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ABSTRACT Software Bug Prediction (SBP) is an integral process to the software’s success that involves
predicting software bugs before their occurrence. Detecting software bugs early in the development process
enhances software quality, performance, and reduces software costs. The integration of Machine Learning
(ML) algorithms has significantly improved software bug prediction accuracy and concurrently reduced
costs and resource utilization. Numerous studies have explored the impact of Hyperparameter Optimization
on single classifiers, enhancing these models’ overall performance in SBP analysis. Ensemble Learning
(EL) approaches have also demonstrated increased model accuracy and performance on SBP datasets.
This study proposes a novel learning model for predicting software bugs through the utilization of EL
and tuning hyperparameters. The results are compared with single hypothesis learning models using the
WEKA software. The dataset, collected by the National Aeronautics and Space Administration (NASA)
U.S.A., comprises 10,885 instances with 20 attributes, including a classifier for defects in one of their
coding projects. The findings indicate that EL. models outperform single hypothesis learning models, and
the proposed model’s accuracy increases after optimization. Furthermore, the accuracy of the proposed
model demonstrates improvement following the optimization process. These results underscore the efficacy
of ensemble learning, coupled with hyperparameter optimization, as a viable approach for enhancing the
predictive capabilities of software bug prediction models.

INDEX TERMS Software bug prediction, machine learning, hyperparameter optimization, ensemble
learning.

I. INTRODUCTION consumes resources and contributes to delays in release dates.

Software bugs increase the cost of the Software Development
Life Cycle (SDLC), as the expense of software development
rises proportionately with the time of discovery [1]. This
impact is particularly significant if bugs are identified after
the software release, beginning to affect the end-user experi-
ence. Therefore, it is always best to find bugs as soon as they
occur. Bugs also influence software quality and reliability,
prompting many software companies to research methods
for identifying bugs as soon as they occur. This research
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All of these considerations have led to the development of
Software Bug Prediction (SBP) systems, which assist soft-
ware development organizations in automating the identifica-
tion of bugs before they occur, thereby preventing the wastage
of resources.

Predicting the emergence of bugs and understanding the
Software Development Life Cycle (SDLC) process flow are
critical factors that contribute to performance criteria [2]. The
application of ML algorithms for defect prediction is versa-
tile, as it can be employed across various stages of the SDLC,
including problem detection, planning, design, building, test-
ing, deployment, and maintenance. This application extends
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to multiple SDLC models, such as the Waterfall Model, Iter-
ative Model, Agile Model, V-Shaped Model, Spiral Model,
and Big Bang Model. ML algorithms prove effective in
determining the presence of bugs in a given piece of code.
Enhanced programming methods can significantly elevate the
overall quality of the program. ML represents one of the
most rapidly expanding fields of computer science, with far-
reaching applications. It involves the automatic identification
of meaningful patterns in records. The primary goal of ML
tools is to provide algorithms with the opportunity to learn
and adapt [3], [4].

With the rise of ML Algorithms in the past couple of years,
many companies utilized ML to find and predict software
bugs before occurring. ML Algorithms help organizations
make future predictions in many fields using mathematical
equations with statistics and ML algorithms. There are two
types of ML algorithms, supervised learning and unsuper-
vised learning. In supervised learning, the algorithm’s input
and output are based on historical data related to the study,
which is used to train the algorithms and find patterns; these
patterns are then used to predict future outputs. In unsu-
pervised learning, the learning algorithms process data to
find patterns in unlabeled fields. Early bug discovery and
prediction are critical exercises in the software development
life cycle [5]. They contribute to a higher satisfaction rate
among users and enhance the overall performance and quality
of the software project.

Defect prediction models can guide testing efforts towards
code that is susceptible to bugs. Before software delivery to
the customer, latent bugs in the code may surface, and once
identified, these flaws can be rectified prior to delivery at
a fraction of the cost compared to post-delivery repairs [6].
Code defects incur significant expenses for companies each
year, with billions of dollars spent on identification and
correction. Models that accurately pinpoint the locations of
bugs in code have the potential to save businesses substantial
amounts of money. Given the high costs involved, even minor
improvements in detecting and repairing flaws can have a
significant impact on total costs.

Many studies have been conducted on Bug Detection using
ML Algorithms. Some of these studies have utilized EL,
which enables researchers and practitioners to employ more
than one machine learning algorithm. By employing different
ML algorithms with diverse methodologies, EL allows for
the aggregation of votes from multiple ML algorithms used
together, enhancing the ability to make more accurate predic-
tions. Further, previous research studies have examined dif-
ferent types of algorithms to predict software bugs. Although
some of these proposed algorithms showed higher accuracy
rates, most of the cited bug prediction studies for software
projects had their settings values set to default values [7].

Hyperparameter optimization can enhance accuracy and
improve the performance of ML models. The optimiza-
tion of hyperparameters in Bayesian, SVM, and KNN mod-
els has demonstrated an increase in the accuracy of bug
prediction models, as observed by Osman et al. [8] and
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Levesque et al. [9]. Hyperparameter optimizers are utilized
to fine-tune the control parameters of data mining algorithms.
It is widely recognized that such tuning enhances classifica-
tion tasks, including software bug prediction or text classifi-
cation [10].

To enhance the effectiveness of software bug prediction,
this research addresses two key questions. Firstly, it explores
whether Ensemble Learning (EL) models outperform single
learning models in predicting software bugs. Secondly, the
study investigates the impact of adding Hyperparameter Opti-
mization approaches on EL model performance, examining
whether this enhancement leads to improved accuracy. These
questions serve as the foundation of our exploration, guiding
us to understand the nuances of predictive modeling in soft-
ware bug detection.

The remainder of the paper is organized as follows:
Section II presents related work; Section III covers the back-
ground of the study, which includes Hyperparameter opti-
mization and ensemble learning; Section IV outlines the
methodology, encompassing the dataset, tools used, research
questions, and evaluation measures; Section V presents the
results and discussion; Section VI provides the conclusion
and outlines future work.

Il. RELATED WORK

This section navigates through recent contributions in the
dynamic field of software bug prediction by exploring various
methodologies and approaches used by previous researchers.
These studies enrich our understanding of effective bug pre-
diction models and offer diverse insights and methodologies
to address the challenges posed by software defects.

In the study of Hammouri et al. [5], the researchers
conducted a thorough examination of three supervised ML
models—Naive Bayes, Decision Tree, and Artificial Neural
Networks—specifically tailored for predicting software bugs.
Their research involved a meticulous comparison with two
previously proposed models, revealing that the three models
exhibited a significantly higher accuracy rate than the pro-
posed two models.

Di Nucci et al. [11] undertook an innovative approach,
quantifying the dispersal of modifications made by devel-
opers working on a component, and utilized this data to
construct a bug prediction model. This study, based on prior
research that examined the human factor in bug generation,
demonstrates that non-focused developers are more prone to
introducing defects compared to their focused counterparts.
Notably, the model exhibited superiority when compared to
four competitive techniques.

Khan et al. [12] introduced a model for predicting soft-
ware bugs, integrating ML classifiers with Artificial Immune
Networks (AIN) to optimize hyperparameters for enhanced
bug prediction accuracy. Employing seven ML algorithms
on a bug prediction dataset, the study revealed that hyper-
parameter tuning of ML classifiers using AIN surpassed the
performance of classifiers with default hyperparameters in
the context of software bug prediction.
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Yang et al. [13] proposed a two-layer Ensemble Learn-
ing (TLEL) technique, incorporating both decision trees and
Ensemble Learning to enhance just-in-time software defect
prediction. The proposed model demonstrated a substan-
tial improvement over existing state-of-the-art ML models.
Remarkably, by reviewing only 20% of the code lines, TLEL
successfully identified over 70% of the bugs.

Additionally, Ensemble Learning (EL) not only enhances
the accuracy of ML models but also improves their overall
performance. Balogun et al. [14] scrutinized the performance
of individual ML classifiers compared to EL, incorporating
the Analytic Network Process (ANP) in their evaluation. The
results demonstrated that Ensemble Learning (EL) models
achieved a higher priority level than all single classifier meth-
ods across 11 software defect datasets.

In a study conducted by Qiu et al. [15], 15 imbalanced EL
methods were examined across 31 open-source projects. The
findings indicated that imbalanced EL models, which com-
bined both under-sampling and bagging approaches, demon-
strated a higher effectiveness rate.

Abdou and Darwish [16] evaluated EL models and intro-
duced the resample technique with Boosting, Bagging, and
Rotation Forest. The study concludes that the accuracy
improved using EL approaches more than single classifiers.
The researchers also noticed that the accuracy and perfor-
mance improved using Multilayer Perceptron and partial
decision trees using Bagging. The study also does not rec-
ommend using Support Vector Machine and Logistics as
a single classifier with Boosting, Bagging, and Rotation
Forest.

Furthermore, Pandey et al. [17] suggested a rudimentary
classification-based method for SBP using EL techniques and
Deep Representation. The approach encompasses both EL
and deep representation in combination. In comparison to
EL and other state-of-the-art techniques, the proposed model
exhibited superior performance across the majority of the
datasets.

In summary, the reviewed literature has provided a diverse
range of methodologies for software bug prediction, encom-
passing supervised machine learning, Ensemble Learning,
and deep representation. The comparative analyses under-
score the effectiveness of EL. models and the importance
of hyperparameter optimization in bug prediction. As we
transition to the background section, these insights form a
solid foundation for exploring the key components of Hyper-
parameter Optimization and Ensemble Learning in software
bug prediction.

lll. BACKGROUND

In this section, two crucial components integral to this
paper’s methodology are examined—Hyperparameter Opti-
mization and Ensemble Learning (EL). This comprehen-
sive exploration aims to provide a detailed understanding
of the roles and significance of EL and Hyperparameter
Optimization in the context of the research presented in this
study.
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A. HYPERPARAMETER OPTIMIZATION

In the field of machine learning, the term ‘“‘optimization”
is employed to describe the process of fine-tuning hyper-
parameters. This involves adjusting parameters such as reg-
ularization, kernels, and learning intensity [18]. Hyperpa-
rameters play a critical role in enhancing the accuracy of
ML classifiers, influencing them throughout the phases of
learning, construction, and evaluation. The terms ‘“model
discovery” and ‘‘hyperparameter tuning” encapsulate the
process of identifying the optimal hyperparameters for ML
classifiers [12]. As each algorithm comes with a set of param-
eters, many of which are optimizable, adjusting these param-
eters becomes pivotal. This optimization aims to achieve a
higher model score and enhance the overall performance of
the classifier by selecting the optimal configuration for its
parameters.

Tuning machine learning models exemplifies an optimiza-
tion challenge, wherein a diverse set of hyperparameters
needs to be fine-tuned to identify the optimal combination of
values that minimizes the function’s loss or maximizes accu-
racy. One method employed for hyperparameter optimization
is the Manual Search. In this approach, practitioners rely on
their expertise to select hyperparameters, followed by model
training, accuracy assessment, and iterative refinement. This
cyclic process continues until the model’s performance and
accuracy align with the specified requirements.

Grid search, also referred to as parameter sweep, consti-
tutes an exhaustive approach to hyperparameter optimization,
involving a systematic exploration of a predefined subset
within a learning algorithm’s hyperparameter space. This
algorithmic process is guided by an output criterion, often
determined through cross-validation on the training set or
assessment on a held-out validation set. Cross-validation
stands out as one of the most prevalent methods for selecting
tuning parameters, identifying the parameter value associated
with the lowest cross-validated ranking [ 19]. Cross-validation
parameter selection accommodates the optimization of an
infinite number of parameters, allowing researchers to choose
a combination of hyperparameter values that the model tests
and refines iteratively. Upon completion of the model build,
the hyperparameters yielding the highest accuracy score are
selected.

B. ENSEMBLE LEARNING

EL algorithms differ from single hypothesis learning algo-
rithms in their unique approach. Rather than relying on a sin-
gular, superior explanation for interpreting results, EL. algo-
rithms generate a series of hypotheses and use them col-
lectively to determine the labeling of new data points in a
diverse manner [20]. Experimental data indicates that ensem-
ble approaches are notably more reliable than individual the-
ories. In a study by Freund et al. [21], efficiency improved
in 22 benchmark questions, remained equal in one, and
exhibited a decrease in performance in four instances. This
highlights the robustness and effectiveness of EL in diverse
scenarios.
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An ensemble consists of a collection of learners referred
to as base learners. The generalization ability of an ensemble
typically surpasses that of individual base learners. Ensemble
Learning (EL) is particularly appealing because it has the
capability to elevate slow learners, which are only marginally
better than random guesses, to proficient learners capable
of making highly accurate predictions [22]. Consequently,
the term ‘““weak learners” is often synonymous with ‘‘base
learners.” It is noteworthy, however, that while theoretical
studies primarily focus on weak learners, the base learners
employed in practical applications are not exclusively weak.
Utilizing base learners that are less weak also contributes to
superior outcomes.

Among the EL methods, commonly utilized ones include
Bagging, Adaboost, Stacking, and Voting. Bagging, short for
bootstrap aggregation, stands out as one of the oldest, most
fundamental, and perhaps simplest ensemble-based algo-
rithms, demonstrating remarkably high performance [23].
In bagging, diversity of classifiers is achieved by creating
bootstrapped replicas of the training data [24]. This involves
randomly selecting separate subsets of training data from
the entire training dataset, with replacement. Each subset of
training data is then employed to train a specific classifier.
The classifiers are subsequently aggregated using a majority
voting mechanism, where the ensemble decision is deter-
mined by the class selected by the majority of classifiers for
a given case.

Adaboost operates by training models in successive
rounds, with a new model trained in each iteration. At the
end of each round, misclassified examples are identified, and
their significance is amplified in a new training sequence.
This updated training data is then fed back into the begin-
ning of the subsequent round, where a new model is pre-
pared [25]. The underlying theory is that subsequent iter-
ations should compensate for mistakes made by previous
models, leading to an overall improvement in the ensemble’s
performance.

Bagging is particularly effective for unpredictable mod-
els that exhibit varying generalization behavior with slight
changes in the training data [25]. These models, often termed
high variance models, encompass examples like Decision
Trees and Neural Networks. However, bagging may not be
suitable for extremely simple models. In essence, bagging
randomly selects from the set of possible models to create an
ensemble of relatively simple models, resulting in predictions
that are approximately identical (low diversity).

Voting serves as a technique for consolidating the outputs
of multiple classifiers. Three types of voting methods exist:
unanimous voting, majority voting, and plurality voting [26].
Unanimous voting takes place when all classifiers unani-
mously agree on the final judgment. Majority voting occurs
when more than half of the votes contribute to the evaluation,
while plurality voting happens when the majority of votes
determine the final prediction. Each voting method provides
a distinct approach to aggregating the decisions of individual
classifiers in an ensemble.
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Random Forests employs a similar bagging technique to
generate random samples of training sets for each Random
Tree, known as bootstrap samples. Each current training
batch is derived from the original dataset with modifica-
tions [27]. Consequently, the tree is constructed using the
current set and a randomly generated collection of attributes.
The node is divided using the optimal split on the ran-
domly chosen properties. Importantly, established trees in
Random Forests are not trimmed, preserving their original
structure.

The upcoming methodology section aims to illustrate the
practical implementation of Hyperparameter Optimization
and Ensemble Learning in the context of software bug pre-
diction.

IV. METHODOLOGY

The classification problem is a common formulation of the
supervised learning task in which the learner is expected
to learn (approximate the action of) a function that maps
a vector into one of several classes by inspecting several
input-output examples of the function [4]. Supervised ML
is the process of constructing a classification algorithm that
can successfully learn from fresh data. Figure 1 demonstrates
the steps followed in the application of supervised machine
learning to address our optimization problem.

Identification of
required data

}

— Data pre-processing

]

Definition of training
set

]

Algorithm
selection

l

Parameter funing }-’\—t{ Training ‘

Evaluation with test
set

No

OK? Yes—  Classifier

FIGURE 1. Research methodological steps.

The following sub-sections provide a description of the
dataset utilized in this study, details the software and tools
employed, and presents the evaluation metrics used to assess
the performance of the implemented approach.
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A. DATASET

In this study, we examined a dataset obtained from the
National Aeronautics and Space Administration (NASA),
widely recognized as a prevalent resource in the field of
software bug prediction. The JM1 dataset was selected from
the NASA repository, recognized as one of the largest repos-
itories, with 19% of its data indicating defects. The dataset
encompasses 20 attributes and comprises 10,885 instances
related to software bugs. Table 1 presents the list of attributes
within the dataset, accompanied by concise descriptions of
each field and the respective data types stored in each.

TABLE 1. List of dataset attributes.

Attribute Description Type
LoC McCabe’s - Line count of code Numeric
V(g) McCabe - Cyclomatic complexity Numeric
ev(g) McCabe - Essential complexity Numeric
iv(g) McCabe - Design complexity Numeric
N Halstead total operators and Numeric

operands
\% Halstead — Volume Numeric
L Halstead - Program length Numeric
D Halstead — Difficulty Numeric
1 Halstead — Intelligence Numeric
E Halstead — Effort Numeric
T Halstead’s - Time estimator Numeric
10Code Halstead’s line count Numeric
10Comment  Halstead’s count of lines of Numeric
comments
10Blank Halstead’s count of blank lines Numeric
10CodeAnd  Halstead’s count of blank and code Numeric
Comment lines
uniqOp Halstead’s total number of unique Numeric
operators
uniqOpnd Halstead’s total number of unique Numeric
operands
totalOp Halstead’s total number of Numeric
operators
totalOpnd Halstead’s total number of operands ~ Numeric
Defects Module has/has not one or more Boolean

defects

B. HYPERMETER OPTIMIZATION
In this study, the researchers opted for Cross-Validation
Parameter Selection (CVParameter Selection), employing a
predefined set of hyperparameter values for multiple learn-
ing algorithms. CVParameter Selection involves systemati-
cally trying out different hyperparameter values for multi-
ple learning algorithms through cross-validation to explore
the model’s performance under different configurations, ulti-
mately selecting the hyperparameter values that result in the
best model performance. Each algorithm has distinct hyper-
parameters chosen to maximize accuracy and performance on
the software bug prediction dataset. The set of hyperparame-
ters applied across various algorithms and their tuned values
are shown in Table 2. The hyperparameters included:

e Percentage of weight mass to base training on.

e Use resampling for boosting.

e Random number seed.

e The number of iterations.
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e Size of each bag, as a percentage of the training set size.
e Cross-validation folds.

TABLE 2. Hyperparameter optimization results for classifiers.

Classifier PARAMETER Default Optimized
value value
Vote Percentage of weight mass 1 0.8
to base training on
Bagging Size of each bag 1.0 0.8
Percentage of weight mass 1.0 0.8
to base training on
Use resampling for False True
reboosting
Random number seed 42 56
The number of iterations 50 75
Cross -validation folds 5 10
Random Random number seed 42 67
Forest Percentage of weight mass 1.0 0.8
to base training on
Use resampling for False True
boosting
The number of iterations 100 150
Size of each bag 1 0.7
Cross -validation folds 5 8
AdaBoostM1 The number of iterations 50 100
Percentage of weight mass 1 0.9
to base training on
Use resampling for True False
boosting
Random number seed 42 89
Size of each bag 1 0.9
Cross -validation folds 5 7
Logistics Use resampling for False True
Regression  boosting
SVM Cross-validation folds 5 10
C. TOOL

In this study, we employed Weka (Waikato Environment for
Knowledge Analysis), a renowned Java-based machine learn-
ing software suite developed at the University of Waikato in
New Zealand. Weka is an open-source software distributed
for download under the GNU General Public License (GPL),
making it freely accessible for users. The Weka workbench
encompasses a diverse array of algorithms for data process-
ing, predictive modeling, and visualization, complemented by
user-friendly graphical interfaces for efficient access to these
functionalities. Weka empowers practitioners to train and
predict machine learning models without the need for coding,
offering a user-friendly General User Interface with a rich
selection of state-of-the-art algorithms. Moreover, it provides
practitioners with the flexibility to utilize various hyperpa-
rameter optimization approaches, including GridSearch and
CVParameter Selection.

Weka offers a diverse array of ML models for data
exploration, including pre-installed models like Support Vec-
tor Machine, Naive Bayes, Neural Networks, and Decision
Trees. Additionally, the tool provides pre-installed EL. models
such as Voting, Stacking, and AdaBoost. One notable fea-
ture is the built-in tool for testing models while optimizing
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hyperparameters. This tool allows users to set minimum and
maximum values for each parameter, along with the step of
increment, streamlining the process of fine-tuning models for
optimal performance.

The tool also incorporates numerous evaluation measures
for assessing machine learning models, encompassing but
not limited to Accuracy, Kappa statistics, Mean Absolute
Error, Precision, F-Measure, and ROC Area. The inclusion
of a Confusion Matrix proves beneficial for machine learning
practitioners, as it readily provides Specificity and Sensi-
tivity values. Notably, all these functionalities are accessi-
ble through the graphical user interface (GUI) of the tool,
eliminating the need for coding. This user-friendly approach
proves particularly advantageous for practitioners without a
background in Software Engineering, enabling them to effort-
lessly train and evaluate machine learning models without
writing a single line of code. However, a significant drawback
of employing Weka is the occasional extended time required
for model evaluation. The duration is contingent on various
factors, including the specific model used, the optimized
hyperparameters, the number of features, and the volume of
instances in the data undergoing exploration.

D. EVALUATION MEASURES

The efficiency and accuracy of the ML algorithms were
assessed using a variety of metrics. Recognizing the com-
plexity of assessing algorithm success with a single metric,
we employed five: accuracy, Receiver Operating Character-
istic (ROC), Kappa, Specificity, and Sensitivity.

1) ACCURACY

This metric refers to how accurately the algorithm classifies
the production data. The formula for calculating accuracy
based on correctly categorized records and total number of
records is shown below. As a result, the better the classifier
is, the higher the precision.

2) ROC

Using accuracy alone is not the best way to test an algorithm’s
performance; it is advised to use more than one measurement
metric to get the whole story behind a dataset. Therefore,
we can use the ROC curve to get a bigger picture. The ROC
chart can be used to visually compare and contrast False
Positive (FP) rate specificity and True Positive (TP) rate
sensitivity. The specificity is represented on the x axis, while
the sensitivity is represented on the y axis. The curve should
come as close to the upper-left corner as possible. Figure 2
shows the ROC curve and the relationship between sensitivity
and specificity.

3) KAPPA
Kappa measures an algorithm’s success by comparing it to
a classifier that makes predictions based on guessing at ran-
dom. The higher and closer the Kappa to one, the better the
algorithm.
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FIGURE 2. ROC curve.

4) SENSITIVITY

Sensitivity is described as the proportion of correctly
expected positive examples. It is measured by dividing the
number of TP impressions by TP value and adding the FN
value [28].

TP
TPR = ——— ey
FN +TP
5) SPECIFICITY
Specificity is the ratio of the negative examples correctly
predicted. The specificity is calculated by dividing the TN
on the FP plus TN [29].

FP

FPR= —
TN + FP

@)
6) F-MEASURE

F-measure is a commonly used metric for evaluating the
success of classification techniques. To quantify this value,
two measures called “Precision” and ‘“‘Recall” must be
computed, since the F-measure is the average of these two
measures [29], [30], as shown below:

precision x Recall x 2
F — measure = — 3)
precision + Recall

V. RESULTS AND DISCUSSION

To address the research questions, we conducted a study to
compare the results between single hypothesis ML models
and EL models. The outcomes of these models were then
thoroughly analyzed and compared. The evaluation involved
assessing four EL models against five single hypothesis learn-
ing models. Table 3 shows the results of all nine tests based on
the highest accuracy and performance of the ML models. The
WEKA program was instrumental in running these models,
employing a 10-fold cross-validation method to iteratively
divide instances for training and production ten times.

A. RQI1: DO EL MODELS SHOW BETTER PERFORMANCE
COMPARED TO SINGLE LEARNING MODELS IN
SOFTWARE BUG PREDICTION PROBLEMS?

According to the conducted study and the results presented
in Table 3, it is evident that EL models exhibit higher
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TABLE 3. Performance metrics of machine learning algorithms.

Algorithm Accuracy ROC Kappa Sensitivity Specificity F-measure
Vote 0.7189 0.763 0.1898 0.828 0.373 0.702
Bagging 0.7178 0.749 0.2325 0.836 0.411 0.782
Random Forest 0.7172 0.716 0.2366 0.839 0.425 0.715
AdaBoostM1 0.7169 0.781 0.2189 0.809 0.416 0.766
Logistics Regression 0.5135 0.613 0.1395 0.722 0.406 0.759
SVM 0.6107 0.522 0.0664 0.713 0.359 0.639
Neural Networks 0.5094 0.519 0.0683 0.713 0.318 0.640
Naive Bayes 0.6042 0.509 0.1932 0.632 0.314 0.670
Decision Tree 0.5954 0.656 0.1901 0.733 0.357 0.667
TABLE 4. Results of ensemble learning models before and after hyperparameter optimization.
Algorithm Accuracy ROC Kappa Sensitivity Specificity F-measure
Vote 0.7189 0.763 0.1898 0.828 0.373 0.702
Optimized Vote 0.8195 0.763 0.1957 0.830 0.370 0.774
Percentage improvement 13.98% no change 3.11% 0.24% no change 10.26%
Bagging 0.7178 0.749 0.2325 0.836 0.411 0.782
Optimized Bagging 0.8183 0.769 0.2337 0.836 0.426 0.789
Percentage improvement 13.99% 2.67% 0.52% no change 3.64% 0.90%
AdaBoostM1 0.7169 0.781 0.2189 0.809 0.416 0.766
Optimized AdaBoostM1 0.8176 0.797 0.2530 0.840 0.437 0.787
Percentage improvement 14.03% 2.05% 15.6% 3.83% 5.05% 2.74%
Random Forest 0.7172 0.716 0.2366 0.839 0.425 0.715
Optimized Random Forest 0.8182 0.757 0.2485 0.879 0.432 0.796
Percentage improvement 14.07% 5.72% 5.03% 4.77% 1.65% 11.33%
TABLE 5. A comparison of results achieved in our work with those in previous work.
Dataset Study Algorithm Accuracy ROC F-measure
IM1 Vote
[17] - - -
(31] - - -
[32] - - -
[33] 0.759 - 0.326
Our work 0.8195 0.763 0.774
Bagging
[17] - 0.697 0.754
[31] 0.8118 - -
[32] 0.686 0.773 -
[33] 0.732 0.327
Our work 0.8183 0.769 0.783
AdaBoostM1
[17] - 0.700 0.727
[31] 0.7912 - -
[32] 0.722 0.749 -
[33] 0.700 - 0.373
Our work 0.8176 0.797 0.787
Random Forest
[17] - - -
[31] 0.7167 0.715 0.760
[32] - - -
[33] 0.755 - 0.335
Our work 0.8182 0.757 0.796

accuracy rates and superior performance in software bug
prediction. The top-performing models among the tested ones
are EL models, namely Vote, Bagging, Random Forest, and
AdaBoosstM 1, outperforming the single hypothesis learning
models. These models, including Logistics Regression, SVM,
Neural Networks, Naive Bayes, and Decision Trees, scored
lower in terms of accuracy and ROC measures. Notably, the
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Vote EL model achieved the highest accuracy (0.7189). The
ROC measure achieved for the same model was 0.763 which
indicated good discrimination between positive and negative
instances.

Furthermore, it is noteworthy that the ROC curve was
consistently higher for the majority of EL models, approach-
ing closer to one compared to single hypothesis learning
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models like Neural Networks, Naive Bayes, and Decision
Trees.

The Kappa statistics also indicated higher values for the
majority of EL models, with the exception of the Vote classi-
fier model, which scored the highest in accuracy. In terms of
sensitivity, EL models demonstrated an advantage, while the
specificity was lower for EL models, with the Vote classifier
registering the lowest value in this regard. Additionally, the
F-measure scores for EL models surpassed those of sin-
gle hypothesis learning models, signifying that EL models
exhibited higher precision and recall compared to their single
hypothesis learning counterpart.

B. RQ2: DOES ADDING HYPERPARAMETER
OPTIMIZATION APPROACHES IMPROVE THE
PERFORMANCE AND ACCURACY OF THE EL?

To address the second research question, hyperparameter
optimization was conducted within the WEKA software,
encompassing manual optimization for some hyperparam-
eters and automated optimization using the CVParameter
Selection Classifier, incorporating steps for each hyperpa-
rameter optimization to facilitate automated testing. As a
result, testing time was increased significantly due to the fact
that the model is tested on each step and combination of
the hyperparameter, and the highest achieved combination is
chosen to calculate the accuracy of the model. Table 3 shows
the results of the impact of optimizing hyperparameters for
EL models for software bug prediction.

The results presented in Table 4 clearly indicate that tuning
hyperparameters for Ensemble Learning (EL) models sig-
nificantly influences the accuracy and performance of the
models in software bug prediction. Across all cases, there
was an observable increase in all model measures, demon-
strating the positive impact of hyperparameter optimization.
Many hyperparameters were adjusted to enhance accuracy
and performance, deviating from default settings. The eval-
uation of the proposed model highlights that employing EL
models with hyperparameter optimization for software bug
prediction yields superior performance compared to single
hypothesis learning models. Furthermore, an enhancement
in the ROC Curve is evident in three out of the four EL
algorithms following hyperparameter optimization.

C. COMPARISON WITH PREVIOUS WORK

In this section, we conducted a comparative analysis of our
findings with previous studies in the field of software bug
prediction and hyperparameter optimization. We specifically
focused on several EL classifiers that employed the same
dataset as ours (JM1). The objective is to check whether our
study represents an enhancement over existing research in
this domain or not. The details of the results obtained are
listed in Table 5. For AdaBoostM1, our work outperforms
previous studies in terms of accuracy (0.8176), ROC (0.797),
and F-measure (0.787), demonstrating improvements over
the reported values in [17], [31], [32], [33], and [34]. Similar
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trends are observed for the Bagging algorithm, where our
study exhibits higher accuracy (0.8183), ROC (0.769), and
F-measure (0.783) compared to the referenced works. More-
over, the Vote algorithm in our work achieves a notewor-
thy accuracy of 0.8195, ROC of 0.763, and F-measure of
0.774, highlighting significant advancements over the pro-
vided references. The Random Forest algorithm also displays
improved performance in our study, with an accuracy of
0.8182, ROC of 0.757, and F-measure of 0.796.

Overall, the results suggest that our proposed approach,
which incorporates hyperparameter optimization, enhances
the predictive capabilities of various classifiers across differ-
ent metrics, surpassing prior studies in the same domain and
dataset.

D. THREATS TO VALIDITY

Several potential threats to the validity of this study have to
be acknowledged. Sampling bias may restrict the general-
izability of results to datasets with different characteristics.
The imbalanced distribution of defective instances (19.32%)
could introduce bias, impacting relevance to diverse class dis-
tributions. Duplicated instances in the JM1 dataset (24.16%)
may affect the model’s learning process, potentially overesti-
mating predictive capabilities. The effectiveness of hyperpa-
rameter optimization may be algorithm-dependent, limiting
generalizability. Additionally, exploring different evaluation
metrics to assess and compare classifiers could provide a
more comprehensive understanding of model performance.
Acknowledging and addressing these challenges is crucial for
enhancing the transparency of our results.

VI. THEORETICAL AND PRACTICAL IMPLICATIONS

This study contributes theoretically by advancing our under-
standing of predictive modeling in software bug detection.
By comparing ensemble learning (EL) models against single
learning models, the research sheds light on the superiority
of EL models in predicting software bugs. This analysis
underscores the potential of EL models as a more effective
approach in such tasks. Furthermore, the investigation into
the impact of hyperparameter optimization on EL model
performance offers insights into the importance of fine-tuning
model parameters, enriching our theoretical understanding of
machine learning model optimization.

On a practical level, the findings hold significance for soft-
ware developers and quality assurance professionals. Demon-
strating the superiority of EL models, particularly when
optimized with hyperparameters, in predicting software bugs
offers tangible benefits for software development processes.
Implementing EL. models with optimized hyperparameters
can lead to more accurate bug prediction, ultimately improv-
ing software quality and reducing development costs. Addi-
tionally, the study provides practical guidance for selecting
appropriate machine learning models for similar predictive
tasks, aiding practitioners in making informed decisions.

Moreover, the introduction of various model evaluation
measures such as accuracy, ROC Curve, Kappa statistics,
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Sensitivity, Specificity, and F-measure serves to enhance per-
formance evaluation practices. These measures offer valuable
tools for assessing the performance of machine learning mod-
els in software bug prediction, contributing to the develop-
ment of standardized evaluation practices in the field. Such
standardization enables more reliable performance compar-
isons across different studies and experiments, fostering
advancements in software bug prediction methodologies.

VII. CONCLUSION AND FUTURE WORK

This study was conducted to enhance the effectiveness of soft-
ware bug prediction by addressing two key questions. Firstly,
we explored whether Ensemble Learning (EL) models out-
perform single learning models in predicting software bugs.
Secondly, we investigated the impact of adding Hyperpa-
rameter Optimization approaches on EL model performance,
examining whether this enhancement leads to improved accu-
racy. These questions served as the foundation of our explo-
ration, guiding us to understand the nuances of predictive
modeling in software bug detection. Our findings unequiv-
ocally demonstrate the superiority of EL models, especially
those optimized with hyperparameters, over single hypothesis
learning models in software bug prediction. Across various
model measures, including accuracy, ROC Curve, Kappa
statistics, Sensitivity, Specificity, and F-measure, EL models
consistently outperformed their counterparts. The positive
impact of hyperparameter tuning further reinforced the effi-
cacy of EL models, contributing to enhanced accuracy and
overall performance.

Nevertheless, recognizing a limitation in our study is cru-
cial due to the reliance on a specific dataset from the NASA
repository. To further validate the effectiveness of our pro-
posed method, future work should consider incorporating
more diverse datasets. This expansion will enhance the gen-
eralizability of our findings and ensure the robustness of
our approach across various software development contexts.
Additionally, we plan to extend our investigation by applying
EL models with hyperparameter optimization to cross-project
observations for software bug prediction. This aims to assess
the generalizability of the proposed model and replicate
its outcomes in diverse software bug prediction projects.
Such cross-project validation will provide valuable insights
into the robustness and applicability of our approach across
different software development contexts. Finally, we plan
to incorporate statistical tests to enhance the methodologi-
cal approach, including parametric tests such as t-test and
Wilcoxon, to compare the performance of classifiers. This
addition will provide a more comprehensive assessment of
the robustness and applicability of our approach in diverse
software development contexts.
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