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ABSTRACT Reconstructing 3D garment models usually requires laborious data-fetching processes, such
as expensive lidar, multiple-view images, or SMPL models of the garments. In this paper, we propose a
neat framework that takes single-image inputs for generating pseudo-sparse views of 3D garments and
synthesizing multi-view images into a high-quality 3D neural model. Specifically, our framework combines
a pretrained pseudo sparse view generator and a volumetric signed distance function (SDF) representation-
based network for 3D garment modeling, which uses neural networks to represent both the density and
radiance fields.We further introduce a stride fusion strategy tominimize the pixel-level loss in key viewpoints
and semantic loss in random viewpoints, which produces view-consistent geometry and sharp texture details.
Finally, a multi-view rendering module utilizes the learned SDF representation to generate multi-view
garment images and extract accurate mesh and texture from them. We evaluate our proposed framework
on the Deep Fashion 3D dataset and achieve state-of-the-art performance in terms of both quantitative and
qualitative evaluations.

INDEX TERMS Computer graphics, garment reconstruction, single view, 3D reconstruction.

I. INTRODUCTION
Recently, image-based 3D reconstruction has made sig-
nificant progress benefiting from neural rendering [1].
It also enabled the realization of implicit single-view
garment reconstruction, which involves generating accurate
texture and geometry of garments from a single image.
These advances have resulted in improved performance
and increased efficiency of garment reconstruction methods,
leading to potential applications in various fields, such as
fashion, e-commerce, and virtual try-on systems.

Several approaches have been proposed for 3D reconstruc-
tion or garment reconstruction in the past. In the context of 3D
reconstruction, methods such as depth estimation using stereo
images, structure-from-motion, and multi-view stereo [2],
[3] have been used to generate 3D models from multiple
images or viewpoints. However, these methods require
multiple images and/or complex equipment, which may
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not always be feasible. In contrast, implicit reconstruction
methods [1], [4] use deep learning techniques to learn
a mapping between 2D images and 3D garment shapes,
requiring single or sparse views as input. This makes them
more practical for real-world applications. In the context of
garment reconstruction, several methods have been proposed
that leverage geometric and physical models of garments,
such as deformable models, and physically-based models
[5]. However, these methods can be computationally expen-
sive and require specialized equipment for capturing the
physical properties of the garment, such as deformation and
texture.

In this paper, we introduce a novel framework for
the implicit single-view reconstruction of garments that
addresses these challenges. Our approach is designed to
generate accurate 3Dmodels of garments from a single image
or viewpoint, taking into account the fine-grained details
and intricate textures of garments, and accounting for the
complex and non-rigid nature of garments. We evaluate our
approach on several benchmark datasets and demonstrate its
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FIGURE 1. Given only a single garment image as input, our framework
effectively fuses the weakly-aligned pseudo images predicted by the
multi-view generator from sparse key viewpoints, and conducts semantic
matching in random views to fill the gaps between key viewpoints,
resulting in a high-quality full 3D model.

superiority over existing state-of-the-art methods. The main
contributions include:

- We introduce a two-stage single-view 3D reconstruction
framework. It utilizes an image-based generator to create
a set of weakly-aligned key viewpoints, and then fuse
these views into a view-consistent 3D SDF. The image-
based generator can preserve reasonable texture details from
any viewpoint, and the fusion stage ensures geometric and
semantic consistency across different views.

- We propose a stride fusion strategy to synthesize these
view-inconsistent pseudo views into 3Dmodels. Specifically,
we only optimize pixel-level MSE losses in some keyframes
that have little overlapping between each other, and then
utilize a self-supervised semantic loss to connect these
striding keyframes to achieve view consistency.

- We leverage multi-resolution feature grids with MLP
decoder to improve both the rendering clarity and geometric
accuracy of reconstructed garments, resulting in high-quality
output.

II. RELATED WORK
A. SINGLE-VIEW 3D RECONSTRUCTION
Reconstructing 3D objects from a single view is a challenging
problem, as it is ill-conditioned and requires reconstructing
the 3D structure of the scene from just one viewpoint.

One approach is to rely on collections of 3D primitives to
approximate the target shape explicitly. These works obtain
object embeddings from input RGB images and map them
to the 3D space. Various 3D object representation methods
are employed, such as mesh [6], [7], [8], point clouds [9],
[10], and voxel [11], [12]. And the methods of embedding
and mapping are influenced by 3D object representation
methods. Some others leverage cues like texture [13] and
defocus [14] to understand 3D shapes from a single image.
The effectiveness of these approaches relies on the technique
of estimating depth cues from images. In addition, [9] directly
regresses the point clouds from the image using learned priors
to complete the information of invisible parts.

Recently, there has been a remarkable development of
NeRF-based approaches [15], [16] for 3D reconstruction,
following the success of neural radiance fields (NeRF) [1].

Some researchers focus on improving the accuracy of sparse
view reconstruction [17], [18], [19]. Furthermore, works like
PixelNeRF [4] and PVSeRF [20] aim to reconstruct 3D
scenes from a single image by incorporating prior knowledge
of the object’s structure. These methods train their models
on ShapeNet [21], a database containing objects of simple
shapes with available 3D annotation.

B. NOVEL VIEW SYNTHESIS
Novel view synthesis is a task of generating novel views
of a scene from a new viewpoint. The generation of high-
quality images from an unseen perspective is a challenging
task, particularly when the object’s position and orientation
in the scene are not known.

One of the popular approaches to novel view synthesis
involves using Generative Adversarial Network (GAN) [22].
In prior works, researchers explored the use of GAN
models to discover latent semantic directions that could
manipulate object rotation without reliance on underlying 3D
models [21], [23], [24], [25]. Several recent works [26], [27]
have extended this GAN-based approach toNeRFmodels and
trained them using adversarial losses, resulting in significant
performance improvements.

Another promising approach to novel view synthesis
involves using diffusion models, specifically diffusion
denoising probabilistic models. Diffusion models are a class
of generative models that make use of a Markovian noising
process to iteratively reverse the noise. In recent years, several
researchers [28], [29], [30], [31] have explored the use of
diffusion models in conjunction with radiance fields and have
demonstrated excellent results in tasks such as conditional
synthesis, completion, and other related tasks [32], [33].

In summary, while both GAN-based and diffusion models
have individually shown remarkable progress in novel view
synthesis, recent research has also explored their combination
with NeRF models for even better results. Our work utilizes
a GAN-based model to generate sparse pseudo views, but
it is also possible to extend to a large diffusion model.
Theoretically, the generation model is an orthogonal study of
our fusion framework.

C. 3D GARMENT RECONSTRUCTION
Reconstructing textured 3D garments is a complex task faced
with various challenges. Existing methods mainly rely on
predefined 3D templates [5], [34], which provide strong
priors for constraining the solution space of shape estimation.
However, these methods are limited in their ability to model
arbitrary clothing styles. Another challenge is to obtain a
high-frequency displacement that accurately represents the
geometric details of the garment. DeepWrinkles [35] aims to
capture the fine details of the garment’s geometry to achieve a
high-quality 3D reconstruction. However, this method relies
on pose estimation and cannot reconstruct individual in-shop
clothing items.
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FIGURE 2. Overview of our single-image 3D garment reconstruction framework. The method takes as input a single
image to generate pseudo views from 15 key viewpoints using a GAN-based generator, then fusees these sparse-pseudo
images from random viewpoints with semantic loss and key viewpoints with pixel-wise loss.

In recent years, template-free garment reconstruction
methods have also been developed. For example, [36]
proposed a method that can obtain the garment’s unsigned
distance field from a single image without using templates.
However, these methods do not recover textured or vertex-
colored meshes, which are crucial for maintaining high-
quality appearance details. Xcloth [37] attempted to recon-
struct textured meshes. However, similarly, this method relies
on SMPL depth prior from pose estimation. PIFu [38] and
PIFu-HD [39] can be adapt for garment reconstruction, but
they struggle to yield realistic outcomes.

Recently, studies have employed signed distance function
(SDF) with volume rendering [16] to represent objects.
Approaches such as 3PSDF [40] modified SDF to represent
non-watertight geometries. However, it’s important to note
that these modifications are not compatible with established
volumne rendering frameworks. Alternatively, the use of
Unsigned Distance Functions (UDF) with volume render-
ing [41] to represent geometry is possible. Nevertheless, this
often leads to excessive geometric holes or substantial errors.

Compared to existing methods, our work enables the
accurate 3D reconstruction of clothing from single images,
including both geometric and textural details, regardless of
whether they are standalone or on a human model.

III. PROPOSED FRAMEWORK
We aim to reconstruct 3D garments from single-image inputs.
There are three challenges: how to represent the 3D garment
with high-fidelity geometric and texture details, how to
predict unseen views of the input garment, and how to
synthesize multiple views as a view-consistent 3D model.
In this section, we introduce a neat framework based on
the SDF-based neural implicit representation, multi-view
generator, and the stride fusion strategy to achieve this
challenging task.

Our approach for 3D reconstruction employs a neural SDF
representation as the backbone, which generates an SDF
value s and a color value c as outputs for each garment, based
on a 3D query point x and viewing direction v. Furthermore,
to capture more detailed information in the reconstruction
process, we enhance the neural SDF representation by
multi-resolution feature grids

{
8l

θ

}L
l=1 to capture detailed

information (Sec. III-A).
A notable aspect of our approach is the use of the stride

fusion strategy to address blurry training results due to
pixel-level misalignment and ensure high semantic similarity
between the views. We adopt an asymmetric pixel-level RGB
loss Lrgb optimizes the difference between the predicted
images and a set of reference images in different weights
according to the confidence of reference images. And a self-
supervised semantic loss Lsem proposed to enforce consis-
tency between different views in unseen viewpoints Vrand
via a pre-trained Vision Transformer network. By combining
these two losses, 3D models can achieve high semantic
similarity to the target view and generate more realistic
outcomes (Sec. III-B).

Additionally, we leverage the monocular depth and normal
priors to improve neural implicit surface methods, resulting
in better quality of reconstruction (Sec. III-C).

A. VOLUMETRIC SDF WITH DECODER
We considered both Signed Distance Field (SDF) and
Unsigned Distance Field (UDF) for representing 3D geom-
etry. While UDF has the advantage of being non-watertight,
we found it tends to produce excessive geometric holes or
significant errors in training, as demonstrated in Figure 13.
Therefore, our framework employs an implicit neural SDF
field to represent each cloth, which takes a 3d query point
x and a viewing direction v as inputs, then predicts an SDF
value s(x) and a view-dependent color value c(x).
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The SDF value indicates the distance of the queried point
from the surface boundary, and the sign indicates whether the
point is inside or outside of a watertight surface. Following
VolSDF [16], we convert the SDF value into the 3D density
value σ as following:

σ (x) =
1
β

(
1 −

1
2
exp

( s(x)
β

))
if s(x) < 0,

1
2β

exp
(
−
s(x)
β

))
if s(x) ≥ 0, (1)

where β is a learned parameter that controls the tightness of
the density around the surface boundary.

In order to enhance the reconstruction details, our back-
bone employs multi-resolution feature grids

{
8l

θ

}L
l=1 of

resolution Rl to encode the feature φ(x) of each queried point
x. The resolutions are sampled in geometric space [42] to
combine features at different frequencies:

Rl :=

⌊
Rminbl

⌋
, b := exp

(
lnRmax − lnRmin

L − 1

)
, (2)

where Rmin,Rmax are the coarsest and finest grid resolutions,
respectively. Specifically, we extract the interpolated features
at each level and concatenate them together:

φ(x) =

{
interp

(
x, 8l

θ

)}
l
, (3)

where interp is the trilinear interpolation and γ (x) corre-
sponds to frequency encodings introduced in [43]. Then the
extracted features are fed to an MLP decoder fs together with
encoded position x to predict the SDF value as follows:

s(x) = fs (γ (x), φ(x)) . (4)

Additionally, we employ an MLP decoder fc to produce the
color of each queried point as well:

c(x) = fc (x, v, φ(x)) , (5)

where v is the viewing direction.
For each pixel, we query points on a ray that originates

at the camera position o and points at the camera direction
r(t) = o+ tv. Equipped with the SDF value of each point that
could be converted to 3D density value σ using Equation (1),
we render color images with volume rendering and calculate
the RGB color as follows:

C(r) =

∫ tf

tn
T (t)σ (r(t))c(r(t))dt,

where T (t) = exp
(

−

∫ t

tn
σ (r(s))ds

)
. (6)

B. STRIDE FUSION STRATEGY
Our goal is to reconstruct a 3D model of the cloth from a
single image Is. However, it is infeasible to train a neural
implicit representation from a single image. To achieve this,
we train a generative model Gθ introduced by [44] on a
synthetic garment dataset containing the multiview images of
more than thousands of garments. Once the generative model
is trained, it is able to take a single-view image Is of a garment

and a set ofN viewpointsVkey = {v1, v2 . . . vi, i ∈ N } as input
and generate pseudo views Ikey = {m1,m2 . . .mi, i ∈ N } of
corresponding viewpoint, which leverages prior knowledge
to compensate for missing information. It is assumed that
the pseudo view Ikey correspond to various angles Vkey of the
garment and display similarities with the input image at the
feature level.

Intuitively, we can train an SDF field directly from
the pseudo views utilizing volume rendering. However,
generating a dense set of pseudo views Ikey can lead
to significant pixel-level misalignment, resulting in blurry
training results. To address this issue, we propose a stride
fusion strategy that aims to mitigate pixel-level misalignment
while ensuring high semantic similarity between the 3D
reconstruction and the input image, resulting in a 3D model
with a high degree of fidelity. Specifically, there are two main
points to this strategy:

a: ASYMMETRIC PIXEL-LEVEL LOSS.
We adopt a selective optimization approach that focuses on
optimizing pixel-wise mean squared error (MSE) losses only
in a limited set of key viewpoints that exhibit minimal overlap
with each other. In practice, we sample 15 views Vkey around
the garment in a horizontal direction. And 15 pseudo images
Ikey are predicted by pretrained generator Gθ . Then we adopt
an asymmetric pixel-level RGB loss to minimize the per-
pixel difference between the predicted view and the reference
images that contain input single Is and pseudo views Ikey. The
pixel-level RGB loss is defined as:

Lrgb = wi
R∑
r

||Ĉ(r) − C(r)||22, i ∈ N + 1 (7)

where r denotes a ray from the camera at each frame i and
R denotes a set of sampled rays. Ĉ(r) is the predicted pixel
color at ray r , C(r) is the pixel color in reference images, and
N + 1 is the total number of viewpoints in the train images
containing Ikey indexed from 1 to N and Is indexed N + 1. wi
is the weight of loss, which reflects the credibility of different
views. In our work, we applywi = |vi−vs|, where we assume
the input single view vs to be the origin view and wN+1 =

1 for the input single view. This approach helps to minimize
the impact of pixel-level misalignment and generate sharper
training results with reduced blurring.

b: SEMANTIC CONSISTENCY LOSS.
Noticing that the content and style of the two views are
similar, though pixel-level misalignment exists between
different views, we propose to employ a self-supervised
semantic loss to connect the striding key viewpoints to further
enhance view consistency across the generated images.
This involves incorporating a pre-trained Vision Transformer
(ViT) network, which has been proven to be an expressive
semantic prior even between images with misalignment [45],
[46]. Inspired by [47], we random sample M unseen view-
points Vrand =

{
p1, p2 . . . pj, j ∈ M

}
around the garment.
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Then, different from Ikey which predict by generator Gθ ,
we predict the images Irand =

{
r1, r2 . . . rj, j ∈ M

}
from

the SDF field utilizing volumetric rendering. Furthermore,
we adopt a pre-trained ViT model Evit to extract feature
embedding from images and enforce semantic consistency
by minimizing the difference of feature embedding between
different views:

Lsem = ||Evit (Is) − Evit (rj)||22

+

N∑
i=1

wi||Evit (mi) − Evit (rj)||22, (8)

where Evit (Is),Evit (mi) and Evit (rj) are the semantic features
of the input image, pseudo images, and the rendered image
from a random viewpoint, respectively. In addition, rj ∈ Irand ,
and wi is the weight of loss same as Equation (7). This term
compares the semantic features of the reference images and
the rendered images from any random viewpoint to ensure
the consistency of the underlying scene structure. In practice,
we adopt CLIP-ViT [48], a self-supervised vision transformer
trained on ImageNet [49] dataset.

C. DEPTH AND NORMAL CUES
Combining volume rendering and implicit surfaces has
shown impressive 3D reconstruction outcomes [15], [16],
[50]. However, this technique faces challenges in intricate
scenes, especially in textureless and sparsely observed
regions. Related work [50] has already demonstrated the
effectiveness of geometric priors in enhancing reconstruction
quality. Therefore, following MonoSDF [50], we use readily
off-the-shelf monocular geometric priors thereby improving
neural implicit surface methods.

a: MONOCULAR DEPTH CUES
One common monocular geometric cue is a monocular depth
map, which can be easily obtained via an off-the-shelf
monocular depth predictor. In our case, we employ the pre-
trained Omnidata model [51] to predict a depth map D̄ for
each input RGB image. Since the absolute scale is difficult to
estimate in general scenes, D̄must be considered as a relative
cue.

b: MONOCULAR NORMAL CUES
We also leverage surface normals as an additional geometric
cue. Following a similar approach to the depth cues, we utilize
the pre-trained Omnidata model to generate a normal map N̄
for every RGB image. Unlike depth cues that provide semi-
local relative information, normal cues are local and capture
geometric detail.

D. LOSS
a: EIKONAL LOSS
Following common practice [16], we also add an Eikonal
term [52] on the sampled points X to regularize SDF values

in 3D space:

Leik =

∑
x∈X

(
∥∇fθ (x)∥2 − 1

)2
. (9)

b: DEPTH CONSISTENCY LOSS
We also enforce consistency between our rendered expected
depth D̂ and the monocular depth D̄:

Ldep =

∑
r∈R

∥(pD̂(r) + q) − D̄(r)∥2, (10)

where p and q are the scale and shift used to align D̂ and
D̄ since D̄ is defined only up to scale. Note that these
factors have to be estimated individually per batch as the
depth maps predicted for different batches can differ in
scale and shift. p and q are solved with a least-squares
criterion [53].

c: NORMAL CONSISTENCY LOSS
Similarly, we impose consistency on the volume-rendered
normal N̂ and the predicted monocular normals N̄ trans-
formed to the same coordinate system with angular and L1
losses [51]:

Lnorm =

∑
r∈R

∥N̂ (r) − N̄ (r)∥1 +

∥∥∥1 − N̂ (r)⊤N̄ (r)
∥∥∥
1
. (11)

The combined loss function is given by:

L = Lrgb + Lsem + λ1Leik + λ2Ldep + λ3Lnorm, (12)

where λs are hyperparameters that control the relative
importance of each loss term.

IV. EXPERIMENTS RESULTS
A. IMPLEMENTATION DETAILS
a: TRAINING THE GENERATOR.
During the training of the generator, we use Adam opti-
mizer with a learning rate of 1e-4 and a batch size
of 32. We train 100K iterations taking approximately
3 days. Given the limited number of training examples,
we also apply data augmentation techniques to improve
generalization performance. Specifically, we applied color
jittering transformations to change the hue, saturation, and
brightness of the input image, expanding the range of
possible color distributions that the network could learn from.
This approach helped to stabilize training and improve the
generator’s ability to capture the richness of real-world color
distributions.

b: TRAINING THE IMPLICIT SIGNED DISTANCE FIELD.
During the SDF training process, we set Rmin=16 and
Rmax=2048, and used 16 multi-resolution feature grids{
8l

θ

}L
l=1 to capture detailed information about the 3D

garment models. In our experiments, it takes 50k iterations
for the SDF field, we use a batch size of 2048 sampled rays.
In addition, we set λ1 = λ2 = 0.1, and λ3 = 0.05.
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FIGURE 3. Qualitative comparison of our method with the existing SOTA methods. The novel-view images are rendered at 60 and
180 degrees.

FIGURE 4. Qualitative results of various types of clothing, including both
synthetic data (left) and real images from the internet (right).

Our input data is at a resolution of 512*512, and we
compute the pixel loss at the same resolution. However,
computing the semantic loss requires rendering the entire
image, which is computationally intensive. To address this,
we render images at a lower resolution of 256*256 to extract
semantic features, and only need 25% of the rays as full-
resolution training images, which helps improve training
efficiency. Furthermore, we found that the semantic loss
converges faster than the pixel loss. As a result, in our stride
fusion strategy, we only compute the semantic loss every
10 iterations, exploiting its rapid convergence to improve the
efficiency of our training process.

B. EVALUATION METRICS
We used standard evaluation metrics to quantitatively eval-
uate the performance of our proposed framework: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) [54], and Learned Perceptual Image Patch Similarity
(LPIPS) [55]. PSNRmeasures the quality of the reconstructed
3D garments in terms of signal-to-noise ratio, while SSIM
measures the structural similarity between the reconstructed
3D garments and ground truth. LPIPS is a perceptual distance
metric that is learned from a deep neural network and
provides a more accurate evaluation of the visual quality of
the reconstructed 3D garments. Additionally, we also use
Chamfer distance and volume IoU to measure the quality of
shape reconstruction.

C. DATASETS
For training and evaluating our proposed framework, we used
the Deep Fashion 3D dataset [35]. This dataset consists
of 2078 models reconstructed from real garments, covering
10 different categories and 563 garment instances. One of
the unique features of this dataset is that each garment
is randomly posed to enhance the variety of real clothing
deformations, which makes it more challenging and real-
istic. In practice, when training generator Gθ , we sample
1729 garment models for training and 349 models for testing,
where the training and test sets have disjoint instances.We get
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TABLE 1. Quantitative comparison of our method with the existing SOTA
methods using PSNR, SSIM, and LPIPS on DeepFashion 3D dataset.

a collection of images by rendering 15 images for each
garment model in the Deep Fashion 3D with viewpoints
sampled uniformly in the yaw axis. MGN [56] contains
5 garment categories and 154 textured garments models.
134 garments models are randomly selected as the training
set and the remaining 20 models form the test set. The
SIZER dataset [57] comprises clothing size variations and
encompasses 100 different subjects wearing casual clothing
items in various sizes, including approximately 2000 scans,
1800 scans are randomly selected as the training set and the
remaining 200 models form the test set.

D. QUANTITATIVE EVALUATION
In the quantitative evaluation, we conduct experiments on
DeepFashion 3D dataset. We compare our proposed method
with 6 state-of-the-art single-image to neural representation
algorithms: PixelNeRF [4], SinNeRF [58], NeRF from
image [59] RealFusion [28], PIFu-HD [39] and Magic123
[60]. In SinNeRF, we used ground truth depth values
for training. Furthermore, introducing back-facing training
can cause the results to collapse since it’s highly dependent
on the depth of the single-view input. Therefore, we only
train and evaluate scenes between -60 and 60 degrees.
To ensure a fair comparison, we fine-tuned the diffusion
prior used in RealFusion on the DeepFashion 3D dataset.
And as the pretrained models of PixelNeRF, NeRF from
image and PIFu-HD are not trained for the reconstruction
of garments, we train and infer results using the same
dataset split as the one used in training our generator
Gθ . We evaluate the performance of these methods using
three 2D image-based metrics (PSNR, SSIM, LPIPS). Our
proposed method outperforms other approaches, showcasing
our advantages in terms of accuracy and robustness. Please
see Table 1 for a detailed illustration of the experimental
results.

E. QUALITATIVE EVALUATION
In this section, we provide a qualitative evaluation of our
proposed framework by presenting some visual results.
The reconstructed 3D garments are shown from different
viewpoints and compared with the results of the state-of-
the-art methods. The results demonstrate that our framework
generates high-quality 3D garment models with realistic
details, accurate geometry, and textures.

FIGURE 5. Qualitative results of our method on different kinds of
garments in MGN dataset.

FIGURE 6. Qualitative results of our method on different kinds of
garments in SIZER dataset.

Figure 3 shows some examples of reconstructed 3D
garments using our proposed framework compared to SOTA
methods. The first line shows the input and ground-truth
of novel view, the second to seventh columns shows the
results of the SOTAmethod, and the eighth column shows the
results of our framework. We can observe that each of these
algorithms has its own limitations. Diffusion-based methods
like NeRF from image [59], RealFusion [28] and Magic123
[60] suffered from color differences between the input images
and the reconstructed 3D models. This issue could be
attributed to the image inversion used in these algorithms
The output results of PixelNeRF [4] and PIFu-HD [39]
exhibit blurriness in views. SinNeRF [58] can produce
acceptable results for novel views close to the input view,
but it exhibit significant distortion and deformation when the
camera viewpoint is far away from the input view, making
it unable to provide predictions from backside. Compared
to these existing approaches, our proposed framework can
reconstruct high-quality garments from both a shape and
texture perspective, being able to produce more detailed and
accurate 3D models.
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FIGURE 7. Qualitative comparison of our method with the existing SOTA methods on in-the-wild (real-world) garment images.

Figure 4 shows the reconstructed 3D garments from
different viewpoints using our proposed framework. The
inputs encompass diverse types of clothing, including both
synthetic data (left) and real images from the internet (right).
We can see that the reconstructed garments are visually
consistent from different viewpoints, indicating that our
framework is able to generate high-quality 3D garment
models that are suitable for various applications.

We alse provide an additional qualitative evaluation of
our proposed framework. In Figure 7, we present a compar-
ison between our method and the state-of-the-art methods
(PixelNeRF [4], SinNeRF [58], NeRF from image [59] and
RealFusion [28]) on real-world data. It is worth noting that
the SinNeRF method used in the main text employs ground
truth depth as a prior, which is not feasible in real-world
scenarios. Therefore, for the in-the-wild images presented
in this section, we use Omnidata [51] to estimate the depth
of inputs as training prior. The results clearly demonstrate
that our method outperforms the SOTA methods and exhibits
good generalization ability.

In addition, to further demonstrate the versatility and effec-
tiveness of our framework, we present more reconstruction
results in Figure 7. These results showcase our framework’s
performance on various garment types, including dresses,
shirts, and pants. Our method can achieve high-quality

reconstruction results across different clothing styles and
shapes, highlighting its broad applicability in real-world
scenarios.

Apart from the DeepFashion 3D dataset, to assess the
generalization capability of our framework, we conducted
experiments on the MGN [56] and SIZER [57] datasets,
achieving promising results (Figure 5 and Figures 6).

Overall, the qualitative evaluation results demonstrate that
our proposed framework is capable of generating high-
quality 3D garment models with realistic details and accurate
geometry and textures, outperforming the state-of-the-art
methods in terms of visual quality.

F. ABLATION STUDY
We perform ablation analyses to assess the impact of different
components of ourmodel. Specifically, we examining the two
components of stride fusion strategy (SFS): the asymmetric
pixel-level loss and the semantic consistency loss (Table 2,
Figure 1 and Figure 10). It is observed that the asymmet-
ric pixel-level loss significantly reduces blurriness arising
from pixel-level misalignment and enhances the clarity
of generated objects and. And the semantic consistency
loss mitigates three-dimensional shape deformation caused
by inconsistencies among pseudo images. Additionally,
we conduct an ablation study to evaluate the contributions of
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FIGURE 8. Results of our method on different kinds of garments.

FIGURE 9. Visual comparison of our model with or without the stride
fusion strategy.

TABLE 2. Ablation study on stride fusion strategy using PSNR, SSIM, and
LPIPS on DeepFashion 3D dataset.

FIGURE 10. Visual comparison of with and without the asymmetric
pixel-level loss.

feature grid (Feat. Grid), depth prior and normal prior in our
framework (Table 3 and Figure 11).

FIGURE 11. Ablation study of different components in our framework.

TABLE 3. Ablation study on various designs of our model using PSNR,
SSIM, LPIPS, CD (chamfer distance) and volume IoU on DeepFashion 3D
dataset.

Additionally, we investigated the impact of the number
of pseudo images on our outcomes. In the final experiment,
we opted for 15 images, as we observed that both excessively
high and low number of pseudo images had detrimental
effects on results, as depicted in Figure 12 and Table 4.
Insufficient images led to gaps within the representation,
while an excessive number resulted in minor gaps and texture
blurring.

We conducted distinct evaluations employing NEUDF [41]
and NeAT [61] for geometry representation. Specifically,
NEUDF employed Unsigned Distance Functions (UDF)
alongside volume rendering, whereas NeAT utilized a Signed
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FIGURE 12. Ablation study of different number of pseudo images.

TABLE 4. Ablation study on different number of pseudo images of our
model using PSNR, SSIM, and LPIPS on DeepFashion 3D dataset.

TABLE 5. Ablation study on various designs of our model using CD
(chamfer distance) and volume IoU on DeepFashion 3D dataset.

Distance Function (SDF) alongside a validity probability
function to depict geometry. Both approaches have the
capability to generate non-watertight geometries. However,
as demonstrated in Figure 13 and Table 5, their ability to
represent arbitrary geometries resulted in unintended issues
in our context, such as holes, significant deviations from
ground truth geometry, and highly fragmented structures.
This phenomenon could be attributed to the misalignment
present among pseudo images generated by the generator,
which has led to an overly fragmented geometry rep-
resentation. Consequently, we continue using the vanilla
SDF-based approach for clothing representation (the last
column).

V. LIMITATIONS AND FUTURE WORK
Despite the promising outcomes of our single-view 3D
garment reconstruction framework, certain limitations and

FIGURE 13. Ablation study of different representation of geometry.

avenues for future research need consideration. The model’s
reliance on front-view predictions for side and back views
may yield visually plausible but unreal results. To address
this issue, future research may increase the diversity of the
training dataset. This enhanced dataset would better capture
the intricate variations in garment appearance, ensuring a
more accurate and realistic reconstruction across all perspec-
tives. Besides, while the stride fusion strategy successfully
tackles pixel-level misalignment, it may encounter challenges
in regions with occlusions. Enhancing the model’s capability
to handle occlusions and partial visibility is crucial for future
improvements in robustness and versatility.

Furthermore, the computational complexity of the pro-
posed approach poses a potential obstacle for applica-
tions or deployment in resource-constrained environments.
Therefore, it is imperative to explore optimizations and
efficiency-enhancing techniques to make the framework
more practical. Addressing these identified limitations will
contribute significantly to refining our proposed method,
ultimately expanding its applicability in the domain of 3D
garment reconstruction.

VI. CONCLUSION
In this paper, we proposed a neat framework for 3D garment
reconstruction. Our framework consists of a pseudo sparse
view generator, a volumetric SDF network, and a multi-
view rendering module. We further introduce a stride fusion
strategy to produce view-consistent geometry and clear
texture details. Extensive experiments and ablation studies
verified our framework’s superiority and the impact of each
component.

In summary, our proposed framework provides an effective
method for 3D garment modeling and multi-view image
synthesis, which can be applied to various domains such as
virtual try-on, e-commerce, and fashion design.
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