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ABSTRACT Variational Graph Autoencoders (VAGE) emerged as powerful graph representation learning
methods with promising performance on graph analysis tasks. However, existing methods typically rely on
Graph Convolutional Networks (GCN) to encode the attributes and topology of the original graph. This
strategy makes it difficult to fully learn high-order neighborhood information, which weakens the capacity
to learn higher-quality representations. To address the above issues, we propose the Multi-order Variational
Graph Autoencoders (MoVGAE) with co-learning of first-order and high-order neighborhoods. GCN and
Multi-order Graph Convolutional Networks (MoGCN) are utilized to generate the mean and variance for
the variational autoencoders. Then, MoOVGAE uses the mean and variance to calculate node representations.
Specifically, this approach comprehensively encodes first-order and high-order information in the graph data.
Finally, the decoder reconstructs the adjacency matrix by performing the inner product of the representations.
Experiments with the proposed method were conducted on node classification, node clustering, and link
prediction tasks on real-world graph datasets. The results demonstrate that MoVGAE achieves state-of-
the-art performance compared to other baselines in various tasks. Furthermore, the robustness analysis
verifies that MOVGAE has obvious advantages in the processes of graph data with insufficient attributes
and topology.

INDEX TERMS Variational graph autoencoders, graph convolutional networks, multi-order neighborhood,
high-order information, graph representation learning.

I. INTRODUCTION

Many real-world datasets can be represented as graphs, such
as social networks [1], criminal networks [2], and cita-
tion networks [3]. The entities are represented as nodes,
and the relationships between entities are represented as
edges. Nowadays, graph data analysis is attracting increas-
ing attention, particularly in downstream tasks such as node
classification [4] and link prediction [5]. Traditional machine
learning methods rely on manually designed features to
extract specific topology information from adjacency matrix.
Due to the high-dimensional nonlinearity of graph data, these
methods usually have high computational complexity and
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memory requirements [6]. Recently, graph representation
learning [7] has received increasing attention in light of
its powerful representation ability and its favorable perfor-
mance. It can effectively encode the topology and attribute
information of the graph, and generate low-dimensional vec-
tor representations that are easy to process.

At present, graph representation learning methods are
mainly divided into three categories: matrix factorization
methods [5], random walk methods [8], and deep learning
methods [7]. Methods based on matrix factorization learn
the representations by decomposing the adjacency matrix,
such as GraRep++ [9] and NGE [10]. Methods based on
random walk learn representations by constructing local
neighborhood connectivity through random walk, such as
Deepwalk [11] and node2vec [12]. Methods based on deep
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learning learn representations by combining Graph Neural
Networks (GNN) [13] and autoencoders [14]. Variational
Graph Autoencoders (VGAE) [15] is an important deep learn-
ing method. It introduces Graph Convolutional Networks
(GCN) [16] as the encoder for Variational Autoencoders
(VAE) [17]. This approach enables the learning of the proba-
bility distribution of node attributes and structures. The node
representations are computed by the distribution, and then
reconstruct the adjacency matrix by the inner product of these
representations.

Over the past few years, VGAE and its variants emerged as
powerful methods for graph representation learning, showing
promising performance on challenging graph analysis tasks.
Linear-VGAE [18] replaces the GCN encoder with simple
linear models, which involve fewer operations and parame-
ters. In link prediction, Linear-VGAE achieves competitive
performance compared to GCN-based methods. Variational
Graph Normalized Autoencoders (VGNAE) [19] modifies
the GCN encoder with L2-normalization to improve the
representations of isolated nodes. OSA-VGAE [20] applies
one-shot aggregation of deep vision models to prevent over-
smoothing [21] and gradient vanishing in multi-layer GCN
encoder, enhancing the representation ability of deep models.
Multi-Scale Variational Graph Autoencoders (MSVGAE)
[22] generates multiple sets of low-dimensional vectors at
different scales to represent the mixed probability distribution
of the original graph and performs multiple samplings in each
dimension. Furthermore, an attribute reconstruction strategy
is introduced to enhance the learning of topology informa-
tion. GC-VGAE [23] reconstructs the adjacency matrix and
attribute matrix simultaneously by modifying the decoder.
This approach enhances the capability of GC-VGAE to pre-
serve the original graph information.

When learning low-dimensional node representations,
these methods utilize GCN as the encoder and the adja-
cency matrix as the convolution kernel to extract first-order
neighborhood information. For high-order neighborhood
information, it can only be extracted by stacking multi-
layer GCN. However, increasing the number of GCN layers
can lead to over-smoothing, making the node representa-
tions indistinguishable. In addition, existing methods have
greatly restricted the processes of graph data with insufficient
attributes and topology.

To address the above issues, we propose an innovative
graph representation learning method, termed Multi-order
Variational Graph Autoencoders (MoVGAE). The purpose
of MoVGAE is to generate representations by co-learning
first-order and high-order neighborhood information. Firstly,
we designed the Multi-order Graph Convolutional Networks
(MoGCN) to extract high-order information. Secondly, GCN
and MoGCN are utilized to generate the mean and variance
of the variational autoencoders. MoVGAE uses the mean
and variance to calculate node representations. Finally, the
decoder reconstructs the adjacency matrix by performing the
inner product of the representations. The main contributions
of our work are summarized as follows:
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o We design a new MoGCN for graph representation
learning, which is capable of extracting high-order
neighborhood information.

e« MoVGAE uses GCN and MoGCN as encoders to gen-
erate node representations that co-learn first-order and
high-order information.

« Extensive experiments on three benchmark datasets
demonstrate that MoVGAE achieves state-of-the-art
performance while maintaining high generalization and
scalability.

o The robustness analysis confirms that MoVGAE has
obvious advantages in handling graph data with insuf-
ficient attributes and topology.

Il. RELATED WORK

The first-order neighborhood represents the node pairs
directly connected by edges in the graph, reflecting the
local structure. The high-order neighborhood represents the
node pairs with r-hop relationships, reflecting the global
structure. Due to the sparsity of graphs, the real-world
datasets often contain many unobserved or missing links [24].
This phenomenon indicates that the first-order neighborhood
insufficient for representing the topology.

Several social science studies have analyzed the theory
of high-order relations. For example, the relationship of two
individuals in the social network is associated with the extent
of overlap in their friendships [25]. If two people have many
mutual friends, they are likely to have the same interests and
become friends. In addition, Figure 1 presents the statistics
of first-order and second-order node pairs for the common
datasets KarateClub [26] and Football [27]. The number of
second-order node pairs is significantly more than that of
first-order node pairs. To enhance topology preservation, it is
essential to incorporate high-order information as supple-
ments to first-order information.

420
m First-order node pairs

Second-order node pairs
340
260 -
180
100 .
o .

KarateClub Football

FIGURE 1. Statistics of first-order and second-order node pairs.

In recent years, many methods introduce high-order infor-
mation into graph representation learning. Structural Deep
Network Embedding (SDNE) [15] modifies the reconstruc-
tion loss by imposing a higher penalty on the non-zero
elements of the adjacency matrix, so that the node rep-
resentations with second-order proximity are closer in the
feature space. Large-scale Information Network Embedding
(LINE) [28] sets each node as the context for the others.
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The similarity of the context between two nodes means that
the neighborhood of the two nodes is similar, so that the
node representations are also similar in the feature space.
GraRep [9] constructs a set of transition probability represen-
tations with different orders, and then fuses them to generate
node representations that preserve high-order information.
k-GNN [29] uses the multi-dimensional graph isomorphism
heuristic, which considers high-order graph structures at
multiple scales. This approach confirms that higher-order
information is beneficial for graph-level tasks. HGRN [30]
updates the topology by aggregating node representations
with small step sizes, adds links with multi-hop neighbors,
and adaptively aggregates features from high-order neighbors
through an attention mechanism. Motivated by the above
methods, we modify the GCN and propose a novel MoGCN
which can extract high-order information.

lIl. PRELIMINARIES

Based on the vanilla autoencoder, VAE utilizes neural
networks to construct two probability density distribution
models. The inference network encodes the original data
and generates the variational probability distribution. The
generative network produces an approximate distribution of
the original data based on the variational probability distri-
bution. In short, the inference network utilizes the encoder
to calculate the mean g and variance o, and the generative
network utilizes the decoder to generate the reconstruction
probability distribution.

VAE adds suitable noise during the vanilla autoencoder
encoding process. Firstly, VAE utilizes the encoder to calcu-
late the . = (w1, w2, u3) and 0 = (o1, 02, 03). o is used to
regulate the weight of the noise € = (e1, €2, €3) and control
the degree of noise interference. To ensure that the weights
allocated to the noise are positive, the o is exponentiated.
Then, u, 0 and e are combined to generate representation
y = (y1, y2, y3) of the input data. Finally, the y is fed into the
decoder for reconstruction. Compared to vanilla autoencoder,
VAE not only utilizes a reconstruction loss function, but also
introduces constraints on the noise:

3
D (e = (140 + () (0

i=1

Assuming (1) is not added, in order to ensure the quality
of the generated results, the model aims to minimize the
interference of noise during the encoding process by assign-
ing smaller weights to the noise. This usually leads to good
training performance but poor predictability of the gener-
ated results. After adding (1), it can constrain the variance
encoding from rapidly tending towards negative infinity, thus
serving as regularization term. Combining Gaussian mixture
models, the reconstruction loss and noise constraint of VAE
are rewritten in the form of probability distributions and
Kullback-Leibler (KL) divergence:

Lyae = Eqpinllogxly)] — KLIgy1¥)[lp)]  (2)
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VGAE is an unsupervised learning framework for
graph-structured data based on the VAE. It utilizes a GCN
encoder and a simple inner product decoder to learn inter-
pretable latent representations for the original graph. In order
to improve performance, VGNAE proposes a novel GCN
called a Graph Normalized Convolutional Networks (GNCN)
[19] to generate better embeddings for isolated nodes. It mod-
ifies the encoder of VGAE by using GCN and GNCN to
generate u and o separately, thereby achieving competitive
results for link prediction tasks. Motivated by VGAE and
VGNAE, we utilize GCN and MoGCN as encoders in MoV-
GAE to capture both first-order and high-order information.

IV. THE MODEL

A. OVERALL FRAMEWORK

MoVGAE takes the attribute matrix X and the adjacency
matrix A as input to the encoder. It extracts features and
reduces the dimensionality of the original graph to gener-
ate low-dimensional representations. The overall framework
of the model is shown in Figure 2. MoVGAE adopts a
VAE structure, where the encoder utilizes multi-layer GCN
to calculate the mean p and multi-layer MoGCN to cal-
culate the variance o. Then, the mean u, variance o, and
Gaussian noise € are used to calculate node representa-
tions Y. The decoder utilizes the inner product of Y to
reconstruct the adjacency matrix. Finally, MoVGAE uses the
same probabilistic reconstruction loss and noise-constrained
optimization parameters as VGAE.

B. MULTI-ORDER GRAPH CONVOLUTIONAL NETWORKS
In this section, we introduce MoGCN, which is capable
of extracting high-order neighborhood information. Early
GCNs were commonly described as linear shift-invariant
operations on the adjacency matrix [31], utilizing adja-
cency matrix polynomials to build neural network model
fe(X,A) [32]:

K
fo(X.A)=>"0,4*X 3)
k=0
where @ = (6y, 6,---, QK)T is the weights of differ-

ent order adjacency matrices. The effect of fg(X, A) is not
ideal, and the computational complexity is relatively high.
To reduce complexity, the first-order neighborhood is used
instead of the multi-order linear combination to construct the
neural network model f1(X, A) [16]:

fi(X,A) =6 + D 2AD~ )X (4)

where D is the degree matrix for symmetric normalization
of A, and I is the identity matrix. The information from
high-order neighbors can only be transmitted by stacking
multiple layers of GCN. However, having too many lay-
ers can result in over-smoothing [33], [34], causing node
representations to become indistinguishable. The first-order
neighborhood alone cannot fully represent the topology of
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Minimize 1: Reconstruction Loss
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FIGURE 2. The framework of MoVGAE.

the graph, it is necessary to introduce high-order information
as a supplement. Combining first-order GCN and high-order
GraRep, we propose a novel neural network model f; (X, A):

fuX.A) =0l + D} *(A + ADD; *1X 5)

where AX is the symmetric normalized k-order adjacency
matrix. We modified (5) based on GCN and derived the
propagation equation between MoGCN layers as follows:

ot 1
H""Y =D, *AD, *HOWD (©6)

where, Ak =1+A4+ Ak, Dk is the degree matrix of ;11(,
W! is the weight matrix of the /™ layer, H' is the feature
matrix of the /™ layer, and H© is X. Figure 3 illustrates
the extent of information propagation between nodes in GCN
and MoGCN(2-order). The convolutional kernel of MoGCN
introduces A2, enabling it to extract second-order neigh-
borhood features even without direct connections. In addi-
tion, MoGCN utilizes high-order information to enhance
the feature extraction capability of GCN for long-distance
nodes.

@ 1-order neighborhood
2-order neighborhood
(a) GCN (b) MoGCN

1-order neighborhood

FIGURE 3. The information propagation between nodes in GCN
and MoGCN.
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C. MULTI-ORDER VARIATIONAL GRAPH AUTOENCODERS
In this section, we introduce the graph representation learn-
ing model MoVGAE. The encoder utilizes 2-layer GCN to
compute the mean p and 2-layer MoGCN to compute the
variance o':

L1 __1___1
p=D ?AD *[5(D *AD *XW" W
ol __1  __1_ __1
logo =D, >AyD, *[8(D, *AD, 2 XWDw®  (7)
where, A =1+ A, D is the degree matrix of ;1, S is
the ReLU activation function. Then, the mean g, vari-

ance o, and Gaussian noise & are used to calculate node
representations Y':

Y=p+00Qe (®)

where, Y = {yl-}f.vzl, N is the number of nodes, y; is the
representation of node i, © is Hadamard product. Next, ¥ will
be reparameterized to construct the probability distribution of
nodes in the latent space [15]:

N
q(¥|X,A) = [ [ 40X, A)

i=1
q;1X, A) = N(p;, diag(a?)) )

The decoder utilizes probabilistic node representations to
generate the reconstructed adjacency matrix A’:

N N
p@"1Y) = [[[]r@jvi.yp (10)

i=1 j=1
where Aj; is the element of A’. MoVGAE is trained
using probabilistic reconstruction loss and noise constraints.
Finally, the optimization function for model training is:
L = Eqyx,allogp(A’|Y)] — KLIg(Y X, A)lIp(Y)] + Lreg
(11)
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where, L., is an L2-norm regularization to prevent overfit-
ting, which is defined as follows:

LS o]
L =5 2w, (12
k=1

D. COMPLEXITY ANALYSIS

In the training process of MoVGAE, the calculation of
high-order adjacency matrix and the normalization of
attribute matrix and adjacency matrix are non-parametric pro-
cesses, so the computational complexity is mainly influenced
by the GCN encoder and MoGCN encoder. The complexity of
GCN is usually represented as O(|E|), where E represents the
set of edges. Referring to GCN, the complexity of MoGCN
can be represented as O(|Ex|). Since MoGCN utilizes k-
order adjacency matrix for feature extraction, the number of
edges in the set will exponentially increase with the increase
of k. In addition, most VGAE variants use the complete
graph as input, making it difficult to perform calculations on
large-scale graph data. The method of calculating high-order
adjacency matrix through power exponentiation in MoOVGAE
is even more difficult to implement.

V. EXPERIMENTS

A. DATASETS

To verify the effectiveness of baselines and MoVGAE in
graph analysis tasks, we conducted experiments using five
benchmark graph datasets. The statistics of the datasets are
shown in Table 1. Considering the characteristics of these
datasets, we select different datasets to evaluate the perfor-
mance of different tasks. The detailed descriptions are listed
as follows:

TABLE 1. The statistics of graph datasets.

Dataset #Nodes #Edges #Attriubutes #Labels
Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3
Wikipedia 2405 17981 4973 19
BlogCatalog 5196 171743 8189 6

1) CITATION NETWORK

Cora, Citeseer, and Pubmed [35]. In these datasets, nodes rep-
resent papers, edges represent citation relationships between
different papers, node attributes represent the content of the
papers, and node labels represent the research topics.

2) WEB NETWORK

Wikipedia [36]. In the dataset, nodes represent web pages,
edges represent hyperlinks between different web pages,
node attributes represent the content of the web pages, and
node labels represent the category.
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3) SOCIAL NETWORK

BlogCatalog [37]. In the dataset, nodes represent bloggers,
edges represent social relationships between bloggers, node
attributes represent keywords of blogger information, and
node labels represent the topic categories of blog posts.

B. BASELINES
We compare our model with VGAE and its variants:

o VGAE [15]:The model that combines the graph domain
with the variational autoencoder utilizes the topology
and attributes information of the graph.

e« VGNAE [19]:The model uses L2 regularization to
modify the GCN encoder in VGAE, enhancing the
embedding representation of isolated nodes.

e GC-VGAE [23]: The model modifies the optimiza-
tion method of VGAE by introducing a symmetric
attribute decoder, which can simultaneously reconstruct
the attribute matrix and the adjacency matrix.

o MSVGAE [22]:The model modifies the feature encod-
ing process of VGAE in a multi-scale and equivariant
manner, while also utilizing attribute information to
enhance the learning of topology.

e OSA-VGAE [20]: The model introduces one-shot
aggregation to prevent over-smoothing and gradient
vanishing in the encoder of VGAE, enhancing the rep-
resentation capability of deep models.

C. EVALUATION METRICS AND SETUPS
We use Micro-F1 and Macro-F1 as the evaluation metric for
node classification:

, 2*P*R
Micro — F1 =
P+R
F1(l
Macro — F1 = % (13)

where, P is precision, R is recall, and F1(/) is the F1 score
for label [. Micro-F1 and Macro-F1 are commonly used
metrics for multi-class classification tasks. Micro-F1 takes
into account the number of nodes in each class during the cal-
culation, making it suitable for imbalanced data distributions.
Macro-F1 treats each class equally during the calculation and
is more influenced by classes with high precision and recall
values.

We use NMI (normalized mutual information) as the eval-
uation metric for node clustering:

. H (M, |M2)norm + H(M2|M1 Dnorm
2

where H () is the information entropy. NMI is used to mea-
sure the similarity between the clustering results of M; and
M;. A higher NMI value indicates that the clustering result
shares more information with the true result, leading to a
better clustering effect of the model.

We compare the performance of different methods based
on their ability to correctly classify edges and non-edges.

NMI = 1 (14)
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Therefore, we use AUC (the area under the receiver oper-
ating characteristic curve) and AP (the area under the
precision-recall rate curve) as evaluation metrics for link
prediction. AUC and AP are a common metrics of binary
classification task. AUC sets the threshold just below each
positive example and calculates the average recall rate of the
negative class, which can provide a reasonable evaluation of
the classifier in the case of imbalanced samples. AP sets the
threshold just below each positive example and calculates the
average precision rate of the positive class, which measures
the classification performance of the model for each class.

To ensure the fairness of the experiment, both baselines
and MoVGAE are initialized with the hyperparameters in
VGAE. The hidden layer dimension of the encoder is set to
32, and the dimensions of the mean and variance vectors are
set to 16. During training, the Adam optimizer [38] is used
to update model parameters with learning rate of 0.01 and
200 iterations. In addition, the order of the MoGCN encoder
in MoVGAE is set to 2.

D. NODE CLASSIFICATION

In this section, we evaluated the performance through node
classification tasks. The node representations generated by
each model were used as input for Support Vector Machines
(SVM) [39]. We randomly sampled 5% to 25% of the labels
at 5% intervals to create the training set, and then randomly
selected 50% of the labels from the remaining nodes as the
test set. The models used the same data set division, and we
recorded the Micro-F1 (%) and Macro-F1 (%) scores. The
results of node classification are shown in Figures 4~8.

| --0-- VGAE -4 - VGNAE GC-VGAE - -0-- MSVGAE OSA-VGAE -0 - McVGAEl

%
=N

85 —
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81 { o s E e Pl P
g e S o -
= gl 1 QIR L SOt B
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576 B 1 1 &
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= & =
71 = 6 | 3
66 4= . 60+ ’ ;
5 10 15 20 25 5 10 15 20 25

Train set (%) Train set (%)

FIGURE 4. Experimental results of node classification on Cora.

The figures demonstrate that the proposed MoVGAE
model outperforms other comparison baselines in node clas-
sification tasks, and show superior performance. Besides,
MoVGAE shows stronger generalization on different datasets
compared to the baselines. The results indicate that introduc-
ing high-order information can improve the model’s represen-
tation capability, preserve rich node similarity and diversity
information in the generated low-dimensional representa-
tion, and enhance the performance of node classification.
As the training set labels increase, the classification results
of various models show an upward trend. However, the
improvement of some baselines is not significant, and the per-
formance cannot be enhanced with the increase of supervised
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FIGURE 5. Experimental results of node classification on Citeseer.
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FIGURE 6. Experimental results of node classification on Pubmed.
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FIGURE 7. Experimental results of node classification on Wikipedia.
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FIGURE 8. Experimental results of node classification on BlogCatalog.

information. Compared to baselines, MoVGAE can effec-
tively utilize both first-order and higher-order information
to predict labels for unlabeled nodes. It can achieve better
performance using only 10% of the training labels (as shown
in Table 2, bold indicates the best results, and underline
indicates the second-best results), further indicating that the
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TABLE 2. Experimental results of node classification (10% of training data).

Cora Citeseer Pubmed Wikipedia BlogCatalog
Methods
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
VGAE 77.55 72.39 62.26 54.89 83.23 82.79 4291 24.77 64.61 62.81
VGNAE 71.20 64.47 60.69 54.80 81.04 80.61 45.99 30.13 51.56 49.23
GC-VGAE 73.63 67.74 71.28 62.82 79.34 79.56 4291 24.15 67.28 65.78
MSVGAE 79.84 76.68 70.44 62.51 82.25 82.15 4423 23.97 63.77 62.63
OSA-VGAE 80.87 78.44 70.11 62.66 80.09 79.73 31.28 12.40 33.18 29.16
MoVGAE 82.20 80.10 71.92 64.22 84.44 84.13 51.28 37.71 68.51 67.79
B VGAE M VGNAE GC-VGAE E MSVGAE OSA-VGAE M MoVGAE
- 55.07
57 52.58
45 638 48.07
42.08
39.49 39.04 38.73 39.57
p 37.02
g 39 3523
=
Z 30
21 18.20 18.56
Cora Citeseer Pubmed

FIGURE 9. Experimental results of node clustering.

encoding method can enhance the distinguishability of node
representations.

E. NODE CLUSTERING

In this section, we evaluated the performance through node
clustering tasks [40]. We utilize node representations as input
for the k-means++- [41] to perform unsupervised node clus-
tering and record the NMI (%). In the k-means++-, the value
of k is set to the number of label classes in datasets. The
results of node clustering are shown in Figure 9.

The figure demonstrates that MoVGAE outperforms other
comparison baselines in node clustering tasks, and show
superior performance. Besides, compared to the vanilla
VGAE, MoVGAE significantly improves the performance
of node clustering. The results indicate that introducing
high-order information can improve the model’s preservation
of global structure, retain richer community information in
node representations, make nodes within the same commu-
nity closer in the feature space, and enhance the performance
of node clustering.

F. LINK PREDICTION

In this section, we evaluated the performance through link
prediction tasks. Firstly, remove 20% of the links and ran-
domly sample 20% of the non-links (node pairs without links)
to construct the test set. Then, use the remaining 80% of the
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links to train the model. Finally, the reconstructed adjacency
matrix for link prediction is generated through the inner
product of node representations. Each model uses the same
data partition and records the AUC (%) and AP (%) values.
The results of the link prediction are shown in Table 3 (bold
indicates the best result and underline indicates the second
result).

The table demonstrates that MoVGAE achieves state-of-
the-art performance compared to other baselines in link pre-
diction tasks. The results indicate that introducing high-order
information can improve the model’s capacity to maintain and
infer local topological structures, preserving richer neighbor-
hood information in low-dimensional node representations,
and enhancing the performance of link prediction. Further-
more, MOVGAE achieved the best performance in different
tasks on different datasets. The results indicate that introduc-
ing high-order information can simultaneously enhance the
model’s generalization and versatility.

MoVGAE and others are evolved from VGAE, but the
difference is that they are improved in various ways. In node
classification, node clustering, and link prediction, the results
of MoVGAE show significant improvement compared to
VGAE. Not only does it outperform current state-of-the-
art baselines, but its performance is also more stable. This
demonstrates that incorporating self-supervised information
can improve the model’s capacity to represent the original
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(d) MSVGAE

FIGURE 10. Visualization of node representations on Citeseer.

graph information, allowing the node representations to
preserve node distinctiveness, local and global structural
characteristics, consequently enhancing the performance of
downstream graph tasks.

TABLE 3. Experimental results of link prediction.

Cora Citeseer Pubmed
Methods
AUC AP AUC AP AUC AP
VGAE 89.60 90.87 9046 9190 92,60 9321
VGNAE 89.81 90.79 90.10 91.03 93.89 94.53

GC-VGAE 90.11 9029 9177 9127 93.96 94.01
MSVGAE 9193 9197 9366 9379 92.05 9221
OSA-VGAE 9226 9274 94.08 9438 93.78 9432
MoVGAE 93.08 93.51 94.18 94.73 9643  96.65

G. VISUALIZATION

The node representation contains the attributes and topolog-
ical structure information of the graph. Visualizing the node
representation can intuitively reflect the model’s capacity to
represent the original graph information. Firstly, -SNE [42]
is used to reduce the node representations of baselines and
MoVGAE on the Citeseer to 2-dimension. Then, the data
points on the 2-dimensional space are labeled with six dif-
ferent colors based on the node labels. The results of the
visualization experiment are shown in Figure 10.

The visualization results are usually characterized by
nodes of the same color being close to each other, while nodes
of different colors are separated from each other. Except for
VGAE and VGNAE, the other models can extract feature
information from the graph data to form partial community
structures. However, the visualized results of different models
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show significant differences in intra-class similarity and inter-
class boundaries. The node distribution of GC-VGAE and
MSVGAE is sparse, with low intra-class similarity. Con-
versely, OSA-VGAE and MoVGAE have nodes distributed
more closely within the same class. In addition, the visual-
ization intuitively reflects the model’s capacity to maintain
similar features of nodes within the same community, and
proves that introducing high-order information can enhance
the representation capability of the VGAE.

H. ROBUSTNESS ANALYSIS
To ensure the timeliness of the methods, we selected Cora
dataset and link prediction task for testing in the robustness
experiments. Most graph representation learning methods
require high-quality training data. When the training set
contains complex noise, missing data, and other issues, the
effectiveness of the model is often not guaranteed, which
is known as the problem of robustness. We evaluate the
robustness of baselines and MoVGAE by reducing the num-
ber of edges, the number of attributes, and simultaneously
reducing edges and attributes. In link prediction task, we use
the removed edges to construct the test set. In the experiment
of randomly attacking edges, we reduce 10% of edges from
the train set each time. The results of randomly attacking
edges are shown in Figure 11(a). In the experiment of ran-
domly attacking attributes, we reduce 10% of attributes from
the train set each time. The results of randomly attacking
attributes are shown in Figure 11(b). In the experiment of
randomly attacking edges and attributes, we reduce 10% of
edges and attributes from the training set each time. The
results of randomly attacking edges and attributes are shown
in Figure 11(c).

From the results, it is evident that the performance of
each model shows a decreasing trend as the amount of
graph information in the train set decreases. However, the
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FIGURE 11. Experimental results of robustness analysis.

performance of MoVGAE consistently outperforms that of
other baselines. In the case of attacking edges, high-order
neighbors can serve as a supplement to first-order neighbors,
enhancing the topological relationships between nodes. In the
case of attacking attributes, introducing high-order neigh-
borhoods allows nodes to aggregate more potential features,
thereby mitigating the impact of missing attributes. In the
extreme case of attacking edges and attributes, the proposed
method still maintains better results, demonstrating strong
robustness. The experimental results indicate that introduc-
ing high-order information can retain more comprehensive
original graph information and enhance the model’s represen-
tation capability in cases where attributes and topology are
insufficient.

I. HYPERPARAMETERS STUDY

In MoVGAE, the order of the MoGCN encoder is an
important hyperparameter. During the experiments, the other
hyperparameters in MoVGAE, such as dimension, number
of iterations, and initial learning rate, are the most com-
monly used hyperparameters. To ensure the timeliness of the
methods and save space, we selected Cora dataset and node
clustering task for testing. Figure 12 shows the NMI values,
with different number of orders.

From the Figure 12, we notice that the clustering results
improve as the order increased from 2-order to 3-order. This
mean that the increased order facilitates the representation of
more information about high-order neighborhoods, thus pro-
moting good clustering. However, performance declines as
the number of orders increases further. As the order increases,
each node has more indirect neighbors, which weakens the
topology differences between nodes and reduces the impor-
tance of critical nodes during feature aggregation. Therefore,
it is necessary to set the appropriate order during the model
training to achieve the better performance. From the overall
observation and analysis, the performance of MoVGAE at
different orders consistently outperforms VGAE and its vari-
ants. This further validates that the introduction of high-order
information enhances the ability for representation learning.
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FIGURE 12. Experimental results of hyperparameters study.

J. TRAINING TIME

To ensure the timeliness of the methods, we selected Cora
dataset for testing in the training time experiments. Here,
we report the preparation time (data preprocessing, param-
eters loading, model importing) and the training time for
100 epochs (forward propagation, loss function calcula-
tion, backward propagation), measured in seconds wall-clock
time. Figure 13 summarizes the results.

When comparing the preparation time of different models,
it is noted that VGAE and its variants only require simple
data preprocessing, so the results are relatively close. Com-
pared to baselines, MOVGAE requires a longer preparation
time because it needs to compute the k™ power of the adja-
cency matrix and perform symmetric normalization during
data preprocessing. When comparing the training time of

3.5 1 =
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# Training 206
4 278
2.9 2.75 2.65 2.7
=23 2.08
o
£
=1L A 15
1.1
0.5
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FIGURE 13. Experimental results of training time.
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different models, VGNAE, OSA-VGAE, and MoVGAE,
which directly modify the encoder, yield results close to
the original VGAE. GC-VGAE, which adds attribute recon-
struction loss, and MSVAGE, which calculates multi-scale
information, require significantly longer training times com-
pared to other models. From the overall observation and
analysis, MOVGAE not only achieves high prediction accu-
racy but also demonstrates better time efficiency.

K. ANALYSIS OF HIGH-ORDER METHODS

In graph data, edges are more likely to form between nodes
of the same type. For example, the intra-class edge rate
of Cora is 81%, and the intra-class edge rate of Citeseer
is 73.6%. Benefiting from this homogeneity, most methods
can achieve good performance by aggregating the first-order
neighborhood with GCN. However, these methods ignore
the transmission of information from distant nodes and lack
attention to high-order neighbors. In works such as LINE and
SDNE, implicit high-order information have been proven to
improve the experimental performance of downstream tasks.
Inspired by the above works, we propose a MoGCN that
can capture high-order information and integrate with graph
representation learning methods. From the results, it was
observed that by setting the appropriate order, MoVGAE
using GCN and MoGCN encoders can effectively capture the
information of first-order and high-order neighbors, thereby
enhancing representation capability.

VI. CONCLUSION

In this paper, we propose a novel method for graph rep-
resentation learning called MoVGAE, which utilizes GCN
and MoGCN encoders to simultaneously capture first-order
and high-order information from graph data. The results
demonstrate that MoVGAE achieves state-of-the-art perfor-
mance compared to other baselines in various tasks. The
introduction of high-order information enhances the model’s
representation capacity, improving its generalization and ver-
satility. In the case of insufficient attributes and topology
information, MoVGAE still maintains better performance
and demonstrates strong robustness. In future work, we will
consider introducing feature fusion using attention mecha-
nisms to allocate different weights to neighbors. Additionally,
we hope that future research will explore ideas to address real-
istic issues, such as identifying abnormal accounts on social
networks and rapidly uncovering the communities within
criminal networks.

REFERENCES

[11 W. R. Kerr and M. Mandorff, ‘“Social networks, ethnicity, and
entrepreneurship,” J. Hum. Resour., vol. 58, no. 1, pp. 183-220, Jan. 2023,
doi: 10.3368/jhr.58.3.0719-10306r2.

[2] T. Dividk, “Structural resilience and recovery of a criminal network
after disruption: A simulation study,” J. Experim. Criminol., pp. 1-29,
Mar. 2023, doi: 10.1007/s11292-023-09563-z.

[3] X.An, X. Sun, S. Xu, L. Hao, and J. Li, “Important citations identification
by exploiting generative model into discriminative model,” J. Inf. Sci.,
vol. 49, no. 1, pp. 107-121, Feb. 2023, doi: 10.1177/0165551521991034.

46928

[4]

[5

—

[6]

17

—

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

X. Lin, C. Zhou, J. Wu, H. Yang, H. Wang, Y. Cao, and B. Wang,
“Exploratory adversarial attacks on graph neural networks for semi-
supervised node classification,” Pattern Recognit., vol. 133, Jan. 2023,
Art. no. 109042, doi: 10.1016/j.patcog.2022.109042.

E. Nasiri, K. Berahmand, and Y. Li, “Robust graph regularization non-
negative matrix factorization for link prediction in attributed networks,”
Multimedia Tools Appl., vol. 82, no. 3, pp. 3745-3768, Jan. 2023, doi:
10.1007/s11042-022-12943-8.

M. Xu, “Understanding graph embedding methods and their appli-
cations,” SIAM Rev., vol. 63, no. 4, pp.825-853, Jan. 2021, doi:
10.1137/20m1386062.

R.Zou, Y. Liu, C.Li, Y. Zhang, and Y. Hu, “Graph representation learning:
Areview,” J. Beijing Normal Univ., vol. 59, no. 5, pp. 716-724, Oct. 2023,
doi: 10.12202/5.0476-0301.2023172.

S. Polizzi, T. Marzi, T. Matteuzzi, G. Castellani, and A. Bazzani, “‘Random
walk approximation for stochastic processes on graphs,” Entropy, vol. 25,
no. 3, p. 394, Feb. 2023, doi: 10.3390/e25030394.

M. Ouyang, Y. Zhang, X. Xia, and X. Xu, “GraRep++: Flex-
ible learning graph representations with weighted global structural
information,” IEEE Access, vol. 11, pp.98217-98229, 2023, doi:
10.1109/ACCESS.2023.3313411.

J. Yang, S. Yang, Y. Fu, X. Li, and T. Huang, ‘“‘Non-negative graph embed-
ding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Anchorage,
AK, USA, Jun. 2008, pp. 1-8, doi: 10.1109/CVPR.2008.4587665.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701-710.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2016, pp. 855-864.

L. Wu, P. Cui, J. Pei, L. Zhao, and X. Guo, “Graph neural networks:
Foundation, frontiers and applications,” in Proc. 28th ACM SIGKDD
Conf. Knowl. Discovery Data Mining, Washington, DC USA, Aug. 2022,
pp. 48404841, doi: 10.1145/3534678.3542609.

A. Singh and T. Ogunfunmi, “An overview of variational autoencoders for
source separation, finance, and bio-signal applications,” Entropy, vol. 24,
no. 1, p. 55, Dec. 2021, doi: 10.3390/e24010055.

J. Li, H. Shao, D. Sun, R. Wang, Y. Yan, J. Li, S. Liu, H. Tong,
and T. Abdelzaher, “Unsupervised belief representation learning with
information-theoretic variational graph auto-encoders,” in Proc. 45th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr, Madrid Spain, Jul. 2022,
pp. 1728-1738, doi: 10.1145/3477495.3532072.

1. Ullah, M. Manzo, M. Shah, and M. G. Madden, “Graph convolutional
networks: Analysis, improvements and results,” Int. J. Speech Tech-
nol., vol. 52, no. 8, pp. 9033-9044, Jun. 2022, doi: 10.1007/s10489-021-
02973-4.

R. Wei, C. Garcia, A. El-Sayed, V. Peterson, and A. Mahmood, ‘‘Vari-
ations in variational autoencoders—A comparative evaluation,” IEEE
Access, vol. 8, pp. 153651-153670, 2020, doi: 10.1109/ACCESS.2020.
3018151.

G. Salha, R. Hennequin, and M. Vazirgiannis, “Simple and effective
graph autoencoders with one-hop linear models,” in Machine Learning
and Knowledge Discovery in Databases, vol. 12457. Cham, Switzerland:
Springer, 2021, pp. 319-334, doi: 10.1007/978-3-030-67658-2_19.

S.J. Ahn and M. Kim, ‘““Variational graph normalized autoencoders,” in
Proc. 30th ACM Int. Conf. Inf. Knowl. Manag. New York, NY, USA:
Association for Computing Machinery, Oct. 2021, pp. 2827-2831, doi:
10.1145/3459637.3482215.

L. Yuan and Z. Liu, “Graph representation learning by autoencoder
with one-shot aggregation,” J. Comput. Appl., vol. 43, no. 1, pp. 8-14,
Jan. 2023, doi: 10.11772/5.issn.1001-9081.2021101860.

G. Wu, S. Lin, X. Shao, P. Zhang, and J. Qiao, “QPGCN: Graph con-
volutional network with a quadratic polynomial filter for overcoming
over-smoothing,” Int. J. Speech Technol., vol. 53, no. 6, pp. 7216-7231,
Mar. 2023, doi: 10.1007/s10489-022-03836-2.

Z. Guo, F. Wang, K. Yao, J. Liang, and Z. Wang, ‘“Multi-scale variational
graph autoencoder for link prediction,” in Proc. 14th ACM Int. Conf. Web
Search Data Mining. New York, NY, USA: Association for Computing
Machinery, Feb. 2022, pp. 334-342, doi: 10.1145/3488560.3498531.

L. Guo and Q. Dai,
ding,” Pattern Recognit., vol.
10.1016/j.patcog.2021.108334.

“Graph clustering via variational graph embed-
122, Feb. 2022, Art. no. 108334, doi:

VOLUME 12, 2024


http://dx.doi.org/10.3368/jhr.58.3.0719-10306r2
http://dx.doi.org/10.1007/s11292-023-09563-z
http://dx.doi.org/10.1177/0165551521991034
http://dx.doi.org/10.1016/j.patcog.2022.109042
http://dx.doi.org/10.1007/s11042-022-12943-8
http://dx.doi.org/10.1137/20m1386062
http://dx.doi.org/10.12202/j.0476-0301.2023172
http://dx.doi.org/10.3390/e25030394
http://dx.doi.org/10.1109/ACCESS.2023.3313411
http://dx.doi.org/10.1109/CVPR.2008.4587665
http://dx.doi.org/10.1145/3534678.3542609
http://dx.doi.org/10.3390/e24010055
http://dx.doi.org/10.1145/3477495.3532072
http://dx.doi.org/10.1007/s10489-021-02973-4
http://dx.doi.org/10.1007/s10489-021-02973-4
http://dx.doi.org/10.1109/ACCESS.2020.3018151
http://dx.doi.org/10.1109/ACCESS.2020.3018151
http://dx.doi.org/10.1007/978-3-030-67658-2_19
http://dx.doi.org/10.1145/3459637.3482215
http://dx.doi.org/10.11772/j.issn.1001-9081.2021101860
http://dx.doi.org/10.1007/s10489-022-03836-2
http://dx.doi.org/10.1145/3488560.3498531
http://dx.doi.org/10.1016/j.patcog.2021.108334

L. Yuan et al.: Improving VAGE With Multi-Order Graph Convolutions

IEEE Access

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, San Francisco, CA, USA, Aug. 2016, pp. 1225-1234, doi:
10.1145/2939672.2939753.

J. Firth, “A synopsis of linguistic theory, 1930-1955,” in Studies in Lin-
guistic Analysis, 1957, pp. 1-32.

W. W. Zachary, “An information flow model for conflict and fission
in small groups,” J. Anthropological Res., vol. 33, no. 4, pp. 452-473,
Dec. 1977, doi: 10.1086/jar.33.4.3629752.

J. M. Kleinberg, “Authoritative sources in a hyperlinked
environment,” J. ACM, vol. 46, no. 5, pp. 604-632, Sep. 1999, doi:
10.1145/324133.324140.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proc. 24th Int. Conf.
World Wide Web, Florence Italy, May 2015, pp.1067-1077, doi:
10.1145/2736277.2741093.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and Leman go neural: higher-order graph neural
networks,” in Proc. AAAI Conf. Artif. Intell., Jul. 2019, vol. 33, no. 1,
pp. 4602-4609, doi: 10.1609/aaai.v33i01.33014602.

L. He, L. Bai, X. Yang, H. Du, and J. Liang, “High-order graph
attention network,” Inf. Sci., vol. 630, pp.222-234, Jun. 2023, doi:
10.1016/j.ins.2023.02.054.

A. Sandryhaila and J. M. F. Moura, ‘‘Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61,no. 7, pp. 1644-1656, Apr. 2013, doi:
10.1109/TSP.2013.2238935.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. NIPS,
2016, pp. 3844-3852.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 1-8.

Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra, “Two sides
of the same coin: Heterophily and oversmoothing in graph convolutional
neural networks,” 2021, arXiv:2102.06462.

B. T. Hung, “Link prediction in paper citation network based on deep graph
convolutional neural network,” in Computer Networks, Big Data and IoT,
vol. 117. Singapore: Springer, 2022, pp. 897-907, doi: 10.1007/978-981-
19-0898-9_67.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network rep-
resentation learning with rich text information,” in Proc. IJCAI, 2015,
pp. 2111-2117.

L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Jun. 2009, pp. 817-826.

Z. Xie, X. Wang, H. Zhang, 1. Sato, and M. Sugiyama, ‘‘Adaptive inertia:
Disentangling the effects of adaptive learning rate and momentum,” 2020,
arXiv:2006.15815.

H. Ma, F. Ding, and Y. Wang, ““A novel multi-innovation gradient support
vector machine regression method,” ISA Trans., vol. 130, pp. 343-359,
Nov. 2022, doi: 10.1016/j.isatra.2022.03.006.

C. Wang, S. Pan, C. P. Yu, R. Hu, G. Long, and C. Zhang,
“Deep neighbor-aware embedding for node clustering in attributed
graphs,” Pattern Recognit., vol. 122, Feb. 2022, Art. no. 108230, doi:
10.1016/j.patcog.2021.108230.

H. Li and J. Wang, “Collaborative annealing power k-means++ clus-
tering,” Knowl.-Based Syst., vol. 255, Nov. 2022, Art. no. 109593, doi:
10.1016/j.knosys.2022.109593.

T. T. Cai and R. Ma, “Theoretical foundations of t-SNE for visualizing
high-dimensional clustered data,” J. Mach. Learn. Res., vol. 23, pp. 1-54,
Jan. 2022.

VOLUME 12, 2024

LINING YUAN received the B.E. and M.S.
degrees in public security technology from the
People’s Public Security University of China,
Beijing, China, in 2019 and 2022, respectively.

He is currently a Lecturer with the School
of Public Security Big Data Modern Indus-
try, Guangxi Police College, Nanning, China.
His research interests include machine learning,
graph neural networks, and graph representation
learning.

PING JIANG received the B.E. degree in computer
science and technology from Guangxi Normal
University, Nanning, China, in 2005, and the M..S.
degree in computer technology from Guangxi Uni-
versity, Nanning, in 2012.

She is currently a Professor with the School
of Public Security Big Data Modern Industry,
Guangxi Police College, Nanning. Her research
interests include data science, big data technology,
and natural language processing.

ZHU WEN received the B.E. degree in com-
puter science and technology from Southwest
Normal University, Chongqing, China, in 2004,
and the ML.S. degree in computer technology from
Chongqing University, Chongqing, in 2010.

She is currently an Associate Professor with the
School of Public Security Big Data Modern Indus-
try, Guangxi Police College, Nanning, China. Her
research interests include machine learning, data
science, and big data technology.

JIONGHUI LI received the B.E. degree in infor-
mation security from Guangxi Police College,
Nanning, China, in 2022.

He is currently a Senior Engineer with Suzhou
Keda Technology Corporation Ltd., China. His
research interests include cyber security, informa-
tion security, and big data technology.

46929


http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1086/jar.33.4.3629752
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1609/aaai.v33i01.33014602
http://dx.doi.org/10.1016/j.ins.2023.02.054
http://dx.doi.org/10.1109/TSP.2013.2238935
http://dx.doi.org/10.1007/978-981-19-0898-9_67
http://dx.doi.org/10.1007/978-981-19-0898-9_67
http://dx.doi.org/10.1016/j.isatra.2022.03.006
http://dx.doi.org/10.1016/j.patcog.2021.108230
http://dx.doi.org/10.1016/j.knosys.2022.109593

