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ABSTRACT To tackle the issues raised by detecting small targets and densely occluded targets in railroad
track surface defect detection, we present an algorithm for detecting defects on railroad tracks based on
the YOLOv8 model. Firstly, we enhance the model’s attention towards small and medium-sized targets by
substituting replacing the original convolution with the SPD-Conv building block in the backbone network
of YOLOv8n, while preserving the original network structure. Secondly, we integrate the EMA attention
mechanism module into the neck component, allowing the model to leverage information from different
layers of features and improve feature representation capabilities. Lastly, we substitute the original C-IOU
with the Focal-SIoU loss function in YOLOv8, which adjusts the weights of positive and negative samples
to penalize difficult-to-classify samples more heavily. This enhancement improves the model’s capability to
accurately recognize challenging samples and ensures that the network allocates greater attention to each
target instance, resulting in improved performance and effectiveness of the model. The experimental results
reveal notable advancements in precision, recall, and average accuracy attained by our enhanced algorithm.
Compared to the original YOLOv8n model, our enhanced algorithm demonstrates remarkable precision,
recall, and average accuracy of 93.9%, 93.7%, and 94.1%, respectively. These improvements amount to
3.6%, 5.0%, and 5.7%, respectively. Notably, these enhancements are accomplished while maintaining the
dimensions of the model and the parameter count. During the identification of defects on railroad track
surfaces, our improved algorithm surpasses other widely used algorithms in terms of performance.

INDEX TERMS Rail defects detection, deep learning, YOLOv8, convolution module, attention mechanism,
loss function.

I. INTRODUCTION
Due to the exponential increase in the railroad industry,
there has been a constant expansion in operational mileage,
speed, and density. Consequently, the safety risks associated
with railroads are also on the rise [1]. This poses a greater
challenge to the requirements of railroad inspection. The
friction and rolling contact between high-speed trains and the
rail surface can lead to wear, deformation, and, over time,
the accumulation of corrugation, cracks, scars, rail breaks
and other defects [2]. Corrugation refers to the periodic,
sinusoidal wear or deformation observed on the surface of
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railway tracks. Cracks are characterized by linear or small
fissures that manifest on the rail surface. Scars denote sur-
face scratches or wear marks. Rail breaks represent fractures
occurring at one or multiple points along the rail line. If these
issues are not timely detected and repaired, they can jeop-
ardize the safety of rail transportation, potentially resulting
in train derailments and severe accidents. Hence, the prompt
detection and timely repair of rail surface defects are of
utmost importance. Doing so significantly reduces the risk of
accidents, ensures transportation safety, extends the service
life of rails, and reduces maintenance costs.

Traditional rail defect detection methods include manual
detection [3], magnetic particle detection [4], and infrared
thermography detection [5]. Manual inspection is a simple
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and direct method, but it suffers from subjective judgment and
fatigue of the inspector, leading to inconsistent and inaccurate
results. Moreover, it is inefficient and costly. Magnetic parti-
cle inspection can visualize rail surface defects, which is ben-
eficial for initial assessments. However, it involves complex
operations, requires high technical expertise, and has strict
environmental requirements. Similar to manual inspection,
it is also prone to subjective assessments. Infrared thermog-
raphy inspection, being a non-contact method, minimizes
interference with the railroad track. However, it primarily
focuses on heat-related defects and has limited capability to
detect other types of defects, such as cracks. Additionally,
it struggles to provide precise information regarding the size
and depth of defects.

In the past few years, remarkable advancements have
been achieved in the realm of artificial intelligence technol-
ogy, with notable breakthroughs observed in the domain of
machine vision. This progress has given rise to various neural
network models that offer high accuracy and fast response
times [6]. The introduction of these models presents a new
solution for rail defect detection, allowing for significant
reduction in human and material resource investments while
enhancing the accuracy and efficiency of detection [7]. The
model series known as You Only Look Once (YOLO) [8],
as a widely utilized target detection framework, has been
extensively employed in detecting railroad track defects,
yielding commendable accuracy and detection outcomes.
Alternatively, the Region-based Convolutional Neural Net-
works (Faster R-CNN) [9], another prevalent target detection
model, leverages candidate region extraction and classifi-
cation regression networks to precisely locate and identify
defects on the track. Moreover, several investigations have
amalgamated deep learning models with image segmentation
techniques, enabling precise segmentation and detection of
railroad track defects. Noteworthy examples encompass the
adoption of models like U-Net [10] and Mask R-CNN [11]
for localizing and segmenting defective regions on the track.
Overall, deep learning algorithms [12] have exhibited sub-
stantial promise and yielded remarkable outcomes in the field
of detecting defects in railroad tracks.

In the realm of railroad safety, the identification of
surface abnormalities on rails assumes a pivotal role.
In recent decades, machine vision technology has made
remarkable progress, witnessing significant advancements
in its application to the detection of railroad track defects
across various countries. Internationally, Sresakoolchai and
Kaewunruen [13] introduced a novel approach aimed at
detecting track defects through the utilization of Track
Geometry Correlation (TGC) to acquire precise geometric
representations of the track. The proposed method leverages
a Deep Neural Network (DNN) [14] model to effectively
identify and classify defects. The experimental results show-
case a remarkable accuracy rate of 92.17% achieved by the
proposed method in detecting rail cross-section anomalies

and worn-out rail spikes. However, the model’s performance
deteriorates as the number of defect categories increases.
Mohan et al. [15] introduced an enhanced deep learning
model, referred to as YOLOv2, which utilizes a dual-fold
skip architecture for the recognition and defect detection of
train bogie components in real-time video sequences. The
model achieves an accuracy of 69.0%. The model’s sub-
par performance can be attributed to the utilization of an
older version of YOLO, which hinders its detection capa-
bilities. Casas et al. [16] used the YOLOv8 [17] model to
automatically detect and calculate eucalyptus stacked tim-
ber in forestry, using the CSPDarknet53 backbone network
with a mAP50 of 83.9%. Nevertheless, it consistently exhib-
ited a tendency to underestimate the quantity of stacked
wood in the static images, resulting in errors ranging from
-32.817% to -48.805%. In the domestic domain, Cao [18]
developed a deep learning-based visual inspection system for
surface defects on cold heavy rails. This system improves the
parameters and structure of the Faster-RCNN target detec-
tion model. By adjusting the algorithmic logic, it effectively
enhances defect detection efficiency and ensures the qual-
ity of heavy rail production. The proposed system exhibits
a detection accuracy and recall rate exceeding 90% for
both roll scar and roll mark test data. However, owing to
the limited and imbalanced nature of the dataset employed
by the system, the model encounters a notable overfit-
ting phenomenon, thereby resulting in potential omissions
and recognition errors during real-world testing scenarios.
Bai et al. [19] proposed an enhanced YOLOv4-based method
for detecting defects on railroad surfaces. The proposed
approach employs MobileNetv3 as the underlying architec-
ture for the extraction of image features within the YOLOv4
framework. Additionally, the PANet layer in YOLOv4 incor-
porates depth-separable convolution, leading to a notable
accuracy improvement of 1.64% when compared to the orig-
inal YOLOv4 model. An innovative approach for detecting
track fastener defects was introduced by Wang et al [20],
leveraging the YOLOV5 framework. To augment the model’s
capability, they employed the Filter Pruning via Geometric
Median (FPGM) algorithm for model pruning, allowing for
controlled increasing the model’s width and depth. As a
consequence, the mean average precision (mAP) witnessed
a substantial increase from 91.23% to 93.42%. An enhanced
YOLOX-Nano method for rail fastener defect detection was
proposed by Hu et al. [21] by incorporating Adaptive Spatial
Feature Fusion (ASFF) is applied immediately following the
feature maps produced by the output of the PAFPN, and the
mAP value of the improved YOLOX-Nano model increased
by 18.75%. Wang et al. [22] introduced an improved road
defect detection algorithm that integrates the BiFPN concept
and reconstructs the neck structure of YOLOv8s within the
framework, which improved the average accuracy by 3.3% in
comparison with original model mAP@0.5.These advance-
ments not just increase the accuracy of rail detection but also
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contribute to the modernization of China’s railroad safety
management system.

The detection of surface defects on railroad tracks presents
several challenges that necessitate resolution [23]. Firstly, the
presence of diverse and intricate background interferences,
including rust, dirt, and coatings, poses a considerable dif-
ficulty as they bear resemblance to genuine defects, thereby
exacerbating the detection process. Moreover, the manifold
shapes, sizes, and textures exhibited by railroad track surface
defects encompass a wide spectrum of variations, encompass-
ing corrugations, abrasions, and fractures, thereby impeding
the development of a generalized detection algorithm. Fur-
thermore, the exigency for real-time or near real-time railroad
track defect detection necessitates the implementation of
detection algorithms characterized by high efficiency and
rapid response capabilities. Lastly, practical implementa-
tions of the railroad track detection system are vulnerable
to an array of external environmental disruptions, such as
fluctuations in lighting conditions, as well as the presence
of inclement weather conditions like rain and snow. These
factors introduce perturbations to the image quality, conse-
quently impinging upon the accuracy of defect identification.

YOLOv8 meticulously crafted by Ultralytics, represents
a state-of-the-art (SOTA) model. Building on the accom-
plishments of prior iterations, YOLOv8 introduces novel
features and enhancements, aiming to augment performance
and versatility. Rooted in the principles of expeditiousness,
precision, and user-friendliness, YOLOv8 emerges as an
exemplary option for diverse applications encompassing tar-
get detection, image segmentation, and image classification
tasks. In response to the challenge of detecting surface defects
on railroad tracks, this study presents an improved algorithm
that builds upon the foundation of YOLOv8. The algorithm
presents the following notable innovations:

(a)In the backbone network of YOLOv8n, the conventional
convolutional layer with the original stride of 2 is replaced
with space-to-depth layer followed by a non-strided con-
volution layer (SPD-Conv) [24] building blocks. By imple-
menting this modification, the model exhibits significantly
improved sensitivity towards small andmedium-sized targets.

(b)At each stage of downsampling, an efficient multi-
scale attention (EMA) module [25] is embedded after each
C2f module. This module allows for the comprehensive
utilization of feature information from different layers, the
algorithm’s feature characterization ability is significantly
enhanced.

(c)The Focal-Segmentation Intersection over Union
(Focal-SIoU) [26], [27] loss function is utilized as a replace-
ment for the original Complete-Intersection over Union
(C-IoU) loss function. This replacement adjusts the sample
weights and increase the penalty for challenging samples that
pose difficulties in classification. Consequently, the model’s
capability to accurately detect intricate samples is enhanced.

Through meticulous dataset annotation and rigorous vali-
dation processes, our algorithm achieves precise localization

FIGURE 1. Schematic diagram of the C2f and C3 m.

and accurate identification of defects on railroad track
surfaces. These enhancements significantly improve the
algorithm’s overall detection performance.

II. IMPROVED ALGORITHM DESIGN
A. PRINCIPLES OF YOLOV8 ALGORITHM
The YOLOv8 algorithm, introduced by Glenn Jocher, builds
upon and enhances the characteristics of the YOLOv5
algorithm. Additionally, this algorithm has developed an
instance segmentation model using the You Only Look
At Coefficients (YOLACT) [28] architecture. Similar to
YOLOv5, YOLOv8 offers various model versions, encom-
passing a wide range of sizes, including nano, small, medium,
large, and extra-large (n/s/m/l/x), depending on the require-
ments of different scales. To address the need for real-time
inspection while considering the model’s scale and parameter
count, this study adopts the YOLOv8n defect detectionmodel
for identifying flaws on railroad track surfaces. The main
improvements of YOLOv8 include:

(1) The kernel size used in the initial convolutional layer in
YOLOv8 is modified from 6 × 6 to 3 × 3, while eliminating
the two convolutionally connected layers in the neck module.
As illustrated in Figure 1, all the C3 modules in the network
are substituted with the new C2f module, which introduces
additional branches to enhance the gradient flow and enrich
the tributaries.

(2) The Head section has been considerably changed from
YOLOv5 to the prevailing decoupled header structure in
use [29], which segregates the classification and detection
headers, as well as from Anchor-Based to Anchor-Free [30].

(3) For Loss computation, the TaskAlignedAssigner posi-
tive sample assignment strategy [31] was utilized. This strat-
egy can be described as a matching approach that employs
a weighted scoring mechanism to select positive samples.
This approach incorporates both classification and regression
scores to assign appropriate weights to the samples. Distribu-
tion Focal Loss was employed since the regression branch
needed to be aligned with the integral form representation
proposed in Distribution Focal Loss [32]. Additionally, CIoU
Loss [33] was also incorporated.

(4) In the data augmentation step during training, an oper-
ation of disabling Mosiac enhancement [34] for the last
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10 epochs in YOLOX was introduced, resulting in improved
accuracy. Figure 2 illustrates the complete network architec-
ture of YOLOv8.

B. IMPROVED METHOD BASED ON CONVOLUTIONAL
MODULE SPD-CONV
To bolster the capability to extract features from the
YOLOv8n model, this paper incorporates the SPD-Conv
convolution module within the backbone network. When
tackling low-resolution images and compact-sized targets, the
conventional YOLOv8 model may face certain limitations
that can lead to a decline in its detection performance. Since
the railroad track surface defects often involve a significant
number of small targets drop defects, the original YOLOv8
model is ineffective in detecting such targets. The incorpo-
ration of the SPD-Conv convolution module in the YOLOv8
model leads to a substantial improvement in feature repre-
sentation, all while preserving the model’s overall structure,
thereby reducing the reliance on inputs of good quality.

The SPD-Conv module serves as a complete replacement
for step convolution and pooling layers. It comprises a space-
to-depth (SPD) layer followed by a non-stepwise convolution
(Conv) layer. More specifically, the input feature maps are
initially transformed using the SPD layer and subsequently
undergoes convolution operation through the non-stepwise
convolution layer. This combination effectively reduces the
spatial dimension without sacrificing information, while pre-
serving channel information. Consequently, the integration
of the SPD-Conv module into the CNN yields substan-
tial improvements in the detection performance, particularly
when the network is faced with challenges presented by
low-resolution images and compact-sized targets.

To obtain sub-feature mappings from a mid-level feature
representation of size S × S × C1, the following sequence
slicing procedure is employed:

f0,0 = X [0 :S:scale, 0 :S:scale] ,

f1,0 = X [1 :S:scale, 0 :S:scale] , · · · ,

fscale−1,0 = X [scale−1 :S:scale, 0 :S:scale] ;

f0,1 = X [0 :S:scale, 1 :S:scale] ,

f1,1 = X [1 :S:scale, 1 :S:scale] , · · · ,

fscale−1,1 = X [scale−1 :S:scale, 1 :S:scale] ;
...

f0,scale−1 = X [0 :S:scale, scale−1 :S:scale] ,

f1,scale−1, · · · ,

fscale−1,scale−1 = X [scale−1 :S:scale, scale−1 :S:scale]

(1)

We define a subgraph fx,y to consist of all X (i, j) that satisfy
both i + x and j + y being integral divisors of the scale.
Thus, the scale of downsampling is applied to each subgraph.
Example results are illustrated in Figure 3(a)(b)(c) to demon-
strate the effect of setting the scale = 2. By downsampling X

by scale factor 2, we obtain four subgraphs f0,0, f1,0, f0,1, f1,1.
The shape of each subgraph is (S/2,S/2,C1).
Following that, a new feature representation called X ′

is created by connecting these sub-feature representations
across the channel dimension. This new feature map has
been processed by scaling down the spatial dimension with a
reduced scale factor, while in the dimension of the channel it
has been processed by a scale squared factor. In Figure 3(d),
it is evident that the SPD operation transforms the original
feature representation X (S, S,C1) into a mid-level feature
representation denoted as X ′

(
S/scale, S/scale, scale2C1

)
.

Following the SPD feature conversion layer, we incor-
porate a non-spanning convolutional layer, specifically a
step-size 1 convolutional layer. This convolutional layer is
equipped with C2 filters, where C2 < scale2C1, which con-
tinues the conversion from X ′

(
S/scale, S/scale, scale2C1

)
to X ′′ (S/scale, S/scale,C2) and the transformation process
is illustrated in Figure 1.3(e). By employing a non-spanning
convolution, the objective is to retain a significant amount
of information pertaining to all discriminative features. The
utilization of a 3 × 3 filter with a stride of 3 leads to a
scenario where each pixel within the feature map is sampled
exactly once. This process produces a distinct ‘‘shrinking’’
effect on the feature map. Likewise, employing a stride of
2 introduces an asymmetrical sampling pattern, where the
even and odd columns are treated differently during the data
extraction process. It is crucial to highlight that when using
a stride larger than 1, there is a tendency for the model to
experience a loss of discriminative information.

C. EMA ATTENTION MECHANISM
In railroad track surface defect detection, the traditional
YOLOv8n model’s simple feature fusion strategy faces
challenges when dealing with coexisting large-scale and
small-scale targets. This strategy tends to limit the depth
of feature representation. While the significance of the
attention mechanism in enhancing feature representation is
widely recognized, traditional channel dimensionality reduc-
tion methods may compromise the integrity of deep visual
information. The EMA attention mechanism, which avoids
dimensionality reduction, achieves comprehensive informa-
tion retention and computational efficiency by reconstructing
a portion of the channels and uniformly distributing spatial
semantics among sub-features. It not only globally encodes
information to adjust channel weights but also captures
pixel-level relationships through cross-dimensional interac-
tions. Within this study, the EMA module is integrated into
the neck section of YOLOv8n to effectively address the
challenge of multi-scale target detection. This integration
significantly improves the model’s performance in detecting
railroad track surface defects.
The Coordinate Attention (CA) attention module can be

viewed as a comparable alternative to the SE attention mod-
ule, as both mechanisms aim to incorporate cross-channel
information by utilizing global average pooling operations.
In general, the utilization of global average pooling serves the
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FIGURE 2. YOLOv8 network architecture.

FIGURE 3. SPD-Conv with graphically represented.

purpose of generating channel-wise statistics by compressing
global spatial location information into channel descriptors.

Slightly different from Squeeze-and-Excitation (SE), the CA
attention module integrates spatial location information into
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FIGURE 4. CA and EMA network structure.

the channel attention graph to improve the consolidation of
features. Figure 4(a) illustrates the architecture of the CA
attention module.

Figure 4(b) provides a representation of the comprehensive
structure of the EMA attention module. While the CA atten-
tion module achieves good performance by incorporating
spatial information into channel modeling, it overlooks the
interaction between complete spatial locations. Additionally,
the restricted receptive field of the 1× 1 convolution impairs
the ability to interact locally across channels and utilize
contextual information. Instead, the EMA module selects the
mutual elements of the 1 × 1 convolution within the CA
module and refers to them as the 1 × 1 branches. In order
to effectively consolidate spatial structure information across
multiple scales, the introduction of a 3×3 kernel, which oper-
ates in parallel with the 1×1 branch, facilitates rapid response
and is referred to as the 3×3 branch. By employing a parallel
sub-network structure, the EMAmodule effectively preserves
precise spatial structural information within each channel.
Simultaneously, it captures inter-channel information to regu-
late the significance of individual channels. Additionally, the
EMA employs a method of aggregating interspatial informa-
tion using various directions across spatial dimensions, which
effectively enhances the aggregation of features. To achieve
this, the procedure includes the introduction of two tensors:

one for the output of the branch with a 1 × 1 dimension and
another for the output of the branch with a 3 × 3 dimen-
sion. In order to capture overall spatial knowledge within
the exports of the 1 × 1 branch, a 2D global mean pooling
operation is employed. Prior to the collaborative activation
mechanism that incorporates the channel characteristics, the
output of the smallest branch undergoes a direct reshaping
process to conform to the appropriate dimensional structure.
To denote the operation of 2D global pooling, the following
representation is used:

zc =
1

H ×W

H∑
j

W∑
i

xc (i, j) (2)

For efficient computation, the exports of the 2D global aver-
age pooling undergo a nonlinear transformation using the
softmax function. To ensure efficiency and compatibility with
modern architectures, the exports obtained from the EMA
module are specifically designed to match the size of X.

D. FOCAL_SIOU LOSS FUNCTION
To tackle the issue of imbalanced positive and non-positive
instances in single-stage target detection, the Focal Loss
is employed as the chosen loss function. By adjusting the
assigned weights for positive and negative samples, the Focal
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Loss places a higher emphasis on samples that are challeng-
ing to classify. By employing the Focal Loss is selected as
the designated loss function, the model’s capacity to identify
complex instances is enhanced. SIoU enhances the stability
and accuracy of detecting small and partially occluded targets
by smoothing the IoU metric. In the context of railroad track
surface defect detection, various types of targets may overlap
or occlude each other, and there is a significant number of
small target defects. Therefore, both Focal Loss and SIoU,
as two improved techniques, are simultaneously applied to
the YOLOv8 model. By enabling the network to allocate
increased attention to individual target instances, the model’s
performance and effectiveness are enhanced.

To address the challenge of imbalanced class distributions,
Focal Loss incorporates a modulation factor that adjusts the
weight assigned to each sample. The modulation factor is
determined using the following formula:

FL (pt) = − (1 − pt)γ log (pt) (3)

where γ is a parameter within the range of [5, 0], and
the modulation factor (1 − pt)γ reduces the emphasis on
easily categorizable samples in the loss function. Focal
Loss enhances the weight assigned to difficult-to-classify
instances, favoring their contribution to the loss. This helps
improve the accuracy of difficult-to-classify instances. When
pt is larger (indicating better assignment of easier samples),
the paired loss becomes smaller. By achieving an equilibrium
between positive and non-positive instances, as well as bal-
ancing the difficulty levels of instances, the final formulation
of the Focal Loss can be obtained:

FL (pt) = −αt (1 − pt)γ log (pt) (4)

Parameter αt can be utilized to address the disproportionate
distribution between the quantity of positive and non-positive
instances, providing a means to mitigate this disparity. On the
other hand, parameter γ can be employed to control the
imbalance between quantity of easily categorizable instances
and the quantity of difficult-to-categorize samples. Determin-
ing the optimal weight ratio typically necessitates empirical
exploration and fine-tuning. Through systematic experi-
mentation of various weight ratios and evaluating model
performance on validation sets or through cross-validation,
the weight ratio that achieves a more favorable equilibrium is
chosen.

Loss functions like Generalized-Intersection over
Union(GIoU), Distance-Intersection over Union(DIoU),
CIoU, and others do not consider the spatial alignment
between the ground truth bounding box and the predicted
bounding box, leading to slower convergence speed. To tackle
this concern, the SIoU loss function accounts for considera-
tion the angle formed in terms of spatial alignment between
the ground truth bounding box and the predicted bounding
box, introducing a novel approach to redefine the related loss
function. The redefined loss function comprises the following
components:

FIGURE 5. SIoU schematic diagram.

(1) The angle cost represents the minimal angle established
by the line connecting the centroid of the objects and the axis
of reference. It is defined as follows:

3 = 1 − 2 × sin2
(
arcsin

(ch
σ

)
−

π

4

)
= cos

(
2 ×

(
arcsin

(ch
σ

)
−

π

4

))
(5)

As depicted in Figure 5, the height difference denoted
by ch refers to the disparity in height observed between the
centroids of the ground truth bounding box and the predicted
bounding box. Additionally, σ indicates the distance between
the centroids of the ground truth and predicted bounding
boxes. The following definitions are assigned to the respec-
tive values:

σ =

√(
bgtcx − bcx

)2
+

(
bgtcy − bcy

)2
(6)

ch = max
(
bgtcy , bcy

)
− min

(
bgtcy , bcy

)
(7)

In this discussion, the coordinate notation is used to repre-
sent the center position of the ground truth bounding box(
bgtcx , b

gt
cy

)
, the coordinates

(
bcx , bcy

)
represent the center

position of the predicted bounding box. The angle loss is
0 when α is π/2 or 0.

(2) The distance cost refers to the measurement of the spa-
tial separation between the centroids of the bounding boxes
and its penalty cost is positively correlatedwith the angle cost.
It is defined as follows:

1 =

∑
i=x,y

(
1 − e−γρt

)
= 2 − e−γρx − e−γρy (8)

ρx =

(
bgtcx − bcx

cw

)2

, ρy =

(
bgtcy − bcy

ch

)2

, γ = 2 − 3 (9)

where (cw, ch) represents the dimensions of the smallest
enclosing rectangle, comprising the width and height of both
the ground truth and predicted bounding boxes.

(3) The shape cost is calculated by computing the disparity
in width between the two boxes, as well as the relative propor-
tion of their maximum width (and length). This enables the
overall shape convergence to align with the convergence of
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the longer and wider sides. The following definition outlines
the concept:

� =

∑
t=w,h

(
1 − e−wt

)θ
=
(
1 − e−ww

)θ
+
(
1 − e−wh

)θ
(10)

ww =

∣∣w− wgt
∣∣

max (w,wgt)
,wh =

∣∣h− hgt
∣∣

max (h, hgt)
(11)

By measuring the difference in width between the predicted
bounding box and the ground truth bounding box, their width
and height are represented by the coordinate pairs (w, h) and(
wgt , hgt

)
, respectively. The parameter θ controls the level

of emphasis on the shape loss. To alleviate the excessive
emphasis on shape loss and minimize the displacement of the
predicted bounding box, parameter θ is constrainedwithin the
range of [2] and [6].

(4) The IoU loss is defined as follows [35], encompassing:

IoU =
B
⋂
BGT

B
⋃
BGT

(12)

The following expression outlines the formulation of the final
SIoU loss function:

LossSIoU = 1 − IoU +
1 + �

2
(13)

E. NETWORK STRUCTURE
To tackle the common issue of frequent dropout of small
targets in rail surface defect detection, this paper presents a
proposed improved network architecture. The architecture,
depicted in Figure 6, is specifically designed to tackle this
issue effectively. Due to the unsatisfactory performance of
the standard YOLOv8 model in recognizing small targets,
we propose the SPD-Conv convolution module. By strength-
ening the model’s capacity to extract pertinent features
and reducing reliance on high-quality input data, notable
improvements are achieved. Specifically, within the YOLOv8
backbone network, we substitute the original convolutional
layer with a stride of 2 with a block constructed using SPD-
Conv. This modification allows for more efficient capture
of details in small and medium scale targets. Additionally,
considering the presence of targets at different scales in
rail surface defect detection, we introduce the EMA atten-
tion block after each C2f block in the downsampling stage
of the model. This ensures effective utilization of feature
information at various detection levels, thereby improving
the accuracy of feature representation. Furthermore, the
Focal-SIoU loss function is utilized as a substitute for the
C-IOU loss function used in YOLOv8. This enhancement
enables the model to better recognize challenging samples
by adjusting the weighting of positive and negative samples
and applying higher penalties to indistinguishable samples.
Additionally, it encourages the model to focus more on
individual target instances, further improving the accuracy
of detection. The proposed approach in this research offers
strengthened accuracy without compromising the model size

or the number of parameters. This characteristic makes it
particularly well-suited for the task of railroad track surface
defect detection.

III. EXPERIMENT AND RESULT
A. DATASETS
In this research, a new dataset for railroad track surface defect
detection was created by carefully selecting and preprocess-
ing track defect detection [36] and clipping datasets [37] from
open sources. The datasets pertaining to track defect detec-
tion and clipping were procured from the publicly accessible
dataset repository, Roboflow Universe. The dataset associ-
ated with track defect detection was contributed by the user
SUSTECH, while the dataset related to clipping was submit-
ted by the user FENG. The original track defect detection
dataset consisted of 3041 images, with 2924 training images
and 117 validation images. The clipping dataset provided
4110 images, out of which 3963 were used for training and
294 for validation. However, due to issues such as duplicate
images and an abundance of defect-free railroad track images
in these open-source datasets, a rigorous screening andmetic-
ulous re-labeling process was conducted. As a result, a total
of 3,812 high-quality images were selected to create the
dedicated railroad track surface defect detection dataset for
this study.

The dataset comprises five distinct categories for detection,
namely cracks, scars, breaks, lightbands, and rails. Among
these categories, as shown in figure 7(a), cracks manifest
as linear or fine fractures appearing on the surface of the
rail. The presence of cracks can induce deformations in
the surrounding rail surface, such as minute elevations or
depressions, resulting from stress accumulation and deforma-
tions caused by crack formation and expansion. As shown
in figure 7(b), breaks correspond to cracks that emerge at
single or multiple points on the rail surface. The cross-section
of a broken rail may exhibit diverse characteristics, such
as a flat, rough, or visibly cracked profile. As shown in
figure 7 (c), scars are characterized by scraping or abrasion
marks on the rail surface, which can assume various forms,
including linear, punctual, or extensive areas. As shown in
figure 7 (d), lightbands denote relatively bright areas that
manifest as bands along the length of the rail and are typically
attributed to friction, abrasion, or heat generation resulting
from wheel-rail contact. Although lightbands generally do
not pose an immediate safety threat to rail transportation, they
can serve as early indicators of other, more severe defects.
Therefore, timely detection and monitoring of lightbands can
facilitate preventive maintenance and mitigate further wear
and tear, ensuring the rail’s optimal condition and smooth
train operation. As shown in figure 7 (e), Rails are typically
elongated strips characterized by specific lengths and shapes.
In this study, in addition to detecting four defect types, namely
cracks, scars, breaks, and lightbands, the detection and local-
ization of rails are also performed. To ensure comprehensive
training and evaluating the model, the dataset was partitioned
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FIGURE 6. Improvements to the YOLOV8 network structure.

TABLE 1. Sample composition of the rail surface defect detection dataset.

into training, validation, and test sets in an 8:1:1 ratio. For
more detailed information on the dataset composition, please
refer to Table 1.

B. EXPERIMENTAL SETUP
The performed experiments conducted in this investigation
utilized the PyTorch framework and Graphics Processing
Unit (GPUs). Table 2 provides a comprehensive breakdown
of the configuration of the experimental conditions.

C. PERFORMANCE INDICATORS
When evaluating target detection algorithms, the primary
assessment criteria can be categorized into two main groups:
detection precision and model complexity. To evaluate the
precision of the detection, metrics such as precision (P), recall
(R), and mean average precision (mAP) are widely used.

Taking TP to represent the amount of true positive samples,
FP to represent the amount of false positive samples, and
FN to represent the amount of false negative samples. The
mathematical expressions for precision (P), recall (R), and
mean average precision (mAP) can be obtained through the

following derivations:

Precision =
TP

TP+ FP
(14)

Recall =
TP

TP+ FN
(15)

AP =

∫ 1

0
P (R) dR (16)

mAP =
1
C

C∑
i=1

APi (17)

The algorithm’s model complexity is determined by factors
such as the model’s dimensions, the number of parameters,
and the computational requirements. Larger values in these
factors indicate higher model complexity.

D. EXPERIMENTAL RESULTS AND ANALYSIS
1) TRAINING CURVES
To provide a more intuitive visualization of the enhancements
achieved by the improved algorithm, we present the training
curves. Figure 8 illustrates the mAP50, training loss, and
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FIGURE 7. Schematic diagram of the 5 detecting categories.

TABLE 2. Configuration of the experimental conditions.

validation loss curves obtained after 500 rounds of train-
ing for both the original and improved models. Notably,
the training process for the original model concludes at
450 rounds since its accuracy ceases to improve further.
In contrast, the improved model demonstrates accelerated
convergence, resulting in predictions that align more closely
with the ground truth values. Moreover, the mAP50 metric
exhibits a substantial improvement, as clearly indicated by the
aforementioned curves. This observed enhancement serves as
convincing proof of the effectiveness of the algorithm being
proposed.

2) ABLATION EXPERIMENT
To gauge the performance enhancement achieved by incorpo-
rating three optimization strategies into YOLOv8n, namely
the SPD-Conv module, EMA module, and Focal-SIoU loss
function, a sequence of ablation experiments is conducted

on the dataset in this research work. Evaluation metrics
such as model size, number of parameters, precision rate
(P), recall rate (R), average precision rate (mAP@0.5), and
average accuracy (mAP@0.5:0.95) are utilized. The ablation
experiments involve different combinations of the aforemen-
tioned improvement modules. Table 3 showcases the results
obtained from the experiments conducted in this study.

According to Table 3, it is plausible to observe that after
integrating the SPD-Convmodule into the original YOLOv8n
model, there is a boost of 1.3%, 3.3%, 2.9%, and 2.4% in P, R,
mAP@0.5, and mAP@0.5:0.95, respectively. However, after
incorporating the CA mechanism, P experiences a decrease
of 0.4% and mAP@0.5:0.95 witnesses a decrease of 0.5%.
On the other hand, R exhibits an increase of 0.2%, and
mAP@0.5 shows a slight improvement of 0.1%. Further-
more, after adding the EMA attention mechanism, there is a
boost of 0.7%, 2.8%, 2.3%, and 2.5% in P, R, mAP@0.5, and
mAP@0.5:0.95, respectively. Based on the aforementioned
findings, it can be deduced that the incorporation of the EMA
module yields superior outcomes compared to the integration
of the CA module. Specifically, this augmentation leads to
notable enhancements across various evaluationmetrics, with
a boost of 1.1%, 2.6%, 2.2%, and 3.0% in P, R, mAP@0.5,
and mAP@0.5:0.95, respectively. Additionally, after using
the Focal-SIoU loss function, there is a boost of 3.4%, 2.1%,
2.7%, and 2.4% in P, R, mAP@0.5, and mAP@0.5:0.95,
respectively. The experimental results showcased in this table
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FIGURE 8. Comparison of training curves before and after model improvement.

TABLE 3. Ablation experiment.

TABLE 4. Comparison experiments with other algorithms.

provide evidence of the improved model proposed in this
paper, with a slight increase in model size and parameters.
P, R, mAP@0.5, and mAP@0.5:0.95 are boosted by 5.6%,
4.9%, 5.2%, and 1.7%, respectively. This serves as evidence
of the efficacy of the algorithm enhancement proposed in this
research study.

3) COMPARISON EXPERIMENT
To substantiate the superiority of the enhanced algorithm
proposed in this research work, a comparative experimental
comparison was performed under identical conditions,
involving several widely-used target detection algorithms.
The evaluation metrics employed were model size,

parameters, precision (P), recall (R), average precision
(mAP@0.5), and average precision (mAP@0.5:0.95). The
experimental results are presented in Table 4, which clearly
illustrates that the algorithm suggested in this research
work achieves enhanced accuracy in target detection while
maintaining the intricacy of the model. By comparing the
outcomes of the enhanced algorithmwith those of the original
YOLOv8n model, it becomes apparent that the proposed
approach exhibits substantial advancement, as evidenced
by a notable increase of 5.7% in mAP@0.5. This substan-
tial enhancement across all evaluation indicators further
solidifies the algorithm’s superiority over the existing
approaches.
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FIGURE 9. Comparison of rail surface defect detection algorithms.

4) ALGORITHM VALIDATION
Figure 9 showcases a comparative analysis of defect detection
results on railroad track surfaces using visualized images
obtained from YOLOv5n, YOLOv8n, and the improved

YOLOv8n algorithms. The images encompass various light-
ing conditions, including those within tunnels. Through
experimental comparisons within groups A and D, it is evi-
dent that the optimized YOLOv8n algorithm outperforms

VOLUME 12, 2024 44995



Y. Wang et al.: Improved YOLOv8 Algorithm for Rail Surface Defect Detection

other models by detecting targets that remain unidentified by
alternative approaches. Furthermore, the experimental com-
parison between Group B and Group C demonstrates the
improved YOLOv8n algorithm’s superior detection accuracy.
The results indicate that the improved model achieves better
detection outcomes across diverse environments, showcasing
its generalization ability and robustness. These observa-
tions substantiate the algorithm’s efficacy in effectively
addressing challenges associated with detecting small and
densely occluded targets, providing empirical evidence of its
performance.

IV. CONCLUSION
This study introduces a novel detection algorithm built upon
YOLOv8n, aiming to effectively tackle the challenge of
detecting defects on the surface of railroad tracks. The
algorithm incorporates several key enhancements to enhance
its defect detection capabilities. In this algorithm, the stan-
dard convolutional layer with a step size of 2 in the backbone
network is replaced with the SPD-Conv building block. The
specific aim of this substitution is to enhance the detection
performance for targets with small to medium dimensions.
Moreover, to further enhance the algorithm’s efficiency in
utilizing feature information from different layers and its
feature expression capability, the EMA attention module is
introduced after each C2f module at each downsampling
stage. Additionally, the original C-IOU loss function of
YOLOv8 is substituted with the Focal-SIoU loss function.
By adjusting the weights assigned to samples representing
positive and negative categories, the penalty imposed on chal-
lenging samples is amplified. Thus, the model’s recognition
accuracy for complex samples is upgraded, consequently
improving the overall performance of the algorithm. Through
attaining accurate pinpointing and detection of flaws on the
surface of the railroad track by means of meticulous dataset
screening, labeling, and validation procedures. The detec-
tion performance of the algorithm experiences a significant
enhancement due to these improvements.

The results obtained from the improved algorithm are
remarkably impressive, with precision, recall, and average
accuracy achieving 93.9%, 93.7%, and 94.1%, respectively.
These values exhibit substantial improvements of 3.6%,
5.0%, and 5.7% over the original YOLOv8n model. It is
worth emphasizing that these advancements were accom-
plished without augmenting the model size or parameters,
underscoring the algorithm’s efficacy and utility in detect-
ing surface defects on railroads. To further substantiate the
algorithm’s detection capabilities, simulation experiments
were conducted in diverse detection environments to assess
the model’s generalization capability and robustness. The
detection of railroad tracks, encompassing various lighting
conditions and tunnels, was performed. The outcomes con-
sistently demonstrate the superior detection performance of
the improved algorithm, surpassing that of other mainstream
detection algorithms within this domain. Future efforts will
be dedicated to refining the network architecture to enhance

detection accuracy and processing speed. Additionally, plans
are underway to adapt the model for deployment on edge
computing platforms, necessitating the porting and optimiza-
tion of the algorithm to reduce its size and facilitate seamless
deployment.

REFERENCES
[1] Y. Zhao, Z. Liu, D. Yi, X. Yu, X. Sha, L. Li, H. Sun, Z. Zhan, and W. J. Li,

‘‘A review on rail defect detection systems based on wireless sensors,’’
Sensors, vol. 22, no. 17, p. 6409, Aug. 2022.

[2] J. H. Feng, H. Yuan, Y. Q. Hu, J. Lin, S. W. Liu, and X. Luo, ‘‘Research on
deep learning method for rail surface defect detection,’’ IET Electr. Syst.
Transp., vol. 10, no. 4, pp. 436–442, Dec. 2020.

[3] J. W. Huo, Z. Liu, and Y. D. Wang, ‘‘Planar electromagnetic tomog-
raphy for rail flaw detection,’’ Chin. J. Electr. Eng., vol. 41, no. 15,
pp. 5351–5361, 2021.

[4] X. Q. Hu, ‘‘Research on the application of nondestructive testing technol-
ogy in steel structure construction engineering,’’Real EstateWorld, vol. 10,
no. 19, pp. 142–144, Oct. 2023.

[5] K. Tomita and M. Y. L. Chew, ‘‘A review of infrared thermography for
delamination detection on infrastructures and buildings,’’ Sensors, vol. 22,
no. 2, p. 423, Jan. 2022.

[6] S. Orlov, A. Piletskaya, N. Kusakina, and A. Tyugashev, ‘‘Machine
learning of diagnostic neural network for railway track monitoring,’’ in
Cyber-Physical Systems: Intelligent Models and Algorithms (Studies in
Systems, Decision and Control), vol. 417, A. G. Kravets, A. A. Bolshakov,
and M. Shcherbakov, Eds. Cham, Switzerland: Springer, 2022, doi:
10.1007/978-3-030-95116-0_5.

[7] Z. Chen, Q. Wang, Q. He, T. Yu, M. Zhang, and P. Wang, ‘‘CUFuse:
Camera and ultrasound data fusion for rail defect detection,’’ IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 11, pp. 21971–21983, Nov. 2022.

[8] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, ‘‘A review of YOLO algorithm
developments,’’ Proc. Comput. Sci., vol. 199, pp. 1066–1073, Jan. 2022.

[9] X. Xu, M. Zhao, P. Shi, R. Ren, X. He, X.Wei, and H. Yang, ‘‘Crack detec-
tion and comparison study based on faster R-CNN and mask R-CNN,’’
Sensors, vol. 22, no. 3, p. 1215, Feb. 2022.

[10] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, ‘‘U-Net
and its variants for medical image segmentation: A review of theory and
applications,’’ IEEE Access, vol. 9, pp. 82031–82057, 2021.

[11] P. Bharati and A. Pramanik, ‘‘Deep learning techniques—R-CNN to mask
R-CNN: A survey,’’ in Computational Intelligence in Pattern Recognition.
Singapore: Springer, 2020, pp. 657–668.

[12] Z. Tu, S. Wu, G. Kang, and J. Lin, ‘‘Real-time defect detection of track
components: Considering class imbalance and subtle difference between
classes,’’ IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2021.

[13] J. Sresakoolchai and S. Kaewunruen, ‘‘Railway defect detection based
on track geometry using supervised and unsupervised machine learning,’’
Struct. Health Monitor., vol. 21, no. 4, pp. 1757–1767, Jul. 2022.

[14] A. Aldahdooh, W. Hamidouche, S. A. Fezza, and O. Déforges, ‘‘Adver-
sarial example detection for DNN models: A review and experimental
comparison,’’ Artif. Intell. Rev., vol. 55, no. 6, pp. 4403–4462, Aug. 2022.

[15] K. K. Mohan, C. R. Prasad, and P. V. V. Kishore, ‘‘YOLO v2 with bifold
skip: A deep learning model for video based real time train bogie part
identification and defect detection,’’ J. Eng. Sci. Technol., vol. 16, no. 3,
pp. 2166–2190, Jun. 2021.

[16] G. G. Casas, Z. H. Ismail, M. M. C. Limeira, A. A. L. da Silva, and
H. G. Leite, ‘‘Automatic detection and counting of stacked eucalypt timber
using the YOLOv8 model,’’ Forests, vol. 14, no. 12, p. 2369, Dec. 2023.

[17] D. Reis, J. Kupec, J. Hong, and A. Daoudi, ‘‘Real-time flying object
detection with YOLOv8,’’ 2023, arXiv:2305.09972.

[18] H. P. Cao, ‘‘Development of visual inspection system for surface defects of
cold heavy rail based on deep learning,’’ Zhejiang Univ., Hangzhou, China,
Tech. Rep. Issue 06, 2021, doi: 10.27461/d.cnki.gzjdx.2020.003816.

[19] T. Bai, J. Gao, J. Yang, and D. Yao, ‘‘A study on railway surface defects
detection based on machine vision,’’ Entropy, vol. 23, no. 11, p. 1437,
Oct. 2021.

[20] X. Wang, J. Zhang, Y. Wang, M. Li, and D. Liu, ‘‘Defect detection of track
fasteners based on pruned YOLO v5 model,’’ in Proc. IEEE 11th Data
Driven Control Learn. Syst. Conf. (DDCLS), Aug. 2022, pp. 391–395.

[21] J. Hu, P. Qiao, H. Lv, L. Yang, A. Ouyang, Y. He, and Y. Liu, ‘‘High speed
railway fastener defect detection by using improved YoLoX-nano model,’’
Sensors, vol. 22, no. 21, p. 8399, Nov. 2022.

[22] X. Wang, H. Gao, Z. Jia, and Z. Li, ‘‘BL-YOLOv8: An improved road
defect detection model based on YOLOv8,’’ Sensors, vol. 23, no. 20,
p. 8361, Oct. 2023.

44996 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-030-95116-0_5
http://dx.doi.org/10.27461/d.cnki.gzjdx.2020.003816


Y. Wang et al.: Improved YOLOv8 Algorithm for Rail Surface Defect Detection

[23] X. Ni, H. Liu, Z. Ma, C. Wang, and J. Liu, ‘‘Detection for rail surface
defects via partitioned edge feature,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 6, pp. 5806–5822, Jun. 2022.

[24] R. Sunkara and T. Luo, ‘‘No more strided convolutions or pooling:
A new CNN building block for low-resolution images and small objects,’’
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases.
Cham, Switzerland: Springer, Sep. 2022, pp. 443–459.

[25] D.Ouyang, S. He, G. Zhang,M. Luo, H. Guo, J. Zhan, and Z. Huang, ‘‘Effi-
cient multi-scale attention module with cross-spatial learning,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2023,
pp. 1–5.

[26] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007.

[27] Z. Gevorgyan, ‘‘SIoU loss: More powerful learning for bounding box
regression,’’ 2022, arXiv:2205.12740.

[28] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, ‘‘YOLACT: Real-time instance
segmentation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9156–9165.

[29] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX: Exceeding YOLO
series in 2021,’’ 2021, arXiv:2107.08430.

[30] S. Zhang, C. Chi, Y. Yao, Z. Lei, and S. Z. Li, ‘‘Bridging the gap between
anchor-based and anchor-free detection via adaptive training sample selec-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 9756–9765.

[31] Y. Zhou, W. Zhu, Y. He, and Y. Li, ‘‘YOLOv8-based spatial target part
recognition,’’ in Proc. IEEE 3rd Int. Conf. Inf. Technol., Big Data Artif.
Intell. (ICIBA), vol. 3, May 2023, pp. 1684–1687.

[32] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang, ‘‘Gen-
eralized focal loss: Learning qualified and distributed bounding boxes for
dense object detection,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 21002–21012.

[33] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, ‘‘Distance-IoU loss:
Faster and better learning for bounding box regression,’’ in Proc. AAAI
Conf. Artif. Intell., Apr. 2020, vol. 34, no. 7, pp. 12993–13000.

[34] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[35] D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai, and R. Yang, ‘‘IoU loss
for 2D/3D object detection,’’ in Proc. Int. Conf. 3D Vis. (3DV), Sep. 2019,
pp. 85–94.

[36] Track Defect Detection Dataset, SUSTECH, Roboflow, 2023. [Online].
Available: https://roboflow.com/

[37] Clipping Dataset, FENG, Roboflow, 2023. [Online]. Available:
https://roboflow.com/

YAN WANG received the bachelor’s degree in
engineering from Zhejiang Normal University,
Jinhua, China, in 2020, where she is currently
pursuing the master’s degree in engineering. Her
current research interest includes machine vision.

KEHUA ZHANG received the B.E. degree from
Dalian Jiaotong University, in 2000, the M.S.
degree in engineering from Guangxi University,
in 2004, and the Ph.D. degree in mechanical
and electronic engineering from Zhejiang Univer-
sity of Technology, Hangzhou, China, in 2009.
He is currently a Professor with Zhejiang Normal
University. His research interests include slam,
industrial robotics, machine learning, and com-
puter vision.

LING WANG received the bachelor’s degree in
engineering from Zhejiang Normal University,
Jinhua, China, in 2021, where he is currently
pursuing the master’s degree in engineering. His
current research interest includes machine vision.

LINTONG WU received the B.E. degree from
Zhejiang University of Water Resources and Elec-
tric Power, in 2021. He is currently pursuing the
master’s degree in electronic information with
Zhejiang Normal University, Jinhua, China. His
main research interest includes computer vision.

VOLUME 12, 2024 44997


