
Received 26 February 2024, accepted 19 March 2024, date of publication 25 March 2024, date of current version 29 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380167

FedCSD: A Federated Learning Based Approach
for Code-Smell Detection
SADI ALAWADI 1,2, KHALID ALKHARABSHEH 3, FAHED ALKHABBAS 4,5,
VICTOR R. KEBANDE 1, (Member, IEEE), FERAS M. AWAYSHEH6,
FABIO PALOMBA 7, (Member, IEEE), AND MOHAMMED AWAD 8
1Department of Computer Science, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
2Computer Graphics and Data Engineering (COGRADE) Research Group, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
3Software Engineering Department, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, As-Salt
19117, Jordan
4Internet of Things and People Research Center, Malmö University, 211 19 Malmö, Sweden
5Department of Computer Science and Media Technology, Malmö University, 211 19 Malmö, Sweden
6Institute of Computer Science, Delta Research Centre, University of Tartu, 51009 Tartu, Estonia
7Department of Computer Science, University of Salerno, 84084 Fisciano, Italy
8Department of Computer Systems Engineering, Arab American University, Jenin 00970, Palestine

Corresponding author: Khalid Alkharabsheh (khalidkh@bau.edu.jo)

This work was supported by the Blekinge Institute of Technology.

ABSTRACT Software quality is critical, as low quality, or ‘‘Code smell,’’ increases technical debt and
maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by
learning from diverse and distributed data sources while respecting privacy and providing a scalable solution
for continuously integrating new patterns and practices in code quality management. However, the current
literature is still missing such capabilities. This paper addresses the previous challenges by proposing a
Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting ‘‘GodClass,’’ to enable
organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct
experiments using manually validated datasets to detect and analyze code smell scenarios to validate our
approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets,
with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest
(98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop
in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical
debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy
of 98.34%, comparable to the centralized model’s highest accuracy. The application of federated ML
techniques demonstrates promising performance improvements in code-smell detection, benefiting both
software developers and researchers.

INDEX TERMS Software quality, technical debit, federated learning, privacy-preserving, code smell
detection.

I. INTRODUCTION
Software quality assurance is a major aspect that occupies
the minds of software engineers and the software engineering
community at large. Consequently, there is a continuous need
to maintain the quality of the software, given that it is a
determinant in many aspects during and after development.
Specifically, software quality assurance determines and

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

detects the software pieces that suffer from low quality
in design or programming. These pieces are known as
‘‘Code Smells’’ [1]. The existence of code smells does not
produce errors during compilation or execution [2], they also
negatively influence the software quality factors [3], [4], [5].

Consequently, the availability of the code smells increases
the time and effort required to maintain the software. This
extra time and effort is known as technical debt [6], which
can be indicated by the presence of code smells. Several
terms and concepts have been used to denote code smells,

44888

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-6309-2892
https://orcid.org/0000-0002-3182-418X
https://orcid.org/0000-0002-8025-4734
https://orcid.org/0000-0003-4071-4596
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0002-5053-0785
https://orcid.org/0000-0003-3264-185X


S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

such as antipatterns, disharmonies, design flaws, design
defects, code anomalies, design smells, etc [4]. Code smells
can be identified in various software components, from
instructions to subsystems, and can influence different levels
of software granularity, such as methods, classes, and the
whole system. Code smell detection is an efficient way
to decrease maintenance costs and support the efforts of
software developers to improve the quality of software.
Due to the increasing size and complexity of the developed
software systems, more automated approaches are needed to
improve the activity of code smell detection.

At present, several approaches concentrate on code smell
detection, such as metric/rule-based approaches [7], [8], [9],
[10], [11], [12] and machine learning-based approaches [13],
[14], [15], [16], [17], [18], [19]. Most of these approaches
have been evaluated empirically, and they have obtained high
precision in smell detection. However, there are a set of
challenges that constrain their endorsement in the industry,
such as the ratio of false negatives and false positives in their
findings and the low degree of agreement between them.

To overcome the existing shortcomings and challenges,
literature studies, [15], [16], [17], [20], [21], [22], have shown
that machine learning-based approaches play a central role
in code smell detection and can be more exploited in this
direction. Consequently, it is possible to make a quantum leap
in improving the detection of the right code smells with high
accuracy.ML usesmathematical algorithms to award systems
the ability to learn without explicitly programming [23].
The use of centralized ML training to detect code smells

has been widely investigated.Â For instance, in [24], [25],
and [26], the authors compared the performance of multiple
ML algorithms for code smell severity detection over
different datasets. The centralized training process demands
a considerable amount of collected and aggregated data,
typically in a centralized place such as a data centre, cloud,
or server machine. This centralized data aggregation is imper-
ative for constructing an accurate model with quality that
adapts to dynamic data, aiming to provide recommendations,
decisions, and solutions for specific tasks. However, the
considerable expense associated with transferring data to a
central hub presents a significant hurdle. Moreover, this data
often contains sensitive and private information belonging
to the data owner, leading to concerns regarding both data
privacy and security. Such matters counter General Data
Protection Regulation (GDPR) policies and pose challenges
across various sectors, including healthcare, industry, poli-
tics, etc.

As a concrete example, let’s examine the software industry
within the context of our research. In this industry, every
company holds a significant stake in understanding the source
code and design quality employed by their competitors.
Aspects such as performance, maintainability, and reusability
are of utmost importance. These companies are keen on
leveraging this invaluable data to elevate the quality of
their software products. They aim to identify and rectify
anomalies and deficiencies in their codebase while refining

coding practices and policies to produce top-notch enterprise
software. However, it’s crucial to note that no companywithin
this competitive landscape will release their private data,
including their source code and design details. Instead, they
are in pursuit of techniques that allow them to extract valuable
insights and knowledge from other companies’ data in a
secure and non-invasive manner.

In this regard, Federated Learning (FL) emerges as an
efficient solution that maintains data privacy and security.
FL differs from centralizedML in migrating theMLmodel to
the data’s source for training, typically on the edge side [27].
Unlike centralized ML, FL enables all edge-node models to
contribute their knowledge without exposing the raw data
(source code or design in our case). By employing FL,
software enterprises that are hesitant to share their data can
internally train their ML models and then transfer the learned
model to a designated entity responsible for maintaining
software quality [28], [29].

The main contribution of this paper is to propose Federated
Learning Code Smell Detection (FedCSD), which, to the
best of our knowledge, is the first approach that exploits
FL for code smell detection. Specifically, the God Class
smell. We show how FedCSD can be applied in settings
where multiple software development companies collaborate
to improve the quality of their software development projects
without the need to share their code. Further, we discuss
how FedCSD can improve the traditional code review activity
within software development teams. Finally, we present
intensive experiments that show the advantages of applying
FedCSD to detect code smells in comparison to traditional
centralized ML approaches.

The remainder of this paper is organized as follows.
Section II introduces background on code smell detection
tools, the role of machine learning in code smell detection,
federated learning, and data privacy and attacks. Addition-
ally, it discusses related studies. Section III presents the
methodology we applied to design and validate our approach.
Section IV describes the proposed approach. Next, Section V
analyses and discusses the results. while Section VI discusses
the critical evaluation of the study. Finally, Section VII
presents the threats of validity and Section VIII presents
conclusions and recommendations for future work.

II. BACKGROUND AND RELATED WORK
A. CODE SMELL DETECTION TOOLS
Several code smell detection tools have been developed either
as standalone or integrated, commercial or open-source, and
they support different programming languages and detect
various types of code smells Examples of these tools include
iPlasma, jCosmo, Incode, DECOR, PMD, Borland Together,
and JDeodorant [4], [30]. However, they have limitations
that reduce their effectiveness in industry. Namely, they
have a low degree of agreement, lack the capability to
analyze software systems implemented in more than one
programming language, do not detect a wide set of different

VOLUME 12, 2024 44889



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

types of code smells, lack the interoperability of detection
tools with diverse development environments [31], and how
scalable code smell detection techniques are to large-scale
codebases.

One of the code smells that detection tools focus on the
most is Large Class [1], also referred to as God Class [32],
and the Blob [5]. In the literature, several studies have focused
on detecting the Large Class code smell [33], [34], [35], [36],
[37], [38], [39], [40], [41]. In their systematic mapping study,
the authors [4] analyzed close to 400 articles related to code
smells and found that Large Class negatively affects different
software quality attributes, the most important of which is
maintainability. Based on the above and since Large Class is
one of the code smells most frequently detected in software
systems, we decided to focus on it in this work.

B. MACHINE LEARNING IN CODE SMELL DETECTION
In one study [16], ML and object-oriented metrics extracted
from analyzing software systems were combined into an
approach to detect design flaws automatically. The proposed
approach was evaluated on three open-source systems. The
findings showed that the decision tree effectively detects
Large Class and Long Method smells. Another study [17]
utilized ML to predict seven types of design smells (Message
Chains,MiddleMan, Switch Statement, Long Parameter List,
Long Method, Feature Envy, and Lazy Class). The dataset
was constructed from a group of 27 metrics gathered from
software systems, including design smells.

Furthermore, in [15], the Bayesian Detection Expert
(BDTEX) approach was proposed to detect well-known
antipatterns named Functional Decomposition, Spaghetti
Code, and the Blob. The approach was evaluated on two
systems, and the results were compared with the DECOR
approach. Further, one study [42] presented a novel approach
that uses the support vector machine and object-oriented
metrics to detect Swiss Army Knife, the Blob, Spaghetti
Code, and Functional Decomposition antipatterns by analyz-
ing three software systems. The results were compared with
the DETEX approach. In another work by [43], five ML
techniques were used based on software metrics to detect
different antipatterns. The presented approach was named
NiPAD. The study was conducted using one application, and
the result showed that the best behavior was obtained by
the SVMlinear technique for identifying the One-lane Bridge
antipattern.

A more recent research study by [22] used 16 ML
classifiers to detect Data Class, God Class, Long Method,
and Feature Envy code smells. The chosen smells were
automatically detected using five tools. The study evaluated
74 software systems, and the results of detection were
validated manually by experts in the domain. The findings
showed that most of the techniques have a high degree of
accuracy. Moreover, in [19], the performance of metric-based
and machine learning-based approaches was empirically
compared in terms of code smell detection. The dataset was

constructed from 13 software systems and 17 metrics to
detect 11 code smells. The results showed that metric-based
approaches achieve slightly better performance. Nonetheless,
there is a need to conduct more studies on both approaches in
order to enhance the precision and efficiency of code smell
detection. Recently, the authors of [37] conducted a large-
scale study that investigated the usefulness of ML techniques
for effective design smell detection. The work focused on
determining the influence of data balancing on the accuracy
of ML techniques during design smell detection. A set of
28 classifiers was used to detect God Class design smells
in a dataset of 24 software systems that include 12,587
classes, and the detection results were validated manually
by experts. After replicating the experiments on two more
datasets, the findings showed there is no significant influence
of data balancing on the accuracy of learning classifiers
during design smell detection. Moreover, machine learning
approaches are efficient in God Class detection. Detecting
SQL code smells using code analysis seems like interesting
future work [44].

All the above studies concluded that standard machine
learning-based approaches have a promising and efficient
role in the code smell detection context. However, it has some
limitations concerning the obtained model. The generated
model has been trained on a dataset stored in a centralized
place and gathered from different open source software
projects located in well-known repositories. In this case,
due to the data privacy risks concerning data leaks or
misuse and the reluctance of companies to share their
complete project data on these repositories, there might
be a lack of information about the project context that
should be taken into account when training the model,
such as architectural patterns, domain-specific requirements,
and coding conventions. Therefore, the model may not
completely comprehend the intricacies of each software
project’s coding practises. Consequentially, the model’s
accuracy will be affected. In this work, to overcome the
limitations of previous works, we exploited the advantages
of federated learning for code smell detection. On the
one hand, our approach involves significant project-specific
context information that can be lacking or cannot be shared
between companies when training the model, resulting in a
more accurate and generalizable code smell detection model.
On the other hand, our approach preserves better the data
privacy and security of software projects, as companies do
not need to share their code repositories.

C. FEDERATED LEARNING
Big data systems [45] and traditional ML approaches are
centralized approaches. In general, they require data to be
collected and aggregated offline on one site, where the
models are trained and deployed [28], [46]. These approaches
have some shortcomings for code smell detection because
training and deploying ML models in central nodes requires
companies to disclose the source code of their projects.

44890 VOLUME 12, 2024



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

Similarly, distributed learning approaches require the code to
be released to the distributed servers. Thus, such approaches
do not address the companies’ privacy concerns [47], [48].
To overcome the aforementioned limitations, Google

proposed FL, an emerging paradigm that enables users or
organizations to jointly train an ML model without releasing
their private data [46], [49], [50]. Fl follows the privacy-
by-design philosophy [51]. Specifically, in FL settings,
companies can train a global ML model to detect code smells
collaboratively by aggregating the local trained models’
updated parameters (gradients, weights) and reporting them
to the FL server, where the global model will be constructed,
then propagating the global model to all the involved
companies or contributors. Therefore, by exploiting FL, the
companies do not need to share their source code or data,
thereby preserving their privacy, and they just share their
models’ learned knowledge that collaboratively builds a
comprehensive global model to detect code smells.

D. DATA PRIVACY AND SECURITY THREATS
Scenarios surrounding traditional ML allude to the fact that
centralization plays a major role in holding training data and
executing the learning algorithm. In real-world situations,
legal restrictions and privacy laws prohibit sharing even well-
trained models across diverse participants [52]. Data being
the driving force behind the running of many companies,
it is worth noting that tech companies own a majority of ML
models; based on how these companies manage the data and
code behind the running of operations, this raises pertinent
questions of centralization [53]. Centralization in this context
provides an avenue for a single point of failure and increases
the threat levels and potential attack surfaces with the
possibility of zero-day vulnerabilities. To accommodate
data owners’ constant need for secure and collaborative
data execution, an FL environment provides guarantees and
assurances from a privacy and security perspective. However,
the literature pinpoints other diverse scenarios that emphasize
privacy, for example, during model-training [54] and also
during security-based model training [55].

Privacy concerns in code smell detection are important
in the software development landscape. This importance is
mainly seen when considering the inherent sensitivity of
code and data ownership. In the conventional paradigm of
centralized code smell detection, where code repositories
are extensively analyzed, a critical issue emerges where
potential exposure of sensitive or proprietary information
is imminent. These repositories often hold the confidential
data that forms the backbone of an organization’s software
projects. Traditional methods inadvertently raise significant
privacy concerns when sharing such code repositories or data
with external parties. This study assesses these capabilities
from the perspective of intentional or unintentional data
leakage, which could compromise the trained model [55].

By harnessing the power of FL, it is envisaged that orga-
nizations could collectively train machine learning models

while keeping their code and data firmly within their own
walls. This collaborative yet privacy-preserving approach
ensures that sensitive information remains confidential and
proprietary algorithms stay safeguarded.

Security-related threats in the code smell could pose
significant challenges to the integrity and reliability of the
code quality assessment process. The authors from key
assumptions like code injection on original code and adver-
sarial attacks are prevalent in many cases when preparing,
training, or deploying learning models. The common form
of security-related attacks involves adversarial manipulation,
tampering with code and training data during the testing
phases, indiscriminate attacks where an adversary makes
wrong decisions in order to damage the classifiers, integrity
attacks, and availability attacks focused on degrading the
usability of the FL system and the code deployed by
increasing the positive rate [56], [57], [58].

These unauthorized infiltrations can lead to false positives
or negatives in code smell detection, rendering the entire
process unreliable. In traditional centralized approaches,
where code repositories are shared, the risk of such attacks is
heightened, as external access to code repositories becomes a
potential point of entry for adversaries.

The suggestions on possible defence strategies that pre-
serve privacy and allow open and closed codes to withstand
these attacks are discussed in the subsequent sections of this
paper.

E. WHY FL IN CSD?
The integration of FL in CSD represents a significant
paradigm shift, addressing several limitations inherent in
traditional CSD methodologies (See Table 1). FL’s decen-
tralized nature fundamentally enhances data privacy and
security, a critical concern in software development where
codebases often contain sensitive or proprietary information.
By processing data locally at the node level, FL circumvents
the need to centralize sensitive code, thus preserving confi-
dentiality while enabling practical code analysis. Moreover,
FL’s handling of diverse and distributed data sources is
particularly advantageous in CSD. Traditional approaches
typically rely on centralized data aggregation, which needs
to improve with the size and diversity of code repositories.
However, FL excels at learning from heterogeneous data
sources, offering a more robust and inclusive code quality
analysis. This scalability is further beneficial in large-scale
projects or organizations where FL distributes computational
load across multiple nodes, mitigating resource constraints
centralized systems face.

However, implementing FL in CSD has its challenges
(See Table 1). Ensuring robust local data processing while
managing data diversity and consistency across various
nodes introduces complexity. Another significant challenge
is addressing data sparsity and imbalance without introducing
biases, especially with non-iid datasets [59]. Moreover, when
detecting rare or subtle code smells. Despite these challenges,

VOLUME 12, 2024 44891



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

TABLE 1. Challenges in code smell detection and federated learning opportunities.

FL’s ability to provide real-time, decentralized, and privacy-
preserving analysis and its scalability and adaptability to
diverse datasets make it an effective and valuable method for
CSD. The approach enhances the integrity and reliability of
code quality assessment and aligns with the evolving needs
of modern, distributed software development practices. Thus,
while the path to seamlessly integrating FL in CSD involves
navigating certain complexities, the overarching advantages
it presents in terms of security, scalability, and comprehensive
analysis make it a compelling approach in the realm of code
quality management.

III. RESEARCH METHODOLOGY
To address the challenges highlighted in Section II and
better answer of the needs of the software development
communities, we propose the FedCSD approach. For this
purpose, we applied in an iterative way the design science
research method, as we aimed at devising an innovative
approach that solves a practical problem and this is supported
by the selected methodology. Specifically, we followed
the well-defined guidelines for conducting design science
research, which comprises five stages, namely, problem
explication, requirements definition, artifact design and
development, artifact demonstration, and artifact evaluation
[60].

In the problem explication stage, we reviewed the literature
for code smell detection approaches. We found that no
studies investigated the use of FL for code smell detection
purposes. Accordingly, we used the Goal-Question-Metric
(GQM) approach, which is commonly used by the software
engineering community [61], [62], to formulate our study
goal presented in Table 2.
In the requirements definition stage, we defined one

requirement based on the defined goal, namely, to devise
an approach that exploits FL to detect code smells cross-
organizations. Accordingly, we formulated the following
research questions and hypotheses:

TABLE 2. Goal of this study.

RQ1 How can federated learning be effectively leveraged
for God Class code smell detection? Objective: by
answering this RQ, we aim to understand how FL
can be applied within each software development
company and also across different companies to
detect code smells and consequently improve the
software systems’ quality.

RQ2 How does the use of federated learning affect the
quality of the resulting ML model compared to the
individual models generated by centralized training
approaches? Objective: by answering this RQ,
we aim at comparing the performances of FL and
centralized ML models in detecting code smells.

The null hypotheses have been formulated as follows:
Hypothesis 1: Federated learning cannot be effectively

leveraged for God Class code smell detection.
Hypothesis 2: Federated learning does not improve the
quality of the resulting ML model compared to the individual
models generated by centralized training approaches. In
the artifact design and development stage, we proposed
the first approach that exploits FL to detect code smells
during the software development phase (see Section IV).
Specifically, our approach shows how multiple organizations
can collaboratively exploit FL to train ML models without

44892 VOLUME 12, 2024



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

the need to share their code and use the models to improve
the qualities of their code. Further, our approach evolves the
traditional code review life cycle by integrating the models
trained collaboratively.

In the artifact demonstration and evaluation stages,
we simulated how our approach can be applied in cross-
organizational settings and ran experiments that validate its
feasibility, respectively (see Section V).

IV. FedCSD APPROACH
This section presents our approach for Federated Learning
Code Smell Detection (FedCSD). To the best of our knowl-
edge, FedCSD is the first proposed approach that evolves
the traditional code review life cycle by integrating FL to
detect code smells during development. Consequently, our
approach enables addressing code smells proactively, unlike
the majority of existing approaches, which manage technical
debt issues reactively. The approach exploits traditional
architectures of FL and is mainly based on the FEDn
framework.

First, we introduce how the approach supports multiple
organizations to employ FL to collaboratively train ML
models that can detect code smells with higher accuracy.
Then, we describe how the FedCSD evolves the traditional
code review activity within the software development life
cycle.

A. FedCSD IN ACTION
Figure 1 shows abstractly how FedCSD supports organiza-
tions to exploit FL to train ML models and use them to
improve the quality of their code. For this purpose, companies
need to set up FedCSD containers, which can be realized
using Dockers.1

For this purpose, companies need to link the containers
with both their code repositories and the data pipeline that
will be used to train the MLmodel locally in FL settings. The
containers run the client endpoint that automatically starts the
local training rounds (i.e., on the edge of the network [63]),
reports the updated weights’ resulting from the local training
to the FL aggregators, and updates the ML models’ weights
according to the results of the global model parameters
constructed by the FL aggregator (reducer or server). The FL
aggregators (reducers and combiners) run on a shared cloud
environment that auto-scales based on the number of involved
clients using the Kubernetes2 technology. Algorithm 1 shows
the FedAvg algorithm used to derive global weights using the
weights generated during local training rounds. The models
provide feedback to the developers about their code quality,
as described in detail below.

The FL infrastructure of FedCSD adopts the FEDn
federated learning framework [64]. FEDn is an open-
source framework that follows the hierarchical MapReduce

1https://www.docker.com
2https://kubernetes.io/

FIGURE 1. Federated learning in cross-organization settings.

Algorithm 1 FedAvg Algorithm, Where k is the Number
of Clients, r is the Number of Rounds, Wi is the Local
Model Weights andM is the Global Model Weights
Input:Wt
Output:M (Wt )

1 Server executes:
2 initializedW0
3 Function FedAVG(k,Wt−1,Wt):
4 foreach t ← 1 to r do
5 St ← (sample a random set of clients)
6 foreach client k ∈ St in parallel do
7 W k

t+1← ClientUpdate(k,Wt ,Nl)
8 Wt+1←

∑k
k=1

nk
n W

k
t+1

9 end
10 Wt ← (Wt−1 + (Wt −Wt−1)/t)
11 end
12 returnM (Wt )

paradigm. Figure 2 illustrates FEDn architecture composed
of three layers: reducers, combiners, and clients.

The reducer acts as a server in the server-client paradigm,
which has several responsibilities, including the following:
(1) monitoring the model training; (2) controlling the
communications flow among all the federation components;
(3) initiating the seed model with a random weight and then
distributing it among the connected combiners; (4) propa-
gating the computing package where the model training and
validation instructions are descried to combiners, then from
combiners to the connected clients; (5) starting the training
(i.e., communication rounds); and (6) aggregating all the
updated parameters of the combiners’ local–global models
and then averaging them using the FedAvg algorithm (see
Algorithm 1) to construct the final global model. Meanwhile,
the combiner represents the intermediate layer responsible
for the following: (1) linking the reducer with different
client nodes to decrease the reducer’s computation load and
the network communication workload; (2) distributing the
received model from the reducer across all corresponding
clients; and (3) combining all local models’ updated gradients
provided by the connected clients using the FedAvg algorithm
to build the local–global model.

Finally, the client layer represents the companies’ local
servers (edge nodes), where the data is placed and the local

VOLUME 12, 2024 44893



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

FIGURE 2. A high level representation of FedCSD’s main components, including 1 reducer,
2 combiners, and 10 companies.

Algorithm2Local Client Update,Where k is theNumber
of Clients, Dk is Client k Local Dataset, e is the Number
of Local Epochs, and η is the Learning Rate
Output:Wt
/* Run on client k */

1 Function ClientUpdate(k,Wt):
2 β← (split Dk into mini batches)
3 for local epoch ei ∈ 1, . . . e do
4 for batch b ∈ β do
5 Wt ← Wt − η∇l(Wt , b)
6 end
7 end
8 returnWt

model training rounds are performed. Each client in the
federation will receive from the combiner both the MLmodel
and the computing package, which is considered the guideline
for the client to train the model. Algorithm 2 explains the
training process in the client’s local node per communication
round. The algorithm returns themodel’s updated parameters,
which will be reported backward to the upper layer. Each
client should be connected to a combiner, but multiple clients
can be connected to the same combiner, as can be seen in
Figure 2.

B. EVOLVED CODE-REVIEW ACTIVITY
Code review is one of the main activities that reduces mainte-
nance costs and technical debt. Detecting and addressing code
smells early prevents them from becoming more complex
problems in the future, especially when the software systems
are large-scale. Also, developers can improve their knowl-
edge and learning experience by discussing and determining
refactoring opportunities suggested by ML models. Also,
thanks to FL, our approach enables the generation of ML
models that are trained on a variety of software systems from
multiple companies without the need to share the code bases
of the different projects.

FIGURE 3. The evolved code review cycle.

Figure 3 shows the code-review activity, which is part
of the traditional software development life cycle, evolved
by exploiting FL to improve the code quality. The cycle
starts when engineers or developers request to check their
individual code for smells before creating code review
requests to their team leads or other experienced team
members (step 1). Then, the ML model detects smells in the
developers’ individual code and provides them with feedback
(step 2). Accordingly, the developers update their individual
code and then create code review requests (e.g., using
Bitbucket) (step 3). After that, the teammembers responsible
for reviewing the different code submitted for review receive
feedback from the ML model about smells detected in the
entire code being reviewed (steps 4 and 5). Accordingly,
the code reviewers provide feedback, possibly to multiple
developers, to adjust the code to improve its quality (step 6).
This cycle continues until all the comments on the code are
addressed and no smells are detected. Consequently, the code
submitted for review is approved and merged to the suitable
branch (e.g., a release branch on GitHub) (step 7).

V. RESULTS AND DISCUSSION
To validate and evaluate the feasibility of the proposed
approach in code smell detection activity, we designed the
following experiments:

44894 VOLUME 12, 2024



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

1) Experiment 1: Train the code smell detection model
for each dataset centrally and evaluate its performance
in terms of accuracy.

2) Experiment 2: Simulate a new coding behavior sce-
nario for a real company by evaluating the trained ML
model using parts of other datasets (cross-validation).

3) Experiment 3: Evaluate our approach by splitting
the three datasets into different chunks to simulate
10 distinct companies that will participate in training
the global ML model.

The code used to run the experiments is available via
Github.3

A. EXPERIMENTAL SETTINGS
In this section, we describe the datasets used in this study.
After that, we describe the Long Short-Term Memory
(LSTM) algorithm to automatically detect the god class code
smell.

1) DATASET
To examine the proposed approach, we used three datasets
from the literatures [18], [22], and [65]. The details of
these datasets concerning the number of classes, the number
of methods, and the total lines of code in each software
are shown in Tables 3, 4, and 5, respectively, while the
comparisons among them are shown in Table 6. The 1st

(Pecorelli et al.) and 2nd (Fontana et al.) datasets were
constructed by [18] and [22], respectively, whereas the 3rd
(Khalid et al.) was collected by our team. The set of software
systems used in each dataset were open-source, written in
Java, came from different domains and size categories, and
were available in different repositories, such as Github and
SourceForge. Moreover, they are well-known and widely
used in the code smell detection context. Concerning (our)
dataset (i.e., the 3rd one), we followed concrete criteria to
collect the software systems from the repositories, including
the number of downloads, availability in several versions, and
the history of software systems’maintenance. Due to the huge
number of systems that met the criteria, we randomly selected
twenty-four systems. The datasets focused on detecting
different types of code smells, and the God Class was one
of them. According to Fowler and Beck [1], a large class
is a class that tries to do too many tasks, making it very
large regarding the total number of lines of code, number
of methods, number of variables, and dependencies with
other classes. Therefore, the possibility of duplicate code
will increase. Moreover, this class has high complexity as
well as low cohesion. [5]. Table 6 presents the characteristics
of the chosen datasets in terms of the number of projects,
the number of classes, the number of detection tools, and
the number of detected God Classes (GC) using tools (GC-
Tool), the number of human experts who participated in
the manual validation process, and the number of God
Classes detected by experts (GC-Experts). The total number

3https://github.com/saadiabadi/codeSmill.git

of software systems was 111 and was formed of more than
80, 000 classes. Each dataset was analyzed automatically
by a set of detection tools, and the detection results were
manually validated by a group of human experts who have
good knowledge of code smell detection. The results of the
manual validation were formulated as a binary decision (God
Class = 1, Not God Class = 0). As a result, the number of
false positives God Classes was reduced in all datasets from
2, 696 to 721, which represents a 26% reduction. To meet
the study’s objective, we preprocessed all datasets to have
the same features and format. Table 7 reports the 16 features
of the dataset, their definitions, and the quality dimensions
of different software levels. The replication package in [66]
includes all the datasets.

TABLE 3. Pecorelli et al. dataset characteristics.

2) LONG SHORT-TERM MEMORY (LSTM) ALGORITHM
We used the Long Short-Term Memory (LSTM) model to
detect the God Class code smell over the datasets mentioned
earlier. The structure of LSTM [67] depends on three gates:
an input gate, a memory and forgetting gate, and an output
gate. The input gate regulates the flow of information; the
forget gate ensures that unimportant information is forgotten.
Ft refers to the following mechanism.

Ft = σ (Wf · [ht−1, xt ]+ bf ) (1)

The it represents the input gate that is used to retain the
neural network’s state and to determine which data will be
incorporated into the cell’s state

it = σ (Wi · [ht−1, xt ]+ bi) (2)

The output gate Ot presents what extent and how
information is filtered out of the neural network.

Ot = σ (Wo · [ht−1, xt ]+ bo) (3)

where σ is the activation function, Wf , Wi, and Wo are the
weights value, ht−1, is output value before ‘t’, xt , is input
value at ‘t’, and bt , bi, and bo are the bias value for the 3 gates.
The model was implemented using the public TensorFlow

framework implementation fromKeras.4 Themodel architec-
ture comprises one LSTM input layer with 16 dimensions,

4https://github.com/tensorflow/tensorflow

VOLUME 12, 2024 44895



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

TABLE 4. Fontana et al. dataset characteristics.

four dense layers with 72, 50, 36, and 28 units, and a ReLU
activation function. The output layer distinguishes between

TABLE 5. Khalid et al. dataset characteristics.

TABLE 6. Characteristics of the datasets used in this study.

TABLE 7. Dataset features.

God Class and Not God Class. For instance, we fixed the
model hyper-parameters per communication round to have
a 0.001 initial learning rate with the Adam optimizer. Then,
we fixed the batch size to 32. Finally, we set the maximum
number of epochs to 1. This model has been used in both
centralized and collaborative training experiments (FedCSD).

Further, we simulated 10 different companies using the
datasets mentioned earlier by using the Pecorelli et al. [18]
dataset, partitioned to five chunks; the Fontana et al. [22]
dataset, not partitioned; and Alkharabsheh et al. [37] dataset,
partitioned to 4 chunks. All of the previous data chunks
represent 10 different heterogeneous companies, as shown
in Figure 2 in the client layer. Moreover, we relayed

44896 VOLUME 12, 2024



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

our experiment over Swedish National Infrastructure for
Computing (SNIC) Science Cloud [68] resources, and all
instances used in the experiment have 8 Virtual Centralized
Processing Units (VCPU), and 16GB RAM.

B. EVALUATION METRICS
To evaluate the FedCSD approach, we used the evaluation
metrics Accuracy, Loss Function, Kappa, and ROC Area,
which are well-known in the literature for evaluating
ML in code smell detection. Each metric evaluates the
performance of the proposed approach from a different
aspect.
• Accuracy represents the ratio of correctly classified
samples (true positive and true negative). In this study,
it is the percentage of classes that are predicted correctly
as God Class/Not God Class. However, the accuracy
value falls between 0 and 100 and can be computed
using Equation 4. Higher values indicate amore accurate
prediction.

Accuracy =
TP+ TN

TP+ TN + FN + FP
∗ 100% (4)

• Loss Function is a method to evaluate ML algorithms
concerning how well the obtained model is qualified
to predict the expected classification results. If the
predicted results are distant from the actual results,
the value of the loss function will be high. This value
denotes the errors in the prediction process and can be
reduced through learning the loss function. We used the
categorical cross-entropy as a loss function, as shown in
Equation 5.

Loss = −
N∑
i=1

yi. log ŷi (5)

where ŷi is the model prediction for i-th pattern, yi
represent the corresponding real value, and N is the total
number of samples.

• Cohen Kappa is a test assessing the concordance
between the samples that ML algorithms classified and
the labelled data. The values of the Kappa measure
range from -1 to 1, where the higher value denotes a
strong degree of concordance. The Cohen Kappa can be
computed using Equation 6.

κ =
Po − Pe
1− Pe

. (6)

where Po represents the samples ratio agreement, and
Pe shows the expected agreement percentage between
samples. Moreover, the interpretation of the kappa
values is shown in Table 8.

• The ROC-Area, the area under the Response Operating
Characteristic (ROC) curve, is a well-known test that
is used to evaluate, organize, and visualize the effec-
tiveness of ML algorithms. It focuses on identifying the
relationships between the specificity and sensitivity of
learning algorithms. The ROC values range from 0 to 1.

TABLE 8. Kappa values interpretation.

The higher ROC value indicates a better learning model.
Table 9 presents the interpretation of the test.

TABLE 9. ROC area interpretation.

C. EXPERIMENT 1: CENTRALIZED TRAINING
In this experiment, a centralized ML model was trained
over each mentioned dataset to evaluate the performance
of the code smell detection model in a traditional company
scenario. Table 10 reports the model’s accuracy per dataset.
We noticed that the model has achieved high accuracy over
all datasets. For instance, training the ML model over both
Khalid et al. and Pecorelli et al. datasets has obtained
higher performance, with a slight difference related to the
number of smells covered by each dataset. Meanwhile, with
the Fontana et al.dataset, the model obtained the lowest
accuracy (92.30%), detecting fewer smells than what actually
exists. The nature of the dataset, such as software quality,
size, and diversity, plays a main role in the model’s accuracy.
The number of projects used in each dataset as well as the
number of classes were different and belonged to different
size categories (large, medium, etc.). Therefore, there are
differences in the size of the training dataset used to train
the model, which directly influence the model’s accuracy,
as shown in the cases of Pecorelli et al. and Khalid et al.,
which were larger than the Fontana et al. dataset. In addition,
the set of software projects came from various software
domains (application, development, etc.) and statuses (stable,
mature, etc.) and were randomly included in the datasets.
All these factors influence the model’s accuracy and should
be taken into account when producing robust and accurate
detection models. Therefore, we hypothesized that any
change in the company’s coding culture or new workers
joining the company with different coding behaviours would
affect the ML model’s performance and cause technical debt.

D. EXPERIMENT 2: ML MODEL CROSS-EVALUATION
Changing the company’s coding culture will likely introduce
divergences in model performance, leading to concept drift
that can adversely influence the model’s outputs. To evaluate
the resilience and robustness of the centrally trained model

VOLUME 12, 2024 44897



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

TABLE 10. The accuracy achieved by the centralized ML model per
dataset.

against such shifts, we have simulated new changes in
companies’ coding behaviour that could appear from a
new team member or updates in company policies that
significantly impact both their internal culture and their
products. Therefore, we trained the ML model over one
dataset and validated it over the other two datasets (cross-
evaluation). Table 11 reports the accuracy achieved by the
model trained based on earlier settings. Notably, when the
model was trained on either Pecorelli et al. or Khalid et al.
and tested on the other, we noticed a small gap in model
accuracy compared with the results obtained in experiment 1
(see V-C) for both datasets, and the model has achieved the
highest accuracy (96.30% and 97.00%, respectively) using
both datasets in this context, which refers to the fact that both
companies shared the same coding behaviour and culture.

In contrast, when training or testing the ML model
on the Fontana et al. dataset, a notable and significant
drop in model accuracy was observed across all cases
between 15% and 30%. The model obtained the low-
est accuracy (63.80%) compared to the highest accuracy
(97.00%) achieved using other datasets. It is essential to
highlight that the Fontana et al. dataset covers different
types of smells with further distribution as other datasets.
Furthermore, the drift concept, whether in terms of data
or model drift, introduces an additional dimension to the
context, highlighting the critical steps needed to improve
model performance and adaptability in such scenarios.

In conclusion, this experiment clearly shows the significant
impact of coding behaviour or culture changes on the
smell detection model. By comparing the results obtained
from experiments 1 and 2, we observed examples of the
model drift concept affecting performance significantly.
At the same time, in other cases, the impact was relatively
insignificant. To tackle this problem, we propose our FedCSD
approach, where the global model is collaboratively trained
and built, leveraging contributions from various companies.
This approach effectively captures and adapts to changes in a
company’s culture and its team’s coding behaviour.

TABLE 11. Trained LSTM model evaluated over the other two datasets in
a centralized fashion.

E. EXPERIMENT 3: FedCSD EVALUATION
We conducted this experiment to answer the research
questions presented in Section III as well as to validate
our proposed approach (FedCSD) in terms of global model
performance (Accuracy and Loss), prediction agreement
(Kappa), sensitivity and specificity (ROC value). In this
experiment, we simulated 10 companies to participate in
the federation by splitting both the Pecorelli et al. and
Khalid et al. datasets into chunks that represent five and
four companies, respectively, and keeping the Fontana et al.
dataset to represent one company. This allowed us tomaintain
all clients’ heterogeneity and replicate a real scenario.
Consequently, the experiment showed the power of federated
learning andmitigated the challengeswe faced in the previous
experiments. Further, we found that this will reduce the
computation cost by leveraging the edge nodes (companies)
resources to train the model, preserve each company’s data
privacy, construct a global model that has a comprehensive
knowledge of code smells accumulated from all clients, and
reduce the opportunity of having technical debt if new smells
appear.

Figure 4 shows the model’s loss function behavior over
the testing set for 100 rounds, which is generally employed
over the training and validation sets to optimize the ML
algorithm. This metric was calculated using the model
prediction for every sample and its corresponding actual
output individually, indicating how bad or good the model
is. Figure 4 shows the improvement of the model’s learning
process after each training round. The testing showed that the
model behaved perfectly after round 40, which indicates that
the model had reached optimal behavior based on the loss
value.

FIGURE 4. Global federated learning model loss function of 10 different
clients (companies) for 100 communication rounds.

After obtaining the optimal optimization of the model
using the loss function, the model’s performance was also
evaluated in terms of accuracy. Figure 5 illustrates the global
model’s performance for 100 training rounds. We noticed
that the initial model accuracy was high (97.7%) and very
close to the centralized results. Moreover, the global model’s
performance converged in a considerable direction and
reached 98.34%. We noticed that around round 63, the model
started to stabilize with only a slight oscillation (0.04%) until
round 95.

44898 VOLUME 12, 2024



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

Comparing our FedCSD accuracy with experiments
1 and 2, we argue that our model outperforms both the
centralized and cross-evaluation experiments, despite the
FedCSD accuracy being a bit lower than the results obtained
from the model trained over the Khalid et al. dataset (see
Table 10) by almost 0.1%. This difference can be ignored
in favor of both the model global knowledge and the model
stability provided by the FedCSD.

FIGURE 5. Global federated learning model accuracy of 10 different
clients (companies) for 100 communication rounds.

Evaluating our FedCSD approach in terms of the agree-
ment ratio between the global model prediction and the
corresponding actual value demonstrates the robustness of
our approach. Figure 6 depicts the Cohen Kappa measured
while testing the global model for 100 training rounds. There
is a significant improvement in the Kappa value per training
round, where the initial agreement was low (around 55%)
then linearly converged in the right direction. Further, the
Kappa value started to stabilize after round 60 and obtained
79%, which falls in the substantial range as indicated in
Table 8. Therefore, the acquired agreement ratio shows
the strong learning ability of the FedCSD, which can be
generalized for code smell detection problems.

FIGURE 6. Global federated learning model kappa value (%) of 10 clients
(companies) for 100 communication rounds.

In addition to the previous metrics, we calculated the
ROC value for the global model constructed by our approach
during 100 rounds. The ROC value is an essential and
accurate metric used to evaluate classification problems that
do not rely on class distributions. As shown in Figure 7, the
ROC value curve depicts the trade-off between sensitivity
(Y-axis) and specificity (X-axis). However, the global model
improved linearly per training round, similarly to the previous

metrics. Moreover, Figure 7 highlights how after round 60,
the model stabilized without any anomalous behavior, which
guides us to the conclusion that our approach can capture or
learn any new change in the coding culture.

FIGURE 7. Global federated learning model ROC value of 10 clients
(companies) for 100 communication rounds.

Based on the above, in general, we find that the ML
model trained based on the proposed approach (FedCSD)
has achieved high performance values according to the loss
function, accuracy, kappa, and ROC measurements when
detecting code smell. As a result, we conclude that the
federated learning approach can effectively be leveraged for
God Class code smell detection. Both null hypotheses are
therefore rejected.

VI. DISCUSSION: CRITICAL EVALUATION OF THE STUDY
The experiments that have been conducted in this study have
shown the importance of applying FL to preserve privacy
during the training of an ML model, owing to the complexity
that is involved during software design. While code smells
are seen as perennial issues that affect the quality of software,
machine learning, specifically the federated aspect, is touted
as a game changer in code smell detection, not only with a
higher degree of accuracy but also with precision in preserv-
ing essential attributes of the code and data. Accordingly,
this study offers an optimal approach aimed at addressing
the endemic and perennial privacy issues prevalent during
the ML training phase. We are aware of the fact that the
knowledge extracted during data training plays a significant
role; hence, securely distributing and showing the extracted
knowledge from the FL approach emerges as an effective
solution to the challenges posed by traditional centralized
machine learning methods. Furthermore, leveraging data
from open-source software in FedCSD offers considerable
advantages, particularly in code smell detection.

Notably, this approach can be applied in a multitude
organizations that will collaboratively be able to not only
train ML models but also detect code smells, preserve the
privacy of their data, and at the same time expose the relevant
security-related risks during the training of ML models. The
significant findings of this study can be summarized as
follows:

The implications of our findings extend beyond the
confines of this research and are addressed as follows:

VOLUME 12, 2024 44899



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

• Collaborative Software Quality Enhancement: Our
study demonstrates that organisations can effectively
harness FL to train and enhance machine learning
models collaboratively. This approach holds profound
significance for improving the quality of software code
while preserving the essential privacy of data and code.
Practitioners in software development can leverage this
approach to detect and rectify code smells proactively,
thus minimizing technical debt and enhancing software
maintainability. Therefore, the FedCSD approach intro-
duces a valuable user-feedback component, allowing
developers to assess their code quality and detect code
smells collaboratively for continuous improvement.
This interactive aspect fosters a culture of code quality
awareness within development teams, leading to better
code practices and enhanced software quality.

• Privacy-Preserving Software Development: The
study addresses the critical challenge of privacy in
code smell detection, a concern that has often been/not
been extensively explored based on existing literature.
Our findings emphasize the importance of privacy
preservation in machine learning applications and
provide a blueprint for other domains where sensitive
data is involved.

• On-the-fly Code Smell Detection: The validity of the
experiments that were conducted in this study shows
that code detection models aid in not only detecting
software design flaws but also improving accuracy
during this discourse. The experiments conducted in this
study validate the efficacy of code detection models
in not only identifying software design flaws but also
improving overall accuracy. This holds great promise for
practitioners seeking robust tools to assess and enhance
their code quality.

In addition, we have explored the need for exploring
potential security vulnerabilities and adversarial learning
threats, which, as a result of implementing FedCSD, may
affect integrity and privacy. Firstly, it is pertinent to explore
the existence of attack vectors [69], which have far-reaching
implications for the deployment of FedCSD. For example,
aspects like model poisoning [70], where malicious partici-
pants may inject erroneous data during training holds. Others
include data poisoning [71], model and gradient inversion
attacks [72], and membership inference attacks [73]. The
aforementioned are key adversarial techniques that may
defeat the FedCSD implementation. While the scope of this
research does not go into an exploration of key mitigation
strategies, from a privacy perspective, we identify leveraging
differential privacy [74], secure aggregation, model encryp-
tion, and the use of robust federated optimization algorithms
that are essential for ensuring the effectiveness and privacy of
federated learning-based approaches such as FedCSD.

We argue that leveraging FL to address privacy related
aspects in code smell detection is innovative given that,
at the time of writing this paper, there was a gap in research
on code smell detection using closed datasets, improving

accuracy, and involving multiple organizations while also
simultaneously preventing code exposure. Importantly, this
study outlines the shortcomings of traditional ML, which,
from a privacy and security perspective, increases the
threat and attack levels of the learning models. While we
acknowledge that the study does not go into detail in
identifying specific security attacks, it is worth mentioning
that we have taken a step in highlighting the generic security-
related aspects that could be of interest when deploying
FedCSD. Given that the scope of the study is not majorly
inclined towards security, we were not concerned with the
significance of this aspect during ML phases (as pointed out
by [56], [57], [58]). However, we consider this an avenue for
future work.

While this study primarily focuses on code smell detection
and privacy preservation, it opens up several avenues for
future research. Specifically, there is potential for further
exploration of security aspects, such as specific security
attacks during machine learning phases, as well as the devel-
opment of more sophisticated privacy-preserving techniques
within the Federated Learning framework.

Ultimately, our study bridges the gap in research related
to code smell detection using closed datasets, accuracy
improvement, and multi-organizational collaboration while
maintaining code confidentiality, as was seen in the scenario
that was leveraged in this study. We acknowledge the
limitations of not delving into specific security attacks, and
we recognize this as an area ripe for future investigation.
The implications of this research extend to practitioners
who seek to elevate software quality while safeguarding
data privacy and security, making it not only a significant
contribution to academia but also a valuable resource for
industry professionals.

Further, we have taken a positive step in acknowledging
the previous related studies that have not only laid a firm
foundation for this work but have also provided key insights
that have significantly consolidated the arguments put forth
in this paper.

VII. THREATS TO VALIDITY
This section presents the various threats to the validity of our
proposed approach.

A. CONSTRUCT VALIDITY
Construct validity concerns the tools and algorithms
exploited for code smell detection purposes. Accordingly,
one threat concerns the use of the Fedn framework. In [64],
the authors conducted multiple experiments that validated
the Fedn framework’s scalability, resource utilization, and
training accuracy. Another threat to validity concerns the
use of the LSTM algorithm. When we performed the
experiments, the Fedn framework supported only deep
learning algorithms. We chose the LSTM algorithm because
it is known for its ability to store information from previous
steps and use that information to influence the output of
the current step. Additionally, the LSTM achieved almost

44900 VOLUME 12, 2024



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

the same score as the best code smell detection algorithm
reported in [37].

B. INTERNAL VALIDITY
An internal threat to the validity of our approach concerns
the distribution of the used datasets with respect to the class
instances (i.e., god class/not god class). Unbalanced datasets
can affect the quality of the trained ML model. To mitigate
this threat, we applied oversampling and undersampling
techniques in order to balance the three datasets used in the
experiments.

C. EXTERNAL VALIDITY
An external threat to the validity of our approach concerns the
generalization of our experiments’ results. Specifically, the
application of our approach for detecting code smells, e.g.,
in commercial and/or non-open-source software systems.
To mitigate this threat, we considered three datasets of
open-source systems with different application domains
and size categories. Indeed, our experiments show that the
performance of theML trained using the datasets outperforms
the performance of a centralized ML model trained on an
individual dataset.

VIII. CONCLUSION AND FUTURE WORKS
Great strides have been made in developing federated
learning as a distributed AI-based technique as far as the
enhancement of privacy of data is concerned. However, at the
time of writing this paper, there existed limited or no research
that leveraged federated learning in not only detecting code
smells but also preserving privacy at the same time. As a
result, the research that has been reported in this paper has
explored a privacy-aware approach by proposing a Federated
Learning Code Smell Detection (FedCSD) that is significant
for organizations. The relevance of this proposition is that it
enables organizations to ensure software quality and preserve
the privacy of their data at the same time by mainly sharing
only knowledge as opposed to data. Specifically, in this paper,
we demonstrated the application of FL in training ML to
detect code smells in different companies’ code bases without
the need to share those bases. Further, we presented an
evolved code review life cycle that integrates our approach.
Furthermore, we introduced a variety of datasets that targeted
different organizations with code smells, and the outcome
showed a higher accuracy not only in the evaluation metrics
but also in the global model across all organisations.

The FedCSD global model outperforms the cross-
evaluation models, where the FedCSD model was able
to detect more smells on a global level which is not
detectable individually by the centralized model. Moreover,
The FedCSDmodel shows stability and robustness compared
to the results of experiments 1 and 2; even the centralized
model of the first and third datasets obtained the highest
accuracy, where more resources are required, and there is no
data privacy preservation has been considered.

The novelty that backs this study shows a higher relevance
when exploring code smells using FL, with dataset two
achieving the lowest accuracy of 92.30% with fewer smells
in Experiment 1, while datasets one and three achieved
the highest accuracy with a slight difference of 98.90%
and 99.5%, respectively. Consequently, in Experiment 2,
a significant drop in the model accuracy, lowest accuracy
63.80% is seen where fewer smells exist in the training
dataset. Ultimately, in Experiment 3, where the dataset is split
into 10 companies, an accuracy of 98.34% was achieved by
the global model that has been trained using 10 companies
for 100 training rounds. In addition, we presented relevant
studies that have utilized federated learning in a closely
matching context in order to consolidate the key problem and
the propositions in this paper. As a result, given that varying
datasets have been used, it is the authors opinion that this
study outperforms the state-of-the art FL methods. Based on
above-mentioned premise, the key objective of this paper,
which was identified in the earlier sections, has been reported
correctly to best of our knowledge.

In view of the fore-goings, the authors reiterates that pri-
vacy being a perennial challenge among organizations, these
propositions gives a guarantee of not only maintaining and
preserving privacy but also an assurance of software quality
through a FL code smell detection approach. However, owing
to the emerging diversification in this area, there are avenues
for future work.

In future work, we plan to apply our proposed approach
in practice by involving multiple software development com-
panies that develop software systems in different domains.
In addition, we plan to extend the approach to detect more
types of code smells in software projects implemented in
various programming languages. Also, it would be imperative
to explore security vulnerabilities, adversarial learning in
FedCSD and mitigation strategies.

REFERENCES
[1] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing

Code. Reading, MA, USA: Addison-Wesley, 1999.
[2] F. Pérez, ‘‘Refactoring planning for design smell correction object-oriented

software,’’ Ph.D. thesis, Dept. Math. Comput. Sci., Valladolid Univ.,
Valladolid, Spain, 2011.

[3] A. AbuHassan, M. Alshayeb, and L. Ghouti, ‘‘Software smell detection
techniques: A systematic literature review,’’ J. Softw., Evol. Process,
vol. 33, no. 3, Mar. 2021, Art. no. e2320.

[4] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada, ‘‘Software
design smell detection: A systematic mapping study,’’ Softw. Quality J.,
vol. 27, no. 3, pp. 1069–1148, Sep. 2019.

[5] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Hoboken, NJ, USA: Wiley, 1998.

[6] W. Cunningham, ‘‘The WyCash portfolio management system,’’ ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, Apr. 1993.

[7] M. Choinzon and Y. Ueda, ‘‘Detecting defects in object oriented designs
using design metrics,’’ in Proc. 7th Joint Conf. Knowl.-Based Softw. Eng.,
May 2006, pp. 61–72.

[8] R. Fourati, N. Bouassida, and H. Abdallah, ‘‘A metric-based approach
for anti-pattern detection in UML designs,’’ Comput. Inf. Sci., vol. 364,
pp. 17–33, May 2011.

[9] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel, ‘‘IPlasma: An
integrated platform for quality assessment of object-oriented design,’’ in
Proc. Intl. Conf. Softw. Maintenance—Ind. Tool, 2005, pp. 77–80.

VOLUME 12, 2024 44901



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

[10] N. Moha and Y.-G. Guéhéneuc, ‘‘Decor: A tool for the detection of design
defects,’’ in Proc. 22nd IEEE/ACM Int. Conf. Automated Softw. Eng.,
Nov. 2007, pp. 527–528.

[11] M. J. Munro, ‘‘Product metrics for automatic identification of ’bad smell’
design problems in Java source-code,’’ in Proc. Intl. Conf. Softw. Metrics,
2005, p. 15.

[12] R. Shatnawi, ‘‘Deriving metrics thresholds using log transformation,’’
J. Softw. Evol. Process, vol. 27, no. 2, pp. 95–113, Feb. 2015.

[13] K. Alkharabsheh, Y. Crespo, M. Fernández-Delgado, J. R. Viqueira, and
J. A. Taboada, ‘‘Exploratory study of the impact of project domain and size
category on the detection of the god class design smell,’’ Softw. Quality J.,
vol. 29, no. 2, pp. 197–237, Jun. 2021.

[14] S. Hassaine, F. Khomh, Y.-G. Gueheneuc, and S. Hamel, ‘‘IDS: An
immune-inspired approach for the detection of software design smells,’’
in Proc. 7th Int. Conf. Quality Inf. Commun. Technol., Sep. 2010,
pp. 343–348.

[15] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, ‘‘BDTEX: A
GQM-based Bayesian approach for the detection of antipatterns,’’ J. Syst.
Softw., vol. 84, no. 4, pp. 559–572, Apr. 2011.

[16] J. Kreimer, ‘‘Adaptive detection of design flaws,’’ Electron. Notes Theor.
Comput. Sci., vol. 141, no. 4, pp. 117–136, Dec. 2005.

[17] N. Maneerat and P. Muenchaisri, ‘‘Bad-smell prediction from software
design model using machine learning techniques,’’ in Proc. 8th Int. Joint
Conf. Comput. Sci. Softw. Eng. (JCSSE), May 2011, pp. 331–336.

[18] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, ‘‘A large
empirical assessment of the role of data balancing in machine-learning-
based code smell detection,’’ J. Syst. Softw., vol. 169, Nov. 2020,
Art. no. 110693.

[19] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, ‘‘Comparing
heuristic and machine learning approaches for metric-based code smell
detection,’’ in Proc. IEEE/ACM 27th Int. Conf. Program Comprehension
(ICPC), May 2019, pp. 93–104.

[20] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, ‘‘Bad smell detection using
machine learning techniques: A systematic literature review,’’ Arabian
J. Sci. Eng., vol. 45, no. 4, pp. 2341–2369, Apr. 2020.

[21] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, ‘‘Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,’’ Inf. Softw. Technol., vol. 108, pp. 115–138, Apr. 2019.

[22] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, ‘‘Comparing
and experimenting machine learning techniques for code smell detection,’’
Empirical Softw. Eng., vol. 21, no. 3, pp. 1143–1191, Jun. 2016.

[23] J. Alzubi, A. Nayyar, and A. Kumar, ‘‘Machine learning from theory
to algorithms: An overview,’’ J. Phys. Conf. Ser., vol. 1142, Nov. 2018,
Art. no. 012012.

[24] R. S. Rao, S. Dewangan, A. Mishra, and M. Gupta, ‘‘A study of dealing
class imbalance problem with machine learning methods for code smell
severity detection using PCA-based feature selection technique,’’ Sci. Rep.,
vol. 13, no. 1, p. 16245, Sep. 2023.

[25] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, ‘‘Code smell detection
using ensemble machine learning algorithms,’’ Appl. Sci., vol. 12, no. 20,
p. 10321, Oct. 2022.

[26] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, ‘‘A novel approach
for code smell detection: An empirical study,’’ IEEE Access, vol. 9,
pp. 162869–162883, 2021.

[27] F. M. Awaysheh, R. Tommasini, and A. Awad, ‘‘Big data analytics from
the rich cloud to the frugal edge,’’ in Proc. IEEE Int. Conf. Edge Comput.
Commun. (EDGE), Jul. 2023, pp. 319–329.

[28] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[29] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, ‘‘A survey on federated
learning,’’ Knowl.-Based Syst., vol. 216, Mar. 2021, Art. no. 106775.

[30] G. Rasool and Z. Arshad, ‘‘A review of code smell mining techniques,’’
J. Softw. Evol. Process, vol. 27, no. 11, pp. 867–895, Nov. 2015.

[31] T. Lewowski and L. Madeyski, ‘‘How far are we from reproducible
research on code smell detection? A systematic literature review,’’ Inf.
Softw. Technol., vol. 144, Apr. 2022, Art. no. 106783.

[32] M. Lanza and R. Marinescu, Object-oriented Metrics in Practice: Using
Software Metrics To Characterize, Evaluate, and Improve the Design of
Object-oriented Systems. Cham, Switzerland: Springer, 2007.

[33] K. Alkharabsheh, ‘‘Improving design smell detection for adoption Ind,’’
Ph.D. thesis, Dept. Softw. Eng., Universidade de Santiago de Compostela,
Spain, 2019.

[34] K. Alkharabsheh, ‘‘An empirical study on the co-occurrence of design
smells in the same software module: God class case study,’’ in Proc. IEEE
Jordan Int. Joint Conf. Electr. Eng. Inf. Technol. (JEEIT), Nov. 2021,
pp. 1–6.

[35] K. Alkharabsheh, S. Alawadi, Y. Crespo, M. E. Manso, and
J. A. T. González, ‘‘Analysing agreement among different evaluators
in god class and feature envy detection,’’ IEEE Access, vol. 9,
pp. 145191–145211, 2021.

[36] K. Alkharabsheh, S. Alawadi, K. Ignaim, N. Zanoon, Y. Crespo, E. Manso,
and J. A. Taboada, ‘‘Prioritization of god class design smell: A multi-
criteria based approach,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 34,
no. 10, pp. 9332–9342, Nov. 2022.

[37] K. Alkharabsheh, S. Alawadi, V. R. Kebande, Y. Crespo, M. Fernández-
Delgado, and J. A. Taboada, ‘‘A comparison of machine learning algo-
rithms on design smell detection using balanced and imbalanced dataset:
A study of god class,’’ Inf. Softw. Technol., vol. 143, Mar. 2022,
Art. no. 106736.

[38] K. Alkharabsheh, Y. Crespo, E. Manso, and J. Taboada, ‘‘Comparación de
herramientas de detección de design smells,’’ XXI Jornadas de Ingeniería
del Softw. Bases de Datos, pp. 159–172, 2016.

[39] K. Alkharabsheh, Y. Crespo, E. Manso, and J. Taboada, ‘‘Sobre El
grado de acuerdo entre evaluadores en La detección de design smells,’’
XXI Jornadas de Ingeniería del Softw. Bases de Datos, pp. 143–157,
2016.

[40] S. Counsell and E. Mendes, ‘‘Size and frequency of class change from
a refactoring perspective,’’ in Proc. 3rd Int. IEEE Workshop Softw.
Evolvability, Oct. 2007, pp. 23–28.

[41] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter, ‘‘Inter-smell
relations in industrial and open source systems: A replication and
comparative analysis,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), Marco Zanoni, France, Sep. 2015, pp. 121–130.

[42] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc, G.
Antoniol, and E. Aïmeur, ‘‘Support vector machines for anti-pattern
detection,’’ in Proc. 27th IEEE/ACM Int. Conf. Automated Softw. Eng.,
Sep. 2012, pp. 278–281.

[43] M. Peiris and J. H. Hill, ‘‘Towards detecting software performance anti-
patterns using classification techniques,’’ ACM SIGSOFT Softw. Eng.
Notes, vol. 39, no. 1, pp. 1–4, Feb. 2014.

[44] M. Ragab, R. Tommasini, F. M. Awaysheh, and J. C. Ramos, ‘‘An in-depth
investigation of large-scale RDF relational schema optimizations using
spark-SQL,’’ DOLAP, vol. 2840, pp. 71–80, 2021.

[45] F. M. Awaysheh, M. Alazab, S. Garg, D. Niyato, and C. Verikoukis, ‘‘Big
data resource management & networks: Taxonomy, survey, and future
directions,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp. 2098–2130,
4th Quart., 2021.

[46] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, ‘‘Federated learning in mobile edge networks:
A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart., 2020.

[47] Z. Cai and Z. He, ‘‘Trading private range counting over big IoT data,’’
in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019,
pp. 144–153.

[48] J. Pang, Y. Huang, Z. Xie, Q. Han, and Z. Cai, ‘‘Realizing the
heterogeneity: A self-organized federated learning framework
for IoT,’’ IEEE Internet Things J., vol. 8, no. 5, pp. 3088–3098,
Mar. 2021.

[49] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Koneč ný, S. Mazzocchi, H. Brendan McMahan, T. Van
Overveldt, D. Petrou, D. Ramage, and J. Roselander, ‘‘Towards federated
learning at scale: System design,’’ 2019, arXiv:1902.01046.

[50] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decen-
tralized data,’’ Proc. Artif. Intell. Statist., vol. 54, pp. 1273–1282,
2017.

[51] F. M. Awaysheh, M. N. Aladwan, M. Alazab, S. Alawadi, J. C. Cabaleiro,
and T. F. Pena, ‘‘Security by design for big data frameworks over cloud
computing,’’ IEEE Trans. Eng. Manag., vol. 69, no. 6, pp. 3676–3693,
Dec. 2022.

44902 VOLUME 12, 2024



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

[52] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and
Y. Zhou, ‘‘A hybrid approach to privacy-preserving federated learning,’’ in
Proc. 12th ACM Workshop Artif. Intell. Secur., Nov. 2019, pp. 1–11.

[53] R. Doku, D. B. Rawat, and C. Liu, ‘‘Towards federated learning approach
to determine data relevance in big data,’’ in Proc. IEEE 20th Int. Conf. Inf.
Reuse Integr. Data Sci. (IRI), Jul. 2019, pp. 184–192.

[54] S. Alawadi, V. R. Kebande, Y. Dong, J. Bugeja, J. A. Persson,
and C. M. Olsson, ‘‘A federated interactive learning IoT-based health
monitoring platform,’’ in Proc. Eur. Conf. Adv. Databases Inf. Syst., 2021,
pp. 235–246.

[55] A. Kjamilji, E. Savas, and A. Levi, ‘‘Efficient secure building blocks
with application to privacy preservingmachine learning algorithms,’’ IEEE
Access, vol. 9, pp. 8324–8353, 2021.

[56] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ 2014, arXiv:1412.6572.

[57] V. R. Kebande, S. Alawadi, F. M. Awaysheh, and J. A. Persson,
‘‘Active machine learning adversarial attack detection in the user feedback
process,’’ IEEE Access, vol. 9, pp. 36908–36923, 2021.

[58] V. R. Kebande, S. Alawadi, J. Bugeja, J. A. Persson, and C. M. Olsson,
‘‘Leveraging federated learning & blockchain to counter adversarial
attacks in incremental learning,’’ in Proc. 10th Int. Conf. Internet Things
Companion, Oct. 2020, pp. 1–5.

[59] M. Haller, C. Lenz, R. Nachtigall, F. M. Awayshehl, and S. Alawadi,
‘‘Handling non-IID data in federated learning: An experimental evalu-
ation towards unified metrics,’’ in Proc. IEEE Intl. Conf. Dependable,
Autonomic Secur. Comput., Intl. Conf. Pervasive Intell. Comput., Intl.
Conf. Cloud Big Data Comput., Intl. Conf. Cyber Sci. Technol. Congr.
(DASC/PiCom/CBDCom/CyberSciTech), Nov. 2023, pp. 762–770.

[60] P. Johannesson and E. Perjons, An Introduction To Design Science, vol. 10.
Cham, Switzerland: Springer, 2014.

[61] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[62] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Cham, Switzerland: Springer,
2012.

[63] F. M. Awaysheh, ‘‘From the cloud to the edge towards a distributed and
light weight secure big data pipelines for IoT applications,’’ in Trust,
Security and Privacy for Big Data. Boca Raton, FL, USA: CRC Press,
2022, pp. 50–68.

[64] M. Ekmefjord, A. Ait-Mlouk, S. Alawadi,M. Åkesson, P. Singh, O. Spjuth,
S. Toor, and A. Hellander, ‘‘Scalable federated machine learning with
FEDn,’’ 2021, arXiv:2103.00148.

[65] K. Alkharabsheh, Y. Crespo, M. Fernandez-Delgado, J. M. Cotos, and
J. A. Taboada, ‘‘Assessing the influence of size category of the project in
god class detection, an experimental approach based onmachine learning,’’
in Proc. Int. Conf. Softw. Eng. Knowl. Eng., Lisbon, Portugal, Jul. 2019,
pp. 361–472.

[66] K. Alkharabsheh, S. Alawadi, V. Kebande, Y. Crespo, M. Delgado,
and J. Taboada, ‘‘Replication package of raw data, scripts and all
necessary material for replication,’’ 2021. [Online]. Available: https://
drive.google.com/drive/folders/1_Q7i52QPb-MogNzW6vpePWSNkYy
A1gKX?usp=sharing

[67] B. A. Sunjaya, S. D. Permai, and A. A. S. Gunawan, ‘‘Forecasting of
COVID-19 positive cases in Indonesia using long short-term memory
(LSTM),’’ Proc. Comput. Sci., vol. 216, pp. 177–185, Jan. 2023.

[68] S. Toor, M. Lindberg, I. Falman, A. Vallin, O. Mohill, P. Freyhult,
L. Nilsson, M. Agback, L. Viklund, H. Zazzik, O. Spjuth, M. Capuccini,
J. Möller, D. Murtagh, and A. Hellander, ‘‘SNIC science cloud (SSC): A
national-scale cloud infrastructure for Swedish academia,’’ in Proc. IEEE
13th Int. Conf., Oct. 2017, pp. 219–227.

[69] N. Bouacida and P. Mohapatra, ‘‘Vulnerabilities in federated learning,’’
IEEE Access, vol. 9, pp. 63229–63249, 2021.

[70] X. Zhou, M. Xu, Y. Wu, and N. Zheng, ‘‘Deep model poisoning attack on
federated learning,’’ Future Internet, vol. 13, no. 3, p. 73, Mar. 2021.

[71] F. Nuding and R. Mayer, ‘‘Data poisoning in sequential and parallel
federated learning,’’ in Proc. ACM Int. Workshop Secur. Privacy Analytics,
Apr. 2022, pp. 24–34.

[72] H. Liang, Y. Li, C. Zhang, X. Liu, and L. Zhu, ‘‘EGIA: An external gradient
inversion attack in federated learning,’’ IEEE Trans. Inf. Forensics Security,
vol. 18, pp. 4984–4995, 2023.

[73] A. Suri, P. Kanani, V. J. Marathe, and D. W. Peterson, ‘‘Subject member-
ship inference attacks in federated learning,’’ 2022, arXiv:2206.03317.

[74] A. Galozy, S. Alawadi, V. Kebande, and S. Nowaczyk, ‘‘Beyond random
noise: Insights on anonymization strategies from a latent bandit study,’’
2023, arXiv:2310.00221.

SADI ALAWADI received the master’s degree
in soft computing and intelligent systems from
Granada University, in 2012, and the Ph.D. degree
in computer science/AI from the Research Center
of Intelligent Technologies (CiTIUS), University
of Santiago de Compostela, Spain, in 2018. Cur-
rently, he is an Associate Professor with Blekinge
Institute of Technology, Sweden. His academic
journey has seen him in various research and
teaching roles, including his previous position

as an Assistant Professor with Halmstad University, Sweden. He was a
Postdoctoral Researcher at esteemed institutions, such as the Department
of Information Technology, Division of Scientific Computing, Uppsala
University; the IOTAP Research Center, Malmö University; and the
Consiglio Nazionale delle Ricerche (CNR)—ISTI, Pisa, Italy. He has several
publications in top-tier journals and conferences, includingNeural Networks,
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS, Information and Software Technology, Neural
Computing and Applications, Journal of King Saud University Computer
and Information Sciences, and CCGRID. His research interests include
the Internet of Things (IoT), machine learning (ML), deep learning, real-
time analysis, data visualization, big data, digital forensics, edge and
cloud computing, dimensionality reduction, blockchain, federated learning,
transfer and interactive learning, and the Internet of Health.

KHALID ALKHARABSHEH received the B.Sc.
degree in computer science from Yarmouk Uni-
versity, in 2002, the M.Sc. degree in computer
science from Al-Balqa Applied University (BAU),
Jordan, in 2005, and the Ph.D. degree from
the Research Center of Intelligent Technologies
(CiTIUS), Santiago de Compostela University,
Spain, in 2019. He was a Lecturer with BAU,
in September 2006. He won an Erasmus Mundus
Grant to pursue the Ph.D. degree, in 2014. He was

an Assistant Professor with the Software Engineering Department, in 2019,
where he has been the Head, since 2021. He is currently an Assistant
Professor and works with different research teams and committees. His
research interests include machine learning, big data, software quality,
empirical software engineering, software validation and verification, and
design smell detection.

FAHED ALKHABBAS received the bachelor’s
degree in computer information technology from
Arab American University, Palestine, the master’s
degree in computer science from Trento Uni-
versity, Italy, and the Ph.D. degree in computer
science from Malmö University. He is currently
an Assistant Professor with the Department of
Computer Science and Media Technology, Malmö
University, Sweden. He is also affiliated with the
Internet of Things and People (IoTaP) Research

Centre, Sweden. He has more than seven years of industrial experience in
software development, during which he led several teams in international
organizations and companies, such as the United Nations, Tetra Tech
DPK, GVC-Italia, and FreightOS. His research interests include software
engineering, artificial intelligence, and the Internet of Things.

VOLUME 12, 2024 44903



S. Alawadi et al.: FedCSD: A Federated Learning Based Approach for Code-Smell Detection

VICTOR R. KEBANDE (Member, IEEE) received
the Ph.D. degree in computer science (infor-
mation and computer security architectures and
digital forensics) from the University of Pretoria,
Hatfield, South Africa. He was a Researcher
with the Information and Computer Security
Architectures (ICSA) Group and the DIgiFORS
Research Group, University of Pretoria. He was
a Postdoctoral Researcher with the Internet of
Things and People (IOTAP) Center, Department

of Computer Science, Malmö University, Malmö, Sweden. He was also a
Postdoctoral Researcher of cyber and information security in information
systems research subject with the Department of Computer Science,
Electrical and Space Engineering, Luleå University of Technology, Luleå,
Sweden. He is currently an Assistant Professor of IT security with
the Department of Computer Science (DIDA), Blekinge Institute of
Technology (BTH), Karlskrona, Sweden. His research interests include
cyber, information security, digital forensics in the IoT, the IoT security,
digital forensics-incident response, cyber-physical system protection, critical
infrastructure protection, cloud computing security, computer systems,
distributed system security, threat hunting and modeling, cyber-security risk
assessment, blockchain technologies, and privacy-preserving techniques.
He is an Editorial Board Member of Forensic Science International: Reports
journal.

FERAS M. AWAYSHEH received the B.Sc. degree
in software engineering from Al-Balqa Applied
University, the M.Sc. degree (Hons.) from New
York Institute of Technology (NYIT), with a focus
on information, computer, and network security,
and the Ph.D. degree in big data and cloud
computing from the University of Santiago de
Compostela, Spain. Currently, he is leading the
Edge Intelligence and Data Analytics Research
Group, University of Tartu. His previous roles

have enriched his international experience, including a Visiting Fellow with
The University of Edinburgh, U.K., and an Adjunct Lecturer with Charles
Darwin University, Australia. He serves as an Associate Editor for Cluster
Computing (Springer) and IEEE TRANSACTIONS ON SERVICE COMPUTING and a
Guest Editor for Information Processing and Management (Elsevier) and
Future Generation Computer Systems (Elsevier). He has several publications
in top-tier journals and conferences, including IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:
EXPRESS BRIEFS, IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, IEEE
INTERNET OF THINGS JOURNAL, and Future Generation Computer Systems.
He has led as the General Chair and the Technical Program Chair of
several conferences, including FMEC2023, IDSTA2021, IEEEEDGE, IEEE
CBDCom, iMETA, FLTA, and MegaData.

FABIO PALOMBA (Member, IEEE) received
the European Ph.D. degree in management and
information technology, in 2017. He is currently an
Assistant Professor with the Software Engineering
(SeSa) Laboratory, University of Salerno. His
research interests include software maintenance
and evolution, software engineering for artifi-
cial intelligence, empirical software engineering,
source code quality, and mining software reposi-
tories. He was a recipient of multiple awards and

research grants for his research. He was also a recipient of the 2017 IEEE
Computer Society Best Ph.D. Thesis Award. In 2023, he received the
prestigious IEEE/TCSE Rising Star Award. He has been involved in the
editorial board of several software engineering journals and in the program
committee of multiple software engineering conferences.

MOHAMMED AWAD received the B.S. degree
in automation engineering from Palestine Poly-
technic University, in 2000, and the master’s
and Ph.D. degrees in computer engineering from
Granada University, Spain, with a focus on arti-
ficial intelligence. From 2005 to 2006, he was
a Contract Researcher with the Research Group
Computer Engineering: Perspectives and Applica-
tions, Granada University. Since February 2006,
he has been an Assistant Professor with the

Computer Engineering Department, College of Engineering and Information
Technology, Arab American University, Palestine. In 2016, he was a Full
Professor of computer engineering. He worked for more than 18 years with
Arab American University in an academic position, in parallel with various
academic administrative positions. He is currently a Professor of computer
engineering/artificial intelligence. Through his research and educational
experience, he has developed a strong research record. He concentrates on
using AI tools in real applications, especially in using AI in the health sector.
His research interests include artificial intelligence techniques, machine
learning, deep learning, neural networks, function approximation of complex
systems, clustering techniques, optimization algorithms, and time-series
prediction. He won several awards and research grants.

44904 VOLUME 12, 2024


