be only a few certain values that will
be far from the mean, we applied the concept of inequality
statement, for any random variable t

Pr[|H − E[H]| > t E[H]] ≤
Var[H]
x2 E2[H]

(8)

where Var[H] is the variance of the hash function H.
By definition, variance can be defined as:

Var[H] = E[H2]− E[H]2 (9)

E. VARIANCE OF THE WORKLOAD
To find the Var[H], we need to calculate the values of
E[H]2 andE[H2]. Once the value ofE[H] has been calculated,
its square will give E[H]2. Therefore, we need to calculate the
value of E[H2]. E[H2] can be expressed as the summation of
the hash functions of jobs x and y. Mathematically, E[H2] can
be expressed as:

E[H2] = E[
∑
x

fh(x)=1
∑
y

fh(y)=1] (10)

F. EXPECTATION THAT TWO DIFFERENT JOBS WILL BE
ASSIGNED TO THE SAME SERVER
Expressing the values of

∑
x fh(x)=1, as probability function.

For all jobs x ̸= y, the probability of jobs hashing to 1 can be
expressed as:∑

x

fh(x)=1 = Pr([h(y) = 1]+
∑
x ̸=y

Pr[h(x) = 1]) (11)

Similarly for jobs y ̸= x, the value of
∑

y fh(y) = 1 can be
expressed as:∑

y

fh(y)=1 = Pr([h(x) = 1]+
∑
y̸=x

Pr[h(y) = 1]) (12)

Calculating the value of
∑

y fh(y)=1 and
∑

x fh(x)=1 by the
estimated probability for the hash function E[H] for jobs x
having a hash value of 1,

∑
x fh(x)=1 is calculated as:∑

x

fh(x)=1 ≤ 1−
m− 1
n

(13)

and
∑

y fh(y)=1 for jobs y having a hash value of 1 is calculated
as: ∑

y

fh(y)=1 ≤ 1+
m− 1
n

(14)

Using these calculated values of
∑

y fh(y)=1 and
∑

x fh(x)=1
the value of E[H2] is calculated as:

E[H2] = 1− (
m− 1
n

)2 (15)

G. CALCULATION OF THE PROBABILITY THAT A JOB WILL
BE ASSIGNED TO A SERVER
Since the variance of a random variable gives the possible
values of that variable. Therefore, Var[H] can be calculated
by using the calculated values of E[H2] and [E[H]]2. The
Var[H] is:

Var[H] =
m− 1
n

(1−
m− 1
n

) (16)

This value of Var[H] is the threshold value for any server to
accept jobs. If the value exceeds the limit value, the server
will be declared an overloaded server.

A pseudocode describing the process of estimation of server
capacity is illustrated in Algorithm 1.

The first phase of the algorithm is to find virtual machines
that have loads greater than their respective threshold values.
The proposed algorithm checks every virtual machine initially,
and as soon as a job is transferred to that virtual machine,
it rechecks the virtual machine. The threshold is defined
by the queue length of waiting jobs. Listing 1 uses nodes’
real-time workload and resource states to make informed
decisions on load distribution. It involves dynamic load
monitoring, triggering load-balancing decisions based on
predefined thresholds. When a new job arrives, the queue
length is checked, and if it exceeds the threshold, the algorithm
is called; otherwise, the job is executed by the VM. Upon
identifying the capacity of serverj with the status of overload

VOLUME 12, 2024 48741

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

Algorithm 1 Process of Proposed Algorithm Phase I
Input: Jobs m, Server n, Threshold_Value
Initialization();
i,j = 0
For i = 1 to m{
For j = 1 to n{

For Job{mi} allocated to server{nj}{
JobQueueLength + = 1
If JobQueueLength > Threshold_Value{
Call RockHyrax Load Balancing Algorithm
}

}

}

}

Return the servers ni
Result: Servers ni having high load

and underload, it is imperative to balance the load on the
identified overloaded server. Therefore, the next subsection
discusses the proposed Rock Hyrax Algorithm for load
balancing in cloud computing.

H. ROCK HYRAX LOAD BALANCING ALGORITHM
This section introduces a load balancing mechanism based
on Rock Hyrax [32] behaviour. Rock Hyrax is a swarm
optimization-based metaheuristic algorithm [42]. The Rock
Hyraxes are tiny, vegetatrian mammals that dwell in the
Middle East and Africa [33]. They frequently forage in flocks
in the mid-morning or evening. Rock Hyrax groups often have
80–100 members. During feeding, one party member glances
around to defend other members from predators [34].

Rock Hyraxes foraging behavior mimics Split and Conquer,
with the male responsible for the source and informing the
group after successful feeding. To make the best decisions
for the group, a limit is maintained on feeding behavior [35].
Rock Hyraxes communicate with each other using different
sounds, each with a different meaning. One sound can signal
an alarm, while the other signals food. To mark the territory
and the path of food, Hyraxes use the odor secreted by the
dorsal gland [35].
The process flow for the proposed Rock Hyrax load

balancing algorithm is shown in Figure 2.
In cloud computing, end users submit their jobs to brokers.

The broker allocated the resources to jobs for execution as
per the SLA [23]. As the job moves to the resource (VM)
for execution, the length of the waiting queue in a virtual
machine is increased by one. Once the length is increased
by one, the algorithm for checking whether the server has
exceeded its threshold value is checked. If queue length
exceeds the threshold value, the VM is declared overloaded,
and in phase II of the proposed algorithm, the Rock Hyrax
algorithm is executed. The algorithm initializes the population
in the specified problem space. Subgroups are formed from
this entire population, and each sub-group can have 80–100

FIGURE 2. Process flow of the Proposed Algorithm.

Rock Hyraxes. The algorithm calculates the fitness function
of every Hyrax in the group, and based on the value it selects
the universal leader or privileged Rock Hyrax. The universal
leader or privileged Rock Hyrax, is responsible for foraging
food or searching VMs that are underloaded. The subsequent
iterations are called and the fitness function is recalculated.
If the value of the fitness function is better, the privileged
Rock Hyrax changes its position and increments the limit for
iteration by one. If the limit is reached, it checks for the fitness
function. If the fitness function is optimized, the algorithm is
stopped; otherwise, the fitness function is recalculated. The
pseudocode of the algorithm is given in Listing 2.

The data structure used in the proposal is as follows:

• Neighbourinit defines the size of the neighbourhood,
which will decrease after each iteration completion with
a fixed value.

• RHnum is the entire population of Rock Hyrax, VMnum
is the available number of VMs in the environment.

• PrivilegedVMnum is the number of overloaded VMs and
PrivilegedVMnum < VMnum.

• PrivilegedRHnum is a common lead found in iteration and
is smaller than RHnum.

• OtherVMnum is the difference between VMnum and
PrivilegedVMnum.

• γ is a decomposition function that controls the rate of
odor evaporation.

The Rock Hyrax set RHi is initialized using a symmetric
distribution in the problem space, as the Rock Hyrax is
present in the same position. The population of Rock Hyrax is
obtained by multiplying the problem space by a symmetrical
distribution.

RHi = RHi − S(0, 1) ∗ Problemsize (17)

48742 VOLUME 12, 2024

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

For RockHyraxes to decide which path to choose, a probability
Pi is defined. Pi is calculated by dividing the fitness value
of the universal Rock Hyrax by the cost of the chosen path.
To normalize the value, a multiplication factor of 0.9 is used.
Mathematically, the probability Pi is calculated as:

Pi = 0.9 ∗ RHbest/Costsh (18)

The Rock Hyrax algorithm efficiently manages server
load balancing by intelligently assigning submissions to
available resources and constantly monitoring for optimal
load balancing. The rock hyrax represents the cloudlets or
jobs, while food represents resources. In the event of an
overload, the algorithm activates the Rock Hyrax population
and selects the job with the lowest cost to be transferred to an
available resource. The algorithm then relentlessly searches
for the best available resource until the fitness function is fully
optimized. With each successful job schedule, the population
size is reduced by a factor. The various parameters used in
Algorithm 2 are described in Table 1.

TABLE 1. Data Structure used in Algorithm.

IV. RESULT ANALYSIS
The proposed load balancing algorithm is inspired by
nature-inspired algorithms and uses parameters like finding
the overloaded server, selecting the server for the transfer of
jobs, and calculating the fitness function to balance the load
on the cloud.

A. EXPERIMENTAL SETUP
For simulating the environment, CloudSim version 3.0.3 on
Windows 7 was used. CloudSim is a library that simulates a
cloud computing environment. CloudSim was used to create
VMs, data centers, and cloudlets to evaluate the load balancing
algorithm. In the simulation, four data centers were created to
emulate the environment of the proposed algorithm.

Algorithm 2 Proposed Rock Hyrax Load Balancing
Algorithm

Data: Problemsize, RHnum, VMnum, PrivilegedVMnum,
Neighbourinit , PrivilegedRHnum, OtherVMnum
Initialization();
Population←InitializePopulation(RHnum, Problemsize)
RHbestcost ← Cost(Sh)
Odorinit ← 1.0 /(Problemsize * RHbestcost)
Odor← InitializeOdor(Odorinit)
While (StopConditon()){
EvaluatePopulation(Population);
RHbest ← GetBestSolution(Population);
NextGeneration← φ;
Neighboursize← (NeighbourSizeinit

* NeighbourDecreasefactor);
VMbest ← SelectBestVM(Population, VMnum);
ForEach VMi ∈ Mbest {

SelectedRHnum← φ;
If i < PrivilegedVMnum{

SelectedRHnum← PrivilegedRHnum;
}

Else{
SelectedRHnum← OtherRHnum;

}

Neighbourhood ← φ;
For j to RecuritedRHnum{
Neighbourhood ←

CreateNeighbourhoodRH(Sitei,VMsize);
}

NextGeneration←
GetBestSolution(Neighbourhood);
}

RemainingRHnum← (RHnum - VMnum);
For (j to RemainingRHnum){
NextGeneration← CreateRandomRH();
}

Population← NextGeneration;
GlobalUpdateOdor(Odor, RHbest , RHbestcost , γ);
}

Return RHbest
Result: RHbest

B. PERFORMANCE EVALUATION
Various QoS parameters are used to measure the performance
of a service in the cloud. The QoS parameters that are
considered in the paper for measuring the performance of
the proposed algorithm are described in this section.

1) MAKESPAN
Makespan is the maximum execution time for all tasks
submitted to the cloud for execution. The value of makepan
must be minimal so that all tasks are executed within the
request timeout [36]. This can be expressed as:

MSTIME = Ti(CTTIME) (19)

VOLUME 12, 2024 48743

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

where
MSTIME is the makespan time of taski
CTTIME is the completion time of taski

2) THROUGHPUT
Throughput is the rate of execution of tasks in cloud computing
in a specified period of time [37] and can be represented as:

Throughput =
n∑
i=1

ETi (20)

where ETi is the execution time of task i

3) RESPONSE TIME
Response time is the total time between the send and wait
times of jobs in the queue, indicating the cloudlet response
required for a specified entry [38] and can be expressed as
follows:

RTTIME = Ti(STTIME +WTTIME) (21)

where,
RTTIME - the response time for task i
STTIME - the submission time for task i
WTTIME - the waiting time for task i.

4) ENERGY CONSUMPTION
Energy is the entire amount of energy required by a server
to schedule a task in the cloud. The algorithm performs
better when its power consumption is modest. You must first
determine the power consumption of the actual machine in
order to calculate the power consumption. [39], [40], the power
model is suggested as:

PW (u) = PWidle ∗ PWmax + (1− PWidle) ∗ PWmax ∗ u

(22)

where
PW is the power utilized for a time t when the CPU is being

utilized (u).
PWmax is the maximum power consumed by a machine

under 100% utilization.
PWidle is the amount of power consumed by the machine

under idle state.
Thus, the energy consumed by a machine is represented by

E =
∫
t
PW (u(t)) (23)

where
E is Energy Consumption
As the problem is formalized as a multiobjective, this paper

considers makespan and energy as our fitness functions while
balancing the load. Thus, the fitness function can be formalized
as a function of minimization and can be given as:

1) Minimization of makespan time.

MSTIME = Min(Ti(CTTIME)) (24)

2) Minimization of Energy Consumption

E = Min(
∫
t
PW (u(t))) (25)

C. EXPERIMENT RESULT
In this section, we will discuss the outcomes of applying the
Rock Hyrax algorithm that was proposed to two different
scenarios. In scenario I, the number of virtual machines
remains constant, but the number of jobs increases by 10 with
an increment of 10. Table 2 contains a CloudSim experimental
configuration for performing the algorithm in Scenario I.
Virtual machines employ time-sharing to share resources in
four data centers. Also, in Scenario II, the number of tasks

TABLE 2. Experimental Setup for Both Scenarios.

is fixed, the number of VMs changes from 10 to 100 in
10 increments, and the system uses a time-sharing policy to
share resources for tasks. Each virtual machine has 1 GB of
RAM.
Since QoS describes the performance of services for

load balancing in cloud computing. Therefore, for result
analysis purposes, we have considered makespan time,
energy efficiency, throughput, and response time as QoS
parameters that will be judged upon various approaches.
Further, for validation purpose Rock Hyrax Algorithm
is compared with various prevalent approaches like Ant
Colony Optimization [11], Particle Swarm Optimization [10],
Artificial Bee Colony Optimization [12], Bat Algorithm [15]
and Cuckoo Algorithm [14].

D. RESULT FOR SCENARIO I
Figures 3, 4 depict the proposed algorithm’s QoS-based
performance comparison for the scenario I, where virtual
machines are constant and the variable value of tasks is 10 and
50 respectively. The suggested technique performs similarly
to the comparison algorithm when there are few cloudlets.
It maintains a constant makespan time as the number of
cloudlets increases, but algorithms like ACO and PSO become
less effective as the number of cloudlets increases. The method
selects the optimal fitness function without resulting in a
shorter makespan.
Figures 3(a) and 4(a) shows increase in makespan time as

cloudlets increases. The proposed strategy attempts to strike a
balance between utilizing existing resources and seeking out

48744 VOLUME 12, 2024

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

FIGURE 3. Performance evaluation for different QoS with varied jobs and
VM = 10.

new ones. This strategy, unlike earlier ones, offers a higher
convergence rate while locating the optimal solution and
producing overall superior outcomes. Figures 3(b) and 4(b)
show that the proposed method has a higher throughput than
the other algorithms when the number of virtual machines
(VMs) that can be used to schedule work is changed.

FIGURE 4. Performance evaluation for different QoS with varied jobs and
VM = 50.

Throughput can go up with the proposed solution because jobs
in the queue will have to wait less. The proposed algorithm
optimizes virtual machine idle time by efficiently allocating
tasks, and enhancing system performance. This leads to
increased productivity and reduced costs for organizations
relying on task scheduling and resource allocation. The
algorithm considers the resource utilization of each virtual

VOLUME 12, 2024 48745

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

machine, preventing overloading and enhancing overall
performance. This improves throughput, user satisfaction, and
response times for critical tasks, thereby reducing bottlenecks
and enhancing overall system performance.

Figures 3(c) and 4(c) show that the suggested method gives
more accurate estimates of reaction time than methods that
have been used in the past. This is because the technique
reduces the amount of time jobs must wait in the server’s
waiting queue by informing the broker of the server’s available
and current space. By providing real-time information about
the server’s availability and capacity, the suggested method
enables the broker to make more informed decisions regarding
job allocation. This optimization in job scheduling ultimately
leads to reduced waiting times and, consequently, more
accurate estimates of reaction time.

Figures 3(d) and 4(d) show how well algorithms use energy
when adjusting the number of virtual machines (VMs) for a
fixed number of workloads. The proposed method can cut
down on energy use, increase throughput, and cut down on the
average amount of time it takes to finish a task. Also, the server
arranges jobs by observing their busiest times. As a result, the
number of idle servers has decreased. Therefore, less energy is
consumed when the system is idle. This improves the overall
energy efficiency of the system.
Additionally, the proposed method dynamically scales

the number of VMs based on workload demands, ensuring
optimal resource allocation and minimizing wastage. This
adaptive approach allows for efficient utilization of server
resources, reducing energy consumption during peak and off-
peak periods. Consequently, the system achieves a higher level
of energy efficiency and cost savings.
Furthermore, the dynamic scaling of VMs also improves

the system’s performance by ensuring that there are enough
resources available to handle high workload demands. This
prevents any potential slowdowns or bottlenecks in the system,
resulting in a smoother and more efficient operation overall.
Additionally, by reducing energy consumption and optimizing
resource allocation, the proposed method contributes to a
more sustainable and environmentally friendly computing
environment.

E. RESULT FOR SCENARIO II
The proposed approach for scenario II depicted in Figures 5
and 6, where the number of cloudlets is constant and the
number of virtual machines (VMs) is varied to 500 and 2500,
shows a decrease in QoS parameters as the number of VMs
increases from 10 to 100. This is due to algorithms finding
underloaded VMs for job execution. However, algorithm
performance becomes crucial as there are fewer VMs available.
The makespan time decreases as VMs number increases. The
algorithm assigns jobs evenly to resources with the fewest
jobs, allowing all VMs to function together. This results in
the algorithm outperforming traditional algorithms in terms of
execution time. Additionally, the suggested algorithm also
ensures that the workload is distributed evenly among all
virtual machines, maximizing their efficiency and reducing the

FIGURE 5. Performance evaluation for different QoS with varied VMs and
jobs = 500.

overall execution time. This makes it a more reliable and effi-
cient choice compared to algorithms that may prioritize certain
resources over others, leading to longer execution times.
The value of throughput tends to increase as the amount

of execution time a cloud computing service has been in
operation decreases. This is because as a cloud computing
service operates for a longer duration, it becomes more

48746 VOLUME 12, 2024

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

FIGURE 6. Performance evaluation for different QoS with varied VMs and
jobs = 2500.

efficient in managing resources and optimizing its operations.
Additionally, the experience gained over time allows for better
allocation of resources and improved performance, resulting
in higher throughput. The response time can be reduced
by identifying underutilized resources using the proposed
method. By identifying underutilized resources, the cloud
computing service can allocate them more effectively, leading

to faster response times. This method helps in identifying
any bottlenecks or inefficiencies in resource allocation and
allows for their optimization, ultimately reducing response
time. If there are any idle servers, the system will assign work
to them so that there are fewer servers and less downtime.
As the time required to execute jobs decreases, there

is a reduction in the amount of energy that is consumed.
As the server execution time is optimized, the suggested
algorithm becomes more energy efficient as the number of
jobs increases. Additionally, by optimizing server execution
time and reducing response time, the suggested algorithm
can also improve overall system scalability. This means that
as the number of jobs increases, the system can handle a
larger workload without compromising performance or energy
efficiency. Ultimately, this leads to a more sustainable and
cost-effective solution for resource allocation in service-based
environments.

V. LIMITATIONS AND FUTURE WORK
Load balancing algorithms in cloud computing face lim-
itations, such as adapting to dynamic workloads and the
heterogeneity of cloud resources. The performance of these
algorithms remains consistent when the number of jobs or
VMs is low, but significantly changes when the variation is
too large. The heterogeneity of cloud resources, encompassing
diverse computing capabilities, also presents challenges for
load-balancing algorithms, as they may struggle to effectively
utilize these varying capacities. Also, considering multi-QoS
parameters affects the way the experiments are conducted and
performed. A trade-off needs to be found so that one parameter
does not affect the other.
Network latency is often overlooked in load distribution

experiments in complex cloud environments, causing security
concerns due to sensitive information exchange. Privacy-
preserving strategies are needed to address these issues. The
dynamic nature of cloud environments adds complexity to
load-balancing algorithms, necessitating continuous moni-
toring and adjustment. The increasing scale and complexity
of cloud networks necessitate innovative load-balancing
techniques to handle modern applications’ growing demands.
Future research in load balancing algorithms aims to

improve workload prediction accuracy and dynamically
adapt to changing conditions in cloud computing sys-
tems. Machine learning techniques will enhance workload
prediction accuracy, while heterogeneous resource-aware
algorithms will optimize task assignments. Energy-efficient
load balancing strategies and privacy-preserving mechanisms
will be crucial for evolving load balancing algorithms to meet
the growing demands of dynamic and secure cloud computing
environments.

VI. CONCLUSION
This paper proposes a Rock Hyrax optimization method
for load balancing in cloud computing. The method
distributes jobs among multiple virtual machines based on
availability and current load, reducing total makespan time

VOLUME 12, 2024 48747

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

and improving energy efficiency. The algorithm efficiently
manages resources, even in geographically scattered data
centers. It solves the problem of local maxima, impacting
load balancing algorithms’ performance. The Rock Hyrax
algorithm is proven to work well for both jobs and virtual
machines, both statically and dynamically. Compared to other
load balancing techniques, the algorithm reduces makespan
by 10%-15% and total energy consumption by 8%-13%.
This suggests the Rock Hyrax algorithm’s effectiveness in
improving job and virtual machine performance, enhancing
overall efficiency in data centers.

REFERENCES
[1] R. B. Bohn, ‘‘NIST cloud computing reference architecture,’’ in Proc. IEEE

World Congr. Services, Jul. 2011, pp. 594–596.
[2] J.-T. Tsai, J.-C. Fang, and J.-H. Chou, ‘‘Optimized task scheduling and

resource allocation on cloud computing environment using improved
differential evolution algorithm,’’ Comput. Oper. Res., vol. 40, no. 12,
pp. 3045–3055, Dec. 2013.

[3] Z. Xiao, W. Song, and Q. Chen, ‘‘Dynamic resource allocation using virtual
machines for cloud computing environment,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[4] P. Beniwal and A. Garg, ‘‘A comparative study of static and dynamic load
balancing algorithms,’’ Int. J. Advance Res. Comput. Sci. Manage. Stud.,
vol. 2, no. 12, pp. 1–7, 2014.

[5] A. Uchechukwu, K. Li, and Y. Shen, ‘‘Energy consumption in cloud
computing data centers,’’ Int. J. Cloud Comput. Services Sci., vol. 3, no. 3,
pp. 31–48, 2014.

[6] L. Luo,W.Wu, D. Di, F. Zhang, Y. Yan, and Y.Mao, ‘‘A resource scheduling
algorithm of cloud computing based on energy efficient optimization
methods,’’ in Proc. Int. Green Comput. Conf. (IGCC), Jun. 2012, pp. 1–6.

[7] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, ‘‘Towards workflow
scheduling in cloud computing: A comprehensive analysis,’’ J. Netw.
Comput. Appl., vol. 66, pp. 64–82, May 2016.

[8] A. Mozaffari, M. Emami, and A. Fathi, ‘‘A comprehensive investigation
into the performance, robustness, scalability, and convergence of chaos-
enhanced evolutionary algorithms with boundary constraints,’’ Artif. Intell.
Rev., vol. 52, no. 4, pp. 2319–2380, 2019.

[9] F. Wahid and R. Ghazali, ‘‘Hybrid of firefly algorithm and pattern search
for solving optimization problems,’’ Evol. Intell., vol. 12, no. 1, pp. 1–10,
Mar. 2019.

[10] F. Ramezani, J. Lu, and F. K. Hussain, ‘‘Task-based system load balancing
in cloud computing using particle swarm optimization,’’ Int. J. Parallel
Program., vol. 42, no. 5, pp. 739–754, Oct. 2014.

[11] R.Mishra, ‘‘Ant colony optimization: A solution of load balancing in cloud,’’
Int. J. Web Semantic Technol., vol. 3, no. 2, pp. 33–50, Apr. 2012.

[12] L. D. D. Babu and P. V. Krishna, ‘‘Honey bee behavior inspired load
balancing of tasks in cloud computing environments,’’ Appl. Soft Comput.,
vol. 13, no. 5, pp. 2292–2303, May 2013.

[13] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv. Eng.
Softw., vol. 69, pp. 46–61, Mar. 2014.

[14] M. Yakhchi, S. M. Ghafari, S. Yakhchi, M. Fazeli, and A. Patooghi,
‘‘Proposing a load balancing method based on cuckoo optimization
algorithm for energy management in cloud computing infrastructures,’’
in Proc. 6th Int. Conf. Modeling, Simulation, Appl. Optim. (ICMSAO),
May 2015, pp. 1–5.

[15] B. Raj, P. Ranjan, N. Rizvi, P. Pranav, and S. Paul, ‘‘Improvised bat
algorithm for load balancing-based task scheduling,’’ in Advances in
Intelligent Systems and Computing. Cham, Switzerland: Springer, 2018,
pp. 521–530.

[16] X. S. Yang and A. Slowik, ‘‘Firefly algorithm,’’ in Swarm Intelligence
Algorithms. Boca Raton, FL, USA: CRC Press, 2020, pp. 163–174.

[17] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[18] H. Mohammed and T. Rashid, ‘‘FOX: A FOX-inspired optimization
algorithm,’’ Appl. Intell., vol. 53, no. 1, pp. 1030–1050, Jan. 2023.

[19] B. M. H. Zade and N. Mansouri, ‘‘Improved red fox optimizer with fuzzy
theory and game theory for task scheduling in cloud environment,’’ J.
Comput. Sci., vol. 63, Sep. 2022, Art. no. 101805.

[20] S. K. Gavvala, C. Jatoth, G. R. Gangadharan, and R. Buyya, ‘‘QoS-aware
cloud service composition using eagle strategy,’’ Future Gener. Comput.
Syst., vol. 90, pp. 273–290, Jan. 2019.

[21] S. S. Mohapatra, R. R. Kumar, and J. Pradhan, ‘‘Hybrid eagle strategy for
QOS-based cloud service composition,’’ J. Inf. Optim. Sci., vol. 43, no. 5,
pp. 1047–1059, Jul. 2022.

[22] K. Prokop and D. Połap, ‘‘Heuristic-based image stitching algorithm with
automation of parameters for smart solutions,’’ Expert Syst. Appl., vol. 241,
May 2024, Art. no. 122792.

[23] S. Singhal and A. Sharma, ‘‘Load balancing algorithm in cloud computing
using mutation based PSO algorithm,’’ in Proc. Int. Conf. Adv. Comput.
Data Sci., 2020, pp. 224–233.

[24] A. A. Salah Farrag, S. A. Mahmoud, and E. S. M. El-Horbaty, ‘‘Intelligent
cloud algorithms for load balancing problems: A survey,’’ in Proc.
IEEE 7th Int. Conf. Intell. Comput. Inf. Syst. (ICICIS), Dec. 2015,
pp. 210–216.

[25] K. Ramya and S. Ayothi, ‘‘Hybrid dingo and whale optimization algorithm-
based optimal load balancing for cloud computing environment,’’ Trans.
Emerg. Telecommun. Technol., vol. 34, no. 5, p. e476, May 2023.

[26] M. Sumathi, N. Vijayaraj, S. P. Raja, and M. Rajkamal, ‘‘HHO-ACO
hybridized load balancing technique in cloud computing,’’ Int. J. Inf.
Technol., vol. 15, no. 3, pp. 1357–1365, Mar. 2023.

[27] M. Ahmed, M. Khatri, F. Ahmed, and J. Goyal, ‘‘An optimized fuzzy-based
load balancing in cloud computing,’’ in Proc. Int. Conf. Recent Adv. Electr.,
Electron. Digit. Healthcare Technol. (REEDCON), May 2023, pp. 323–328.

[28] R. Kumar and A. Chaturvedi, ‘‘Improved cuckoo search with artificial
bee colony for efficient load balancing in cloud computing environment,’’
in Smart Innovations in Communication and Computational Sciences.
Singapore: Springer, 2021, pp. 123–131.

[29] R. Kumar, D. Bhardwaj, and R. Joshi, ‘‘Adaptive bat optimization algorithm
for efficient load balancing in cloud computing environment,’’ in Advances
in Computational Intelligence and Communication Technology. Singapore:
Springer, 2022, pp. 357–369.

[30] A. Pradhan, S. K. Bisoy, S. Kautish, M. B. Jasser, and A. W. Mohamed,
‘‘Intelligent decision-making of load balancing using deep reinforcement
learning and parallel PSO in cloud environment,’’ IEEE Access, vol. 10,
pp. 76939–76952, 2022.

[31] D. Bagdasarov and E. I. Ostrovskii, ‘‘Reversion of chebyshev’s inequality,’’
Theory Probab. Appl., vol. 40, no. 4, pp. 737–742, 1996.

[32] J. B. Sale, ‘‘The behaviour of the resting rock hyrax in relation to its
environment,’’ Zoologica Africana, vol. 5, no. 1, pp. 87–99, Jan. 1970.

[33] D. J. Druce, J. S. Brown, J. G. Castley, G. I. H. Kerley, B. P. Kotler,
R. Slotow, and M. H. Knight, ‘‘Scale-dependent foraging costs: Habitat use
by rock hyraxes (Procavia capensis) determined using giving-up densities,’’
Oikos, vol. 115, no. 3, pp. 513–525, Dec. 2006.

[34] S. Badenhorst, K. L. van Niekerk, and C. S. Henshilwood, ‘‘Rock hyraxes
(Procavia capensis) from middle stone age levels at blombos cave, South
Africa,’’ Afr. Archaeolog. Rev., vol. 31, no. 1, pp. 25–43, Mar. 2014.

[35] D. Serruya and D. Eilam, ‘‘Stereotypies, compulsions, and normal behavior
in the context of motor routines in the rock hyrax (Procavia capensis),’’
Psychobiology, vol. 24, no. 3, pp. 235–246, Sep. 1996.

[36] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, andM. Chen, ‘‘Cost and makespan-
aware workflow scheduling in hybrid clouds,’’ J. Syst. Archit., vol. 100,
Nov. 2019, Art. no. 101631.

[37] N. J. Kansal and I. Chana, ‘‘Cloud load balancing techniques: A step
towards green computing,’’ IJCSI Int. J. Comput. Sci. Issues, vol. 9, no. 1,
pp. 238–246, 2012.

[38] Z. Benlalia, A. Beni-Hssane, K. Abouelmehdi, and A. Ezati, ‘‘A new
service broker algorithm optimizing the cost and response time for cloud
computing,’’ Proc. Comput. Sci., vol. 151, pp. 992–997, Jan. 2019.

[39] A. Beloglazov and R. Buyya, ‘‘Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,’’
in Proc. MGC@ Middleware, vol. 4, 2010, pp. 1–6.

[40] R. Buyya, A. Beloglazov, and J. Abawajy, ‘‘Energy-efficient management of
data center resources for cloud computing: A vision, architectural elements,
and open challenges,’’ 2010, arXiv:1006.0308.

[41] N. George, A. B. Kadan, and V. P. Vijayan, ‘‘Multi-objective load balancing
in cloud infrastructure through fuzzy based decision making and genetic
algorithm based optimization,’’ IAES Int. J. Artif. Intell., vol. 12, no. 2,
p. 678, Jun. 2023.

[42] B. Al-Khateeb, K. Ahmed, M. Mahmood, and D.-N. Le, ‘‘Rock hyraxes
swarm optimization: A new nature-inspired metaheuristic optimization
algorithm,’’ Comput., Mater. Continua, vol. 68, no. 1, pp. 643–654, 2021.

48748 VOLUME 12, 2024

S. Singhal et al.: Energy Efficient Load Balancing Algorithm for Cloud Computing

SAURABH SINGHAL (Member, IEEE) received
the Ph.D. degree, in 2021. He is currently an
Assistant Professor with GLA University, Mathura.
His research interests include resourcemanagement
and placement optimization in the field of parallel
and distributed systems.

ASHISH SHARMA is currently the Dean Aca-
demic Affairs with GLA University, Mathura.
He has published more than 60 papers in inter-
national journals and conferences of repute. His
research interests include software engineering,
software testing, distributed systems, cloud com-
puting, and artificial intelligence.

ANUSHREE is currently an Assistant Professor
with GLA University, Mathura. She has published
more than ten papers in international journals
and conferences of repute. Her research interests
include software engineering, software testing, and
artificial intelligence.

PAWAN KUMAR VERMA received the Ph.D.
degree from Lovely Professional University, Pun-
jab, India. He has authored or coauthored many
conferences and journals. His research interests
include cloud computing and artificial intelligence.

MOHIT KUMAR (Member, IEEE) received
the Ph.D. degree in CSE from Jaipur National
University, Jaipur. He is currently an Associate
Professor with the Department of IT, MIT Art,
Design & Technology University, Maharashtra,
India.

SAHIL VERMA (Senior Member, IEEE) is cur-
rently a Professor with SGT University, Haryana,
India. He has authored or coauthored articles in
reputed top-cited journals. He has chaired many
sessions at international conferences.

KAVITA (Senior Member, IEEE) is currently a
Professor with SGTUniversity, Haryana, India. She
has many research contributions in the area of cloud
computing, the Internet of Things, and vehicular ad-
hoc networks. Her research findings are published
in top-cited journals.

MANINDER KAUR received the bachelor’s and
master’s degrees in computer science from Guru
Nanak Dev University, Amritsar, India. She is
currently an Assistant Professor with the Depart-
ment of Computer Science and Applications, Guru
Gobind Singh College for Women, Chandigarh,
India. She has 15 years of experience as anAssistant
Professor. She has published many research articles.
Her research interests include fog computing and
the Internet of Things.

JOEL J. P. C. RODRIGUES (Fellow, IEEE) is
currently with the College of Computer Science
and Technology, China University of Petroleum,
Qingdao, China, and the Senac Faculty of Ceará,
Brazil; the Head of Research, Development, and
Innovation; and a Senior Researcher with Instituto
de Telecomunicaçōes, Portugal. He is a member
of the Internet Society, a Senior Member of ACM,
and a fellow of AAIA.

RUBA ABU KHURMA received the bachelor’s
and master’s degrees in computer science from
YarmoukUniversity, in 2004 and 2007, respectively,
and the Ph.D. degree in computer science from
the University of Jordan, in 2021. She is currently
an Assistant Professor with the Computer Science
Department, Al-Ahliyya Amman University. She
was a Researcher in cybersecurity and machine
learning with the Department of Cybersecurity and
Digital Forensics, Al-Balqa Applied University.

She has published many articles in reputable journals, book chapters, and
international conferences, such as CEC, ICPRAM, ECTA, ITISE, PICIT, and
Evoapplications.

MARIBEL GARCÍA-ARENAS received the Ph.D.
degree in computer science from the University of
Granada, in 2003.

She was with the University of Jaén, from 2003
to 2007, teaching computer and telecommunication
engineering degrees. She has been with the
University of Granada, since 2007, where she is
currently a Senior Lecturer with the Architecture
and Technology of Computers Department, teach-
ing electronic engineering and computer science

degrees. She has worked on several European, national, and regional
projects being the head researcher for three projects, two of them related
to mobility and traffic at national and regional levels. She also has more than
20 publications in international journals and conferences. Her main research
interests include evolutionary computation and high-performance computing.

VOLUME 12, 2024 48749

