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ABSTRACT The field of medical image analysis is in a constant state of evolution, particularly in the
challenging tasks of segmenting organs, diseases, and abnormalities. Therefore, in the realm of dental disease
diagnosis, image segmentation plays a crucial role in addressing the difficulties faced by dentists worldwide
when diagnosing dental diseases with the naked eye. One prominent deep neural network architecture,
known as U-Net, originally designed for biomedical image segmentation, has seen multiple variations and
advancements aimed at improving its performance. However, the lack of comparative studies has made it
challenging to assess the effectiveness of these U-Net variants in segmenting dental X-ray images. The
primary objective of this research is to conduct a comprehensive performance comparison among various
U-Net architectures for dental image segmentation. Specifically, we examine six U-Net architecture variants:
Vanilla U-Net, Dense U-Net, Attention U-Net, SE U-Net, Residual U-Net, and R2 U-Net. These variants
employ configurations with two and three convolutional layers in both the encoder and decoder blocks.
Our evaluation metrics include Accuracy, Dice coefficient, F1 score, and IoU (Intersection over Union).
Among these U-Net variants, Vanilla U-Net, with two convolutional layers, demonstrated the highest level
of performance, achieving an Accuracy of 95.56% and an IoU score of 88% on the validation set. Notably,
this model also exhibited a shorter processing time compared to the other architectures. Conversely, when
employing three convolutional layers, the Dense U-Net variant emerged as the top performer, achieving
an Accuracy of 95.94% and an IoU score of 89.07% on the validation set. Furthermore, the segmentation
process successfully isolates the teeth from the surrounding structures, which holds promise for improving
disease detection through the development of automated disease diagnosis models.

INDEX TERMS Dental, semantic segmentation, data annotation, OPG image, U-Net, U-Net variants, dice
coefficient, IoU, architecture comparison.

I. INTRODUCTION
Dental diseases (i.e., bone loss, decay, gum disease, etc.)
have become the most common phenomenon in the field of
medical science and therefore are increasing highly in recent
times. Dental health is just one aspect of oral health, including
our body’s overall health and well-being [1]. However, when
we only talk about dental health, teeth are one of the body
parts that are overused and have a high resistance to damage
and long-lasting architectural durability. Still, it is vulnerable
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approving it for publication was Tony Thomas.

to various illnesses [2]. Dental diseases affect nearly 90%
of individuals in the United States, as mentioned in a
survey of the National Health and Nutrition Examination [3].
Furthermore, according to specific epidemiological statistics,
dental disease is more prevalent in communities with
poor socioeconomic positions [4]. Even then, Health and
Retirement Studies show that even if an individual’s wealth
drops by 50% in the US, they pursue dental care for their
well-being.

According to the World Health Organization, [5] Oral
diseases, although largely preventable, impose significant
health challenges globally, affecting individuals across their
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lifespan and leading to pain, discomfort, disfigurement, and
even mortality. The Global Burden of Disease 2019 estimates
that there are 3.5 billion individuals affected by oral illnesses,
with untreated dental caries in permanent teeth being the
most common health issue. The cost of treating oral health
conditions is high, often falling outside the scope of universal
health coverage (UHC). In many low- and middle-income
countries, inadequate services are available for the prevention
and treatment of oral health issues. These diseases arise
from modifiable risk factors common to various non-
communicable diseases, such as sugar consumption, tobacco
and alcohol use, poor hygiene, and the underlying social and
economic determinants. Resolving these issues is essential to
reducing the prevalence of oral illnesses worldwide.

A wide range of dental care is given through hands-on
treatment or radiographic images. Since the invention of
X-ray imaging, oral X-ray images having three types
(Bitewing, Panoramic, and Periodical) have been widely
employed [6]. These dental X-rays reveal the hidden inner
part of teeth that a dentist’s eye can hardly detect. Among
the three types of X-ray radiography in dental anatomies,
panoramic X-ray, known as the Orthopantomogram, is less
time-consuming, has the lowest radiation value, and causes
less patient discomfort. Therefore, using OPG images or
panoramic X-rays can significantly detect dental diseases.
Medical image segmentation is one of the essential steps
in medical image analysis. The segmentation results’ shape,
size, and total area can provide crucial information for
understanding early signs of potentially deadly diseases,
as described in [7].

In the last few years, different medical fields such as
dentistry [8], brain [9], liver [10], breast [11], lung [12]
are explored through artificial intelligence. The Convolu-
tional Neural Network architectures have shown excellent
performance in detection and segmentation. Where [13]
U-Net architecture is a popular model for medical image
segmentation effective for both 2D and 3D images for its
pixel-wise classification behavior. Furthermore, the variants
under consideration include the normal U-Net model called
the Vanilla U-Net [14], Dense U-Net [15] with dense
layers interrogation, Attention U-Net [16] with attention
mechanism, SE U-Net [17] with the squeeze and excitation
(SE) block, Residual U-Net [18] with residual connections
and R2 U-Net [19] with residual and recurrent connections.
By investigating these variants, we aim to comprehensively
analyze their respective strengths and weaknesses in the
context of teeth segmentation. Analyzing this will contribute
to our understanding of the suitability of different U-Net
variants for this specific medical imaging task and guide the
selection of the optimum model for accurate and efficient
teeth segmentation in OPG X-ray images.

According to [20], In terms of the number of training
samples needed, memory requirements, and computing time,
U-Net has excelled in earlier research. For this reason,
we selected U-Net, and its variants to perform semantic
segmentation on our collected OPG images of teeth. This

study determines how these models perform on our dataset.
Contributions of this paper are as follows:

• A dataset of 389 dental panoramic x-ray images was
made from scratch with a proper annotation that was
used with proper pre-processing methods in this study.

• Six advanced U-Net models with layer variations were
implemented with their respective parameters, and
outputs were deeply analyzed.

• All six models are U-Net-based models where specific
layer or block-based differences are made to have good
accuracy and high performance.

• The effectiveness and performance of each of the six
models were evaluated using four different metrics
Accuracy metrics, F1-Score, Dice Coef, and IoU, with
the plots against the mean epoch time(MET), including
the confusion metrics table, training, and validation
curves.

• We found minimal differences Based on the profoundly
constructive and comprehensive comparison of the
dataset’s six U-Net-based models. The Dense U-Net
(layer 3) model and the R2 U-Net(layer 3) model have
the most optimum model in terms of accuracy and
predictions which can be concluded for further studies.

After presenting the context, motivation, and objectives of
our research, we will now delve into the ‘Related Works’
section where we have conducted an extensive review of
the existing literature that informed our research. Following
that, we will provide a detailed description of the dataset
we utilized in the ‘Data Set’ section. Subsequently, we will
elaborate on the intricacies of our methodology, including
the various U-Net variants, in the ‘Research Methodology’
section.Wewill then discuss the evaluationmetrics employed
to assess our models’ performance. After that, we will
showcase the results of our experiments, followed by a
comprehensive discussion and analysis of our findings. In the
concluding sections of this paper, we will summarize our
key conclusions and pinpoint potential directions for future
research endeavors. To commence this journey, we will first
elucidate the insights garnered from our review of related
works in the following section.

II. RELATED WORKS
In this era of AI, Deep learning has become a promising
aspect in the field of medical science due to its efficiency
in results and ability to work with complex and large data
in various imaging domains. One particular area of that is
the deep learning techniques for semantic segmentation in
the field of Dentistry. On the other hand, among the different
medical imaging modalities, panoramic X-ray imaging has
gained significant attention in terms of working with various
deep-learning models. By analyzing existing studies deeply,
this review provides valuable insights and identifies gaps for
further research, contributing to the enhancement of dental
imaging and analysis of various deep learning techniques.

As mentioned in [21], it resolves the challenge of
initializing the tooth model by itself, and the findings
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demonstrate that the tooth morphologies may be extremely
closely matched. The teeth segmentation problem is solved in
two phases using RFRV-CLMs. The first stage is estimating
a few teeth and related mandibular areas that are being
used to begin the search for individual teeth, and phase
two involves searching each tooth individually. Again, the
paper [22] focuses on CNN, which is based on the U-Net
model and is used to create a model for teeth segmentation
from panoramic images over a dataset of 1500 images. They
made the following alterations to the U-Net architecture: they
applied batch normalization before every max pooling, up-
sampling, and concatenation layer instead of dropout during
training which achieved a dice score of 0.936%.

Furthermore, in the paper [23], the authors utilized a
dataset comprising 1500 panoramic x-ray images obtained
from ivisionlab for their detection experiments. The primary
aim of the study was to augment the DNS Panoramic Images
dataset by identifying cavities in panoramic images and
creating binary ground truth representations for evaluation
purposes. The authors extended the DNS dataset by detecting
cavities in the panoramic images and generating binary
ground truth images. They employed three variations of
the U-Net architecture, U-Net, U-Net++, and U-Net3+ –
to improve the delineation of cavity boundaries. U-Net3+
exhibited exceptional performance, achieving a testing
accuracy of 95%.

By considering the benefits of both residual networks
(ResNet) and DenseNet, they suggest an effective network
architecture in this study [20].While usingmuch fewermodel
parameters than DenseNet, this approach adds more skip
connections than ResNet.For the ISIC 2018 dataset and the
brain MRI dataset, they gained a mean dice coefficient of
0.861 and 0.8643, respectively. Again, in [24], they provide a
model for segmentation called the MFFRU-Net. They create
an easy-to-use multi-scale feedback mechanism. They used
a public image dataset to assess their proposed MFFRU-Net
which got a 96.78% accuracy rate and a 98.56% AUC,
respectively.

In the paper [25], the author used various U-Net architec-
tures such as Dense U-Net, Attention U-Net, 3D U-Net, etc
on different types of medical images like MRI, Microscopy,
Dermoscopy, etc, and specifies U-Net as a context-based
learning model and emphasizes its suitability for medical
images.

Research done in [26] is centered around the segmentation
of the 3D image. For end-to-end learning of tooth instance
segmentation in 3D point of iOS cloud data, a model named
Mask-MCNet is introduced in this research. The suggested
model separates the points that are relevant to each distinct
tooth instance while also predicting each tooth’s 3D bounding
box to localize each tooth instance. This property results
in highly precise segmentation that is necessary for clinical
practice by preserving the intricate context of data. Among
the two datasets, the first dataset includes 120 optical images
of odontiasis from 60 adult patients, including lower and
upper jaw images. The second dataset consists of 48 optical

images of 24 adult people and is exclusively used to assess
the robustness of MCNet’s to various scanner types. The
outcomes demonstrate that the Mask-MCNet beats modern
models by reaching a tooth instance segmentation score of
98% IoU. Similarly, the paper [27] proposes a hierarchical
multi-step model that automatically identifies and segments
3D individual teeth from dental CBCT images. To get over
the computational difficulty posed by high dimensional data,
it generates panoramic photos of the upper and lower jaw
images. Following that, 3D individual teeth lose- and tight-
ROIs are captured from the acquired 2D images. They got a
93.35% F1 score and a 94.79% Dice coefficient percentage
for the study.

The study in [28] looks towards lightweight deep learning
techniques for segmenting dental X-ray images. This research
proposes a novel lightweight knowledge distillation neural
network technique. They propose an attempt to retrieve
reliable data from a teacher network using a knowledge
network. They referred to it as a knowledge consistency
neural network for simplicity (KCNet). In total, 1321 dental
panoramic images were employed in this research. As their
student and teacher networks, respectively, they selected
U-Net and ESPNet-v2. They got the IoU score of 80.4%
and 7 the Dice coefficient of 89%. Similarly, the study
done in [29] assesses the precision and effectiveness of
deep learning-based automatic teeth segmentation using a
DGCNN-based algorithm. Three different methods were
used to compare electronic dental models. Five hundred
sixteen dental models were used to train a deep learning
system to segment teeth, and 30 dental domains were used
to evaluate the precision and efficiency of the segmentation.
The accuracy of tooth segmentation was 97.26%, 97.14%,
and 87.86% for the AS, LS and DS, respectively

Furthermore, the study [30] shows the viability of the
SWin-U-Net CNN model for segmenting teeth on panoramic
X-rays. SWin-U-Net is an encoder-decoder system that uses
transformers and is shaped like a U with skip connections.
In SWin-U-Net, a symmetric encoder-decoder structure is
built using jump connections. It uses a local to a global strat-
egy for self-attention. Moreover, it builds a patch-expanding
layer to increase sampling and feature dimension without
using convolution or interpolation techniques. For research
purposes, 100 panoramic radiographs of adult patients were
randomly chosen. They achieved an accuracy of 88.52%
using SWin-U-Net.

Moreover, according to [31], the CNN-Transformer
Architecture UNet network is proposed as a proficient
and successful approach for segmenting dental cone-beam
computed tomography (CBCT) images. The study showcases
the model’s robust performance and adaptability to external
datasets, achieved through innovative architectural design
and strategic fine-tuning. The researchers gathered a dataset
comprising 200 CBCT scans, with annotations provided for
45 of them to facilitate network training. Following the
training phase, the model demonstrated outstanding perfor-
mance, as evidenced by notable metrics, including a Dice
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Similarity Coefficient (DSC) of 87.12%, Intersection over
Union (IoU) of 78.90%, Hausdorff Distance 95 (HD95) of
0.525mm, andAverage Symmetric Surface Distance (ASSD)
of 0.199 mm. With a similar dataset, in paper [32], their
investigation provides a thorough evaluation of the combined
segmentation outcomes generated by three convolutional
neural network (CNN) models in the construction of a
maxillary virtual patient (MVP) from cone-beam computed
tomography (CBCT) images. The dataset consisted of 40
CBCT scans with varied scanning parameters. By inte-
grating three independently validated CNN models, the
study successfully achieved comprehensive segmentation
encompassing the maxillary complex, maxillary sinuses, and
upper dentition. Expert qualitative assessments yielded high
scores, with 85% of segmentations rated within the range of
7 to 10, while the remaining 15% fell between 3 and 6. The
automated segmentation process demonstrated efficiency,
with an average processing time of 1.7 minutes. Key quanti-
tative metrics, such as a Dice Similarity Coefficient (DSC) of
99.3%, indicated outstanding alignment between automated
and refined segmentation. Furthermore, the consistency in
refinements among observers showcased a 95% Hausdorff
distance of 0.045 mm. This research highlights the promising
potential of integrated CNN models in the precise and
efficient creation of maxillary virtual patients from CBCT
scans, substantiated by robust qualitative and quantitative
assessments.

In the paper [33], the Teeth U-Net model is introduced
to tackle challenges associated with dental panoramic X-ray
image segmentation. The key contributions involve integrat-
ing a Squeeze-ExcitationModule within both the encoder and
decoder, coupled with incorporating a dense skip connection
to narrow the semantic gap between them. To address
issues related to irregular tooth shapes and low image
contrast, a multi-scale aggregation attention block (MAB)
is applied in the bottleneck layer, effectively extracting
teeth shape features and integrating multi-scale features
adaptively. A Dilated Hybrid self-Attentive Block (DHAB) is
also formulated to capture dental feature information across
a broader perceptual field. The proposed model exhibits
noteworthy outcomes in three comparative experiments,
showcasing elevated Accuracy, Precision, Recall, Dice,
Volumetric Overlap Error, and Relative Volume Difference
metrics for dental panoramic X-ray teeth segmentation
98.53%, 95.62%, 94.51%, 94.28%, 88.92%, and 95.97%,
respectively. The study confirms the algorithm’s effectiveness
through its application to clinical dental panoramic X-ray
image datasets, highlighting its potential for precise and
robust teeth segmentation.

According to [7], a faster version of R-CNN con-
ducts instance segmentation of teeth. First, features from
ResNet101 are extracted, and these features are com-
bined to form an FPN that defines anchors and extracts
ROIs. The segmentation requires quick weight adjustment
with the values of 103, 1 as 0.9, 2 as 0.999, and 108,
which the Adam optimizer can provide. The SGD is used to

fine-tune the weights without any momentum, with 106 as
the learning rate. The MSCOCO dataset is utilized, which
contains 193 buccal panoramic x-ray images divided into
10 categories. After training with these images, the Mask
RCNN achieved 98% accuracy and a 0.88 f1-score. Similar
utilization of this algorithm has been mentioned in the image
segmentation phase in [34], where they used it from the
sample library. The Al model successfully reached 90% of
diagnosis accuracy. The paper demonstrates making up an
intelligent dental Health-IoT system that is organized and
has 3 layers of services. After making the training data set
using the semi-automatic labelingmethod, the clinical images
were labeled by the detector, classifying them into 7 types
of dental diseases. The detector’s function includes visual
enhancement, coarse localization, and classification.

According to [35], the author presents the Adaptive
Feature Fusion UNet (AFF-UNet), designed to enhance
semantic segmentation in remote sensing imagery (RSI).
AFF-UNet integrates dense skip connections, an adaptive
feature fusion module, a channel attention convolution
block, and a spatial attention module. Assessment of public
RSI datasets, especially the Potsdam dataset, revealed
AFF-UNet’s outperformance compared to DeepLabv3+,
achieving a 1.09% increase in average F1 score and
a 0.99% improvement in overall accuracy. Visual out-
comes demonstrated reduced confusion among classes,
improved segmentation of diverse object sizes, and
enhanced object integrity. AFF-UNet effectively tackles
challenges in RSI, providing optimized accuracy for semantic
segmentation.

As per [36], CariesNet is a U-shape network with an extra
full-scale axial attentionmechanism. It is used for segmenting
caries types from dental Radiographics. From 1159 x-rays,
three types of labeling are applied to 3217 caries locations.
The feature extraction process from multi-level CNN is
combined with the U-shaped framework. Experiments reveal
that their technique can segment three degrees of caries with
a mean Dice coefficient of 93.64% and a 93.61% accuracy.

In the paper [37], inspired by U-Net architectures, the
author introduces the Neural Architecture Search (NAS)
system, aligning it with U-Net models. The application
involves Down Sampling and Up-Sampling on medical
images using a U-like backbone, referred to as NAS-U-Net.

According to the paper [38], the author introduces the MH
U-Net, a U-Net architecture with extraction and aggregation
of multi-scale features that is very efficient in medical image
segmentation. To have efficient gradient flow and fewer
training parameters the Densely connected blocks are used
like Dense U-Net architecture.

As mentioned in paper [39], the study presents a
cloud-based Convolutional Neural Network (CNN)model for
automated segmentation of dental implants and prosthetic
crowns in Cone-Beam Computed Tomography (CBCT)
images. The dataset consists of 280 maxillomandibu-
lar jawbone CBCT scans. The CNN model, trained on
expert-based semi-automated segmentation, demonstrated
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high efficiency, requiring 60 times less time than the
semi-automated approach. Results indicated strong seg-
mentation performance with high dice coefficient simi-
larity scores (0.92 for implants, 0.91 for implants with
restoration) and low root mean square deviation values
(0.080.09 mm for implants). Finally, the study shows
the model’s accuracy and clinical significance in dental
imaging.

In the paper [40], the author introduced ELU-Net,
a lightweight U-Net model with deep skip connections at a
large scale, extending from the encoder to the fully extracted
features of the decoder, similar to U-Net++. Furthermore,
the paper emphasizes the use of a distinct loss function to
enhance the efficiency of brain tumor detection.

Although some of them focus on other types of medical
images [20], [24] and some provide both teeth segmentation
as well as disease classification [7], [34]. The studies done in
[27] and [29] are based on 3D image segmentation, which is
not our area of concern at this moment as we are focusing
on 2D panoramic x-rays. Some of the research introduced
new novel models for segmentation [22], [27], [29] by com-
bining features from U-Net variants or by introducing new
features.

This study will compare six U-Net variations on dental
panoramic X-ray images to evaluate their segmentation
performance based on the architecture complexity and total
model training time. Though some studies above used
modified U-Net structure and a combination of U-Net
variants for segmentation, our study aims to compare some
U-Net architecture variants to determine which network
model is best for our domain for segmentation operation.
The effect of the number of convolutional layers will
also be examined by comparing two and three layers per
block as a simple complementary experiment alongside
the more complex architectural changes. While a two-layer
architecture may provide a balance between simplicity and
effectiveness, a three-layer architecture has a higher level of
model complexity, which may have the potential to capture
more intricate patterns and details of panoramic X-ray
images. While deeper architecture may benefit our research,
it often comes with increased computational demands. With
this in mind, we want to see if deeper networks with three
convolutional layers make a bigger impact in capturing intri-
cate patterns and give better accuracy in segmentation. Thus,
We want to evaluate the impact of the number of convolu-
tional layers by analyzing two and three levels per block. This
study aims to develop observations about semantic dental
panoramic image segmentation via U-Net architectures to
be used on any dental dataset and save much time for later
research.

III. METHODS
Here we discuss the U-Net architecture variants we uti-
lized, and the testing, validation, and evaluation techniques
employed in this section’s study on panoramic X-ray images
in detail.

A. PROCEDURE
As shown in figure 1, our research starts with collecting data
from a local dental clinic. To remove unwanted backgrounds,
we cleaned 389 images and resized them to 1024 × 1024
pixels. We later patched each picture to 256 × 256 pixels
with a non-overlapping approach to avoid losing any pixels
throughout the model training. Furthermore, we used this
patched data and split them into train test and validation sets
with an 8 : 1 : 1 ratio.

FIGURE 1. Work plan.

We used six different U-Net variants for training. We used
four accuracy matrices (dice coefficient, IoU, f1 score, and
accuracy) on the validation set. Then we generated confusion
matrix tables on a test set to evaluate the model’s performance
on unseen data. Moreover, we compared each variant’s
accuracy over time to find an optimal solution for our domain.
Furthermore, we compared the results of all models by visual
inspection and graphical analysis.

B. DATASET
1) DATA COLLECTION
Initially, we wanted to use raw resources to proceed with
our idea, and we started fieldwork. After being consulted
in many dental clinics, we convinced one of the renowned
dentists of Bogura, Bangladesh, Dr. Ashique Mahmud Igbal
(BDS, Dhaka Dental College), of IQBAL’S Dental Clinic.
He allowed us to gather the OPG images of the patients,
with the condition of not sharing the personal information
of his patients, as shown in Figure 2. Finally, we gathered
389 OPG images of X-rays with the best quality. In the
first stage, we captured 200 images of different patients.
In the last 2nd stage, we captured 189 images. The device
used is a Xiaomi Redmi Note 9 Pro with a 64 MP camera
for capturing the raw images of the patients. In the image
collection, we found the versatility of patients in terms of age
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and gender. Nevertheless, we mostly got images of middle-
aged patients.

FIGURE 2. Data sample.

2) DATA DESCRIPTION
In the two stages of data collection, we get a total of
389 images in our dataset from different individuals. From
visual inspection, we can see that some images have ‘‘blue’’
tints, and some have ‘‘grey’’ tints. These images are of
various aged people, including children, men, and women.
Our dataset shows that some X-rays contain 32 teeth; some
have less than that, which differs from age to age, man to
woman, or even child. Children aged 6 to 10 tend to have
different patterned and missing teeth. Overall, our dataset
contains a good variety of data.

3) DATA ANNOTATION
Label Studio is used to label the 389 panoramic x-ray images
using the ‘‘Semantic Segmentation Using Mask’’ module for
the data labeling of the OPG images. At the very beginning,
after selecting our color format (R= 255 G= 76 B= 66)
for our labeling, we set up some minor changes in the
Labeling Interface. After the data was imported into the
label studio, we set up the region named ‘Tooth’. Then,
for the labeling, we eventually masked up the regions or
areas that are precisely the teeth areas of a particular X-ray
image. We masked the images one by one and generated each
image’s ‘Ground Truth’ or mask. Finally, we got precisely
389 masks for each X-ray image after annotation.

4) DATA PRE-PROCESSING
a: IMAGE RESIZE
After creating a dataset from scratch, some steps are
implemented before extracting teeth as the primary region
within images as shown in figure 3. The collected raw X-ray
images have dimensions of 4000 × 3000 pixels. As we
are using different variants of the U-Net network model
for the Semantic segmentation process, the raw images of
4000× 3000 pixels dimension are unsuitable to take as input
for the architectures. We used manual cropping to make

squared-sized shapes, eliminating irrelevant backgrounds and
resizing the images into 1024×1024 pixel dimensions for the
convenience of U-Net models.

FIGURE 3. Pre-process steps.

b: CLAHE IMPLEMENTATION
In the following process, after getting the 1024× 1024 sized
images, we used the CLAHE [41] (Contrast LimitedAdaptive
Histogram Equalization) a modern technique that improves
the visibility of any sort of digital image with lower contrast
and low lighting to ensure the clarity and quality of the X-ray
images. Therefore, we can avoid the over-amplification of
noise in each image beyond a certain threshold enhancing the
local contrast of each digital image. We used the ‘clip-limit’
of 2.0, which refers to the threshold and Grid size of (8,8) for
our implementation purpose. We randomly took a picture to
visualize the luminosity as shown in figure 4. After applying
CLAHE we can see that the histogram is equalized evenly in
figure 5.

FIGURE 4. Before implementing CLAHE.

c: PATCHED IMAGES
U-Net architecture with patch-based data is more convenient
in the case of images with large dimensions, giving better
accuracy. We need to convert the 1024 × 1024 sized images
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FIGURE 5. After Implementing CLAHE.

into patched images with 256 × 256 pixels for the proposed
models to work using patchify, dividing each image into
4 × 4 sub-parts or patches. Finally, after the patchify, we get
389 × 16 = 6224 patched images and masks with 256 ×

256 pixels.

d: NORMALIZATION
Our proposed method of normalization of the data is Linear
Scaling. As the images are converted into an array, their
values are 0−255 for each pixel. We divide the data by 255 to
normalize our data, considering 0 as the minimum value, and
255 as the maximum value.

Scaled Pixel Value =
Pixel Value − Min Value
Max Value − Min Value

(1)

5) DATA CLASSIFICATION
With a random state of 42, we divided the dataset into an
8 : 1 : 1 ratio for the train, test, and validation set. We get
6224 patches on both image and mask data from the pre-
processing step. After splitting the data, we get 4978 patches
on the train set and 623 patches on both the validation and
test set.

C. NETWORK ARCHITECTURES FOR SEMANTIC
SEGMENTATION
U-Net was introduced in 2015 by Ronneberger et al. [14]
to perform segmentation on biomedical images. According
to [25], U-Net is primarily used in different domains of
biomedical images, such as CT scans, MRIs, microscopy,
and X-rays. This architecture is mainly used for seg-
mentation purposes. It computes the separation of bor-
ders in morphological order as mentioned in [14].
The weight map is then computed with the following
equation.

w(x) = wc(x) + w0 · exp
(

−
(d1(x) + d2(x))2

2σ 2

)
(2)

The weight map, wc : � → R, is employed to balance
the frequencies of distinct classes in our problem. The

FIGURE 6. U-Net architecture variations.

functions d1 : � → R and d2 : � → R measure the
distances from a particular point x to the closest and second
closest cell boundaries, respectively. In our experimental
implementation, we set w0 to 10 and σ to approximately
5 pixels.

However, many more applications have been seen. So,
the potential of this architecture is increasing. Different
variants of U-Net have been introduced to the world
since the first introduction of U-Net. We have used six
different architecture variants (figure 6) of this model to
compare model performance for our domain. Furthermore,
the key features of the mentioned architectures are given in
table 1.

D. TRAINING AND ARCHITECTURE PARAMETERS
To train our architectures and evaluate the performance we
used a computer with the given configurations:

• CPU: AMD Ryzen 9 5950X 16-Core Processor
• RAM: 64 GB
• Storage: TEAM TM8FP6256G
• GPU: NVIDIA GeForce RTX 3080 Ti
The principal deep learning framework employed for

model development is TensorFlow, version 2.10.1, ensuring
compatibility with the NVIDIA GeForce RTX 3080 Ti
GPU by utilizing the ‘‘tensorflow-gpu’’ package. The seg-
mentation algorithms extensively rely on well-established
Python libraries for various purposes, including numerical
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TABLE 1. Summary of U-Net architecture variations.

FIGURE 7. Prediction steps.

computing (NumPy), data manipulation (Pandas), image pro-
cessing (Pillow), and neural network construction (Keras).
In addition, other auxiliary libraries were incorporated to
enhance the coding experience. The code was executed on a
machine with the specified library versions and dependencies
to facilitate reproducibility and transparency in the research
process.

Our network architectures use a 1 × 1 convolution
layer with stride one followed by a sigmoid activation.
The output of these networks gives us binary classification
probabilities corresponding to each pixel in the original
input teeth X-ray images. All the networks use 2 × 2 max-
pooling and transposed convolution on the downsampling and
upsampling, respectively. Furthermore, Network architecture
consists of four downsampling and four upsampling layers.
The first downsampling layer starts with 16 filters, and
as the network goes deep, the filter size increases twice
the previous amount. However, the filter size decreases by
half the prior amount for the upsampling layers. We use
two and three convolution operations per block for perfor-
mance comparison for each of these encoder and decoder
blocks. These convolution operations are followed by batch
normalization and ReLU activation functions. For training

TABLE 2. Confusion matrix results.

purposes, the models are initially compiled using the Adam
optimizer with a learning rate set to 0.0001. A batch size
of 16 is employed, and all models undergo training for a
total of 100 epochs. Subsequently, the models are fitted
using 4, 978 patched image and mask pairs for training
and validated against 623 patched image and mask pairs.
To evaluate the models’ performance on the validation
set, we utilize metrics such as ‘‘accuracy,’’ ‘‘dice coeffi-
cient,’’ ‘‘f1 score,’’ and ‘‘IoU’’ (Intersection over Union).
Finally, the dice_coef_loss function is used to calculate the
loss.

A =

k∑
j=1

mjnj + δ∑k
j=1(mj + nj + δ)

(3)

B =

k∑
j=1

(1 − mj)(1 − nj) + δ∑k
j=1(2 − mj − nj + δ)

(4)

L = 1 − (A− B) (5)

where, the predicted value is mj, and the corresponding
ground-truth value is nj is the corresponding ground-truth
value. To compare the networks, we consider these metrics
with the best epoch.

E. PREDICTION ON TEST IMAGES AFTER TRAINING
After training all of our architectures, we predicted some test
images using all of the models and each of their variants. The
steps are similar for all architectures.

As shown in figure (7), first, we need to create patches
out of the image that we want to predict. To do so,
we will take a dental x-ray image as our input that we
would like to segment i.e., predict using our model. Next,
we divide our image into 4 × 4 = 16 patches, each with
a 256 × 256 pixel size. Also, we need to normalize all
the values before feeding the patches for prediction. As we
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FIGURE 8. Visual inspection on all models.

FIGURE 9. Training vs accuracy curves of attention U-Net 2 and 3 layer.

have already trained our model, we can use it to predict
and segment an image. So, now we will use our model to
predict each of the patches. After predicting all the patches,
we will be left with 16 segmented patches for an image.
As illustrated in figure (7), after we get the 16 segmented
patches, we will reconstruct the entire image. In simpler
words, we will put together all 16 segmented patches and
form the entire image with a final size of 1024 × 1024
pixels.

IV. EXPERIMENTS AND RESULTS
For segmentation purposes, we used six variations of U-Net
Architecture. For each variant, we used 2 and 3-layered
architecture. Furthermore, we used tabular, visual, and
graphical analysis to evaluate the results of multiple U-Net
architectures.

A. EVALUATION METHODS
As we aim to train segmentation models, more than common
metrics such as accuracy or f1 score are needed to evaluate
our models properly. Alongside these metrics, we have
considered our two-layer and three-layer variants on dice
coefficient and IoU for further clarification by comparing
the training and validation curves. Furthermore, we used
a confusion matrix as a tabular analysis to evaluate the
performance of our U-Net variants.

1) PERFORMACE METRICS
We have used accuracy, Dice coefficient, F1 score, and
Intersection over Union (IoU) to evaluate the performance
of our binary image segmentation models. By using these
four metrics to evaluate our models’ performance, we can
better understand how well the models perform on the image
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FIGURE 10. Training vs accuracy curves of vanilla U-Net 2 and 3 layers.

FIGURE 11. Training vs accuracy curves of Dense U-Net 2 and 3 layers.

segmentation task. From figure 9, 10, 11, 12, 13, 14, these
curves represent the training vs. validation curve on the
validation set. Now, for all four metrics, these validation
curves are smooth for all U-Net variants for layers 2 and 3.
Our model does not overfit, and all of these curves go up from
87% to 91%.

2) CONFUSION MATRIX
Overall, as shown in table 2 all models seem to be performing
well in terms of accurately identifying teeth and background.
This combination of high true positive and true negative rates
is a positive indication that the models are performing well
overall. Both two-layer and three-layer variants have similar

performance, but the latter might be slightly more accurate as
per their confusion matrices on the test sets.

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 =
2 × Precision ∗ Recall
Precision+ Recall

=
2 × TP

2 × TP+ FP+ FN
(8)

In the above set of equations, and in the table
• TP = True Positive
• FP = False Positive
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FIGURE 12. Training vs accuracy curves of R2 U-Net 2 and 3 layers.

FIGURE 13. Training vs accuracy curves of residual U-Net 2 and 3 layers.

• FN = False Negative
• TN = True Negative

B. RESULTS
The segmentation performance of the OPG teeth image
dataset was examined using six distinct U-Net variations in
this study. Using two and three convolutional blocks per layer,
comparisons of each design were also made.

1) VISUAL INSPECTION
Upon reviewing Figure 8, we conducted a visual assessment
of the models’ performance. The outcomes indicated that
all models exhibited proficiency in accurately recognizing
teeth within the test image. As our investigation progressed,

we employed a technique known as ‘‘Bitwise-and’’ to isolate
the regions where teeth had been segmented from the original
test image. On closer scrutiny, we did observe isolated
instances where tiny portions of gum were erroneously
classified as teeth. It is worth emphasizing that these
occurrences were infrequent and had negligible impact.
Despite these minor challenges, the models showcased
commendable overall performance, particularly in adeptly
delineating the principal contours of teeth.

2) GRAPHICAL ANALYSIS
Figure 9, 10, 11, 12, 13, 14 provides a visual summary
of segmentation accuracy vs mean epoch train time vs the
network parameters for all four metrics. The circle shapes
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FIGURE 14. Training vs accuracy curves of SE U-Net 2 and 3 layers.

TABLE 3. Comparison of all architectures.

represent the two-layer variants, and the square shapes
represent the three-layer variants. Also, the sizes of the two
shapes vary based on their network complexities.

Among the different architectures we studied, the
three-layer versions of Dense U-Net and R2U-Net performed
the best. However, it’s worth noting that Dense U-Net
had the most complex structure, while R2 U-Net was the
slowest to train and evaluate. One standout model among
the three-layer versions is the SE U-Net. It is impressive
because its training time is quite similar to most of the two-
layer models, yet it achieves one of the highest segmentation
accuracies. If we focus on finding a model that trains
quickly and has fewer complicated parts, the two-layer
Vanilla U-Net is a strong contender. It not only has the
simplest architecture among the models but also the shortest
training and evaluation times. While Attention U-Net and
Residual U-Netmight not be the best in terms of segmentation
accuracy, their two-layer versions are some of the fastest to
train.

To sum it up, the three-layer Dense U-Net and R2 U-Net
are top performers, but they comewith complexity and longer
training times. The SE U-Net is notable for balancing good
accuracy and reasonable training time. If we want a simpler
and faster model without compromising much on accuracy,

the two-layer Vanilla U-Net is a good choice. AttentionU-Net
and Residual U-Net might not have good accuracy, but their
two-layer versions train faster.

Here in table 3 is a more detailed summary of the results
obtained from our dataset. We can observe that the accuracy
of segmenting teeth using the six U-Net architectures was
quite similar. However, we noticed that the performance of
each architecture showed a slight improvement when we
added an extra layer for processing in each block. This
improvement, though, came at the cost of making the models
more complex, almost 1.5 times more complex for all the
architectures. Additionally, we saw that both training and
evaluation times for all the models increased significantly
when we added this extra layer. This suggests that when we
add this layer, we face a trade-off between factors like how
fast the model learns, how complicated the model becomes,
and how accurate the segmentation method is. Interestingly,
despite the increase in complexity and longer training times,
the improvement in segmentation accuracy from the other
models was not very noticeable when compared to the
standard Vanilla U-Net. This makes us think that opting for a
simpler and faster architecture like the Vanilla U-Net might
be the best choice for segmenting teeth in panoramic X-ray
images.
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In simpler terms, this study shows that all theU-Netmodels
performed almost similarly on the segmentation operation.
Adding an extra processing layer to each model made them
more accurate, but also a lot more complex and slower to
train. This made us realize that stability is required between
the accuracy of the segmentation model, the efficiency
of the model, and its complexity. In contrast to other models,
the basic Vanilla U-Net ensures satisfactory accuracy, which
is simpler and faster as well. Therefore, suggesting faster,
simplified architecture, such as Vanilla U-Net, seems to be
the optimal solution for OPG teeth segmentation.

V. CONCLUSION
In this study, we conducted a comprehensive and unbiased
analysis, comparing six U-Net architectures, encompassing
both two and three-layer variants, for the segmentation of
teeth in panoramic x-ray radiographs using our dataset.
We aim to contribute insights that can facilitate the
development of successful segmentation models. All U-Net
models employed in our study demonstrated commendable
performance in teeth segmentation from dental panoramic
x-rays in our dataset. Upon meticulous examination of
the results, particularly using the Dice Coefficient as the
primary accuracy metric, we observed minimal differences
in performance among the U-Net models. However, rec-
ognizing the diverse conditions of clinical applications
and time and complexity constraints, our study highlights
certain adjustments. Our focus is on providing an in-depth
and impartial analysis of U-Net models, offering valuable
insights for segmentation approaches that can significantly
impact the ongoing evolution of U-Net models, particularly
in developing disease diagnosis models utilizing optimal
segmentation methods. Notably, our findings indicate that the
3-layer variants of R2 U-Net (Recurrent Residual U-Net) and
Dense U-Net exhibit superior performance, achieving Dice
Coefficient percentages of 90.35% and 90.33%, respectively.
While these models excel in performance and segmentation
accuracy, their increased complexity and time requirements
should be considered. Considering these factors, the 2-layer
variant of the Vanilla U-Net model emerges as an optimal
choice for clinical applications, offering a Dice Coefficient
percentage of 88.00 with fewer layers and a more time-
efficient approach. In conclusion, our study, featuring an
impartial analysis and guidance on optimal model selection
for teeth segmentation, holds significant potential for future
research endeavors, saving valuable time in pursuing the
most effective segmentation model. Despite the impressive
performance of certain U-Net variants, the fundamental
Vanilla U-Net remains a pragmatic choice for practical teeth
segmentation in real-world applications due to its balanced
performance, lower complexity, and faster processing speed.

CODE AVAILABILITY
The algorithms and code utilized in this study are
openly accessible and can be found at https://github.com/

rafiatulzannah/Semantic-Segmentation-Using-Panoramic-X-
ray-Images
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