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ABSTRACT The movement of the human hand offers various degrees of freedom, enabling efficient
performance of dynamic tasks and robust interaction with the environment in a compliant and continuous
manner. However, the rigid exoskeleton used in hand rehabilitation limits the user’s freedom of movement,
complicating their natural interaction with the environment. In this study, we present a soft exo-glove for
assistive rehabilitation actuated by Shape Memory Alloys (SMA), controlled by a surface electromyography
(sEMG) hand gesture classifier. Thanks to the actuator type, the soft exo-glove enables slow, smooth, and
controlled movements when activated and provides complete control transparency when the device is not
active. This advantage enhances the comfort and acceptance of the exo-glove by the patient. On the other
hand, the classifier, in conjunctionwith the control algorithm and the soft exo-glove, offers the potential to use
the exo-glove in assistive hand rehabilitation therapy. For user-friendly use, an interface has been developed,
enabling the acquisition of new sEMG data from new users, retraining of the classifier, and connection with
the soft exo-glove for rehabilitation therapy. The main objective of this study is to demonstrate that the
proposed wearable soft exo-glove, along with the control algorithm and the employed classifier, constitutes
an effective solution for assistive rehabilitation tasks, as demonstrated with healthy subjects. Furthermore,
this solution can be easily adapted to the users’ characteristics and requirements.

INDEX TERMS Assistive rehabilitation, gesture classification, shape memory alloys, soft exo-glove.

I. INTRODUCTION
The human hand is a complex and versatile organ, propelled
by an intricate system of muscles and tendons, guided by
ligaments and soft tissues, all surrounding a framework
of bones. This intricate structure empowers us to perform
various daily activities (ADL), ranging from simple tasks
like opening a door to manipulating objects, as well as
executing more precise movements such as handwriting. The
functionality of the hand plays a pivotal role in executing
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ADL, which are essential for maintaining an independent and
healthy quality of life.

According to the World Health Organization, approxi-
mately 15 million people worldwide suffer from a stroke each
year [1], making it one of the leading causes of disability
in adults. Furthermore, about half of these individuals
experience hand dysfunction, which impairs their ability to
perform ADL effectively. In some cases, this dependence on
others for daily tasks becomes a necessity.

Physical rehabilitation is effective for recovering func-
tionality and mobility after a stroke [2]. However, due
to its extended duration and the often necessary patient
hospitalization, it generates substantial healthcare and social
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expenses [3]. Therefore, there is a growing interest in
exploring new technologies to enhance patients’ daily lives
and reduce rehabilitation expenses.

In recent years, research on hand exoskeletons has gained
significant momentum. Various aspects of this field are under
exploration to enhance device hardware, aiming for more
compact, soft, effective, and efficient designs. Additionally,
efforts are underway to improve cognitive synchronization
with users, enabling smoother movements in accordance with
user intentions and needs.

In [4], the authors present a rigid hand exoskeleton
for both passive and active rehabilitation therapy, utilizing
motor impedance. Additionally, Popov et al. [5] introduces
a portable glove actuated by motors, designed to assist with
ADL. Soft solutions for hand rehabilitation also include
glove-based devices. In [6], a soft robotic glove based on
pneumatic actuators and controlled by a Brain-Computer
Interface (BCI) was tested with 10 patients, with five
patients testing only the glove and another five testing the
glove controlled by BCI. Although no significant difference
was found between the two groups, in the case of the
BCI-controlled glove, the authors mentioned a probable
trend of prolonged improvements. In [7], a Fishbone-Inspired
Soft Robotic Glove with pneumatic actuators for hand
rehabilitation, 3D printed, was presented. Due to its structure,
this rehabilitation glove permits multiple degrees of freedom
(DOF) for each finger. Chen et al. [8] present a pair of
soft exo-gloves: one sensorized glove (with flexible and
force sensors) for the unaffected hand and an actuated
glove powered by micromotors for the affected hand. The
authors developed a machine learning algorithm capable of
recognizing 6 task-oriented gestures from the unaffected hand
using Support Vector Machines (SVM) with an accuracy of
99.07%. This was then replicated with the aid of the actuated
glove on the affected limb for task-oriented and mirror
rehabilitation therapy. In [9], a soft exo-glove for grasping
assistance and rehabilitation driven by sEMG signals was
presented. In this study, the grasping force is estimated and
then converted into finger displacement.

In this work, we will utilize sEMG signals to detect
hand gestures. When our system recognizes the gesture
and the user is unable to complete the movement, the
exo-glove is activated to complete the hand gesture, as long
as the user maintains the intention to complete it. The
sEMG signals are an excellent choice for the noninvasive
detection of hand gestures. They enable the monitoring of
muscle activity and provide valuable information about the
intention and movement of the hand without the need for
invasive procedures. The EMG signal typically appears about
20-80ms before muscle contraction, allowing for anticipation
of motion intention.

The most common classifiers to recognize the hand
gestures from sEMG are:

• Support Vector Machines (SVM): SVM is a popular
algorithm for classification and is well-suited for tasks
involving high-dimensional data [10], [11].

• Convolutional Neural Networks (CNNs): CNNs are
highly effective at extracting features from sequential
data, such as sEMG signals, and have demonstrated
strong performance in gesture recognition [12], [13],
[14], [15], [16].

• K-Nearest Neighbors (KNN): KNN is a simple but
effective supervised learning algorithm that can be
used to classify gestures based on sEMG signals. This
algorithm was successfully employed in studies of [17]
and [18].

• Recurrent Neural Networks (RNN): RNN is useful for
analyzing data sequences, such as sEMG signals, and
capturing temporal patterns in gestures. It has been
employed in various studies, including [19], [20], and
[21].

• Decision Trees: Decision trees are easy to interpret
and can be used to classify gestures based on features
extracted from sEMG signals, although they are less
commonly utilized [22].

Although all algorithms present good accuracy, with the
majority achieving more than 90% accuracy in offline
databases, the choice of classifier depends on various factors.
These factors include the size of the dataset, the complexity
of the gestures, and specific performance requirements. The
aim of this study is to develop a real-time gesture hand
classifier that can generate the necessary reference for the soft
exo-glove used in assistive rehabilitation tasks.

In order to carry out assistive rehabilitation therapy for the
hand, detecting all sEMG signals can be challenging due to
the involvement of many muscles during hand movements.
For instance, in the work of Secciani et al. [23], they only
placed two skin surface EMG sensors on the forearm, which
allows the system to detect three main gestures of the hand:
hand opening, hand closing, and relaxed state. In another
study [24], prediction of hand grip strength based on sEMG
was presented using support vector regression (SVR).

Gesture recognition for controlling the hand exoskeleton
in bilateral therapy has been explored in several studies such
as [25], [26], and [27].

Other works as [28], are based on sEMG signals to
control a hand orthosis have implemented sEMG pattern
classification using theMyoArmband. Additionally [29], has
used the Myo Armband device to detect five movements of
the hand and wrist, including two-finger gripper, wave in,
wave out, finger spread, and fist.

In this work, we propose a soft exo-glove device for
assistive rehabilitation, controlled according to the sEMG
signals. This device is actuated by Shape Memory Alloy
(SMA) based actuators, presentingmultiple DOFs. Although,
the passive rehabilitation exo-glove concept was previously
presented in [30], in this work, a new high-level algorithm
based in a gesture classifier was developed. This offers the
unique capability of individually controlling the extension
and flexion of each finger, including thumb opposition,
based on the user’s intended hand movements detected
by the gesture classifier. Among its advantages, the entire
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system has been designed to be a compact and comfortable
assistive rehabilitation device, it is noiseless during operation,
lightweight, user-friendly, and exhibits a low fabrication cost.

This work is divided into four sections. Section II briefly
introduces the soft exo-glove design, including its actuators,
the EMG acquisition process, segmentation, gesture classifi-
cation algorithms, the user interface employed in this process,
and the proposed high-level control algorithm used for
generating real-time references based on identified gestures.
Preliminary experimental results are presented in Section III,
where the selection of the features, the performance of the
classifiers and the first tests with the exo-glove are evaluated.
Finally, Section IV and Section V present discussions on the
current strengths and limitations of the exo-glove, and the key
conclusions drawn from this work.

II. METHODOLOGY
A. SOFT-EXO GLOVE SYSTEM
Our research group has recently focused on the development
of exoskeleton devices actuated by SMA. These devices are
chosen for their advantageous features, including low weight,
noiseless operation, and cost-effectiveness. Their primary
purpose is upper limb rehabilitation.

In this work, we employ a soft exo-glove concept
previously introduced in a prior study [30]. This soft
robotic glove based on neoprene material, is actuated by
SMA-based actuators, and it is designed for hand assistance
and rehabilitation purposes.

The soft exo-glove, is capable of executing complex
movements through individual finger flexion and extension,
including opposing motion of the thumb. Each finger is
mobilized by two actuators controlled in an antagonist
configuration, making it a biomimetic system. The routing of
the tendons represents a key element in ensuring the proper
functionality of the exo-glove to replicate hand gestures
commonly found in ADL, such as gripping.

In Figure 1, key tendon fixation points at the tips of the
fingers and the routing of tendons (the three-wire loop) on
the proposed soft exo-glove can be observed. When it comes
to extension, the most crucial point for tendon routing is at the
distal phalanges. If the glove is not perfectly adjusted to the
user’s hand, there is a risk of bending at the tip of the glove.
The configuration we have employed involves the tendons
forming a loop over the fingers, effectively preventing the
bending of the glove tip. In post-stroke patients, spasticity in
the hand is very common and makes it difficult to put on the
hand glove. For this reason, the neoprene glove was modified
by cutting the material around the middle and proximal
phalanges, and relocating the Velcro straps to facilitate the
glove placement over the user’s hand.

When the fingers are flexed, it is noticeable that the
movement of the distal phalanges results in trajectories that
are not perfectly parallel. Instead, these trajectories exhibit a
slight deviation as they converge towards a common point in
the forearm. To ensure a better alignment with the movement
of the fingers, this characteristic has been implemented in

FIGURE 1. Tendon routing over the soft exo-glove: for the flexion
movement - right side and for the extension movement - left side.

the soft exo-glove. This can be observed in the fixed tendon
routing points on the flexion side of the soft exo-glove,
particularly those closest to the forearm.

The thumb’s most critical motion is opposition, charac-
terized by abduction combined with rotation at the car-
pometacarpal (CMC) joint, which moves the thumb toward
the tip of the little finger [31]. This complex movement is
achieved in the soft exo-glove through the action of two
tendons located on the flexion side. One of these tendons
forms a loop over the little finger for thumb opposition, while
the other follows a path along the palm before deviating
towards the forearm for thumb flexion.

The actuation of the soft exo-glove relies on SMAs as the
core technology. In this work, the Joule effect is utilized to
generate heat within the SMA fibers. This process involves
the conversion of electrical energy into thermal energy,
which, in turn, is transformed into mechanical work. During
this transformation, as the SMA fibers shift between the
martensite and austenite phases, they contract by up to 4%
of their original length.

The actuator is connected to the exo-glove tendon system
within a sensorized box [30]. This enclosure includes a linear
potentiometer (PTA4543-2015CPB103, 12 bits resolution) to
measure the actuator displacement, along with a mechanism
designed to duplicate the final displacement. The actuator
generates a tendon displacement of 80 mm with a force of
17.5 N for each finger.

The electronic hardware comprises position sensors,
a microcontroller, and a power circuit necessary for control-
ling the SMA-based actuators. The power circuit for the SMA
wires is built around MOSFET transistors. These transistors
are activated through PulseWidthModulation (PWM) signals
generated by the microcontroller. They regulate the flow
of power to the actuators as required. With this electronic
hardware setup, the control system can effectively manage
up to 12 different actuators, with each actuator potentially
utilizing one or more SMA wires.
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The SMA-based actuator exhibits nonlinearities and signif-
icant hysteresis, posing challenges for employing traditional
nonlinear control methods to achieve optimal performance.
To address these nonlinearities in the exo-glove control,
a Bilinear Proportional Integral Derivative (BPID) controller
was employed [30].

B. EMG ACQUISITION, SEGMENTATION AND GESTURE
CLASSIFICATION
This section describes the electromyographic information
acquisition system and their processing which allows to
recognize gestures exerted by a user’s hand through the
machine learning classifier.

In this work, the commercial Myo Armband sensor,
manufactured by the Canadian company Thalmic Labs [32] is
used but the proposed algorithm can also be applied to other
similar electromyography circuits, for example MindRove
armband. This sensor was chosen according to the availability
in our laboratory, for its performance, ergonomics, simplicity,
small size, and lightweight design.

This has a bracelet shape, with 8 electromyographic sen-
sors, frommedical-grade stainless steel [33] capturing signals
from the forearmmuscles activity with a frequency of 200Hz,
8 bits per sample for each sensor [34]. According to the
working frequency of the Myo Armband and the Nyquist
principle, only EMG signals with frequencies up to 100 Hz
can be acquired, resulting in the loss of information from
high-frequency EMG signals. This represent a limitation in
the sEMG signal acquisition considering that almost all of
the signal power is located between 10 and 250 Hz, with the
most frequency power between 20 and 150 Hz. Although low
frequencies are the most significant for gesture classification,
the algorithm can be tested with a device that permits the
capture of high-frequency signals to evaluate if its response
improves. The device is equippedwith Bluetooth 4.0 enabling
sEMG data transmission to the computer. Also, this has a
9 axis inertial sensor (IMU) with a frequency of 50 Hz [35].
However, for this study, only the signals recorded by the eight
EMG sensors will be used.

Data acquisition of the sEMG signals from the Myo
Armband was performed using Matlab, assisted by the
MyoMex software [36]. After acquiring sEMG signals with
the MyoMex, frequencies ranging from 10 to 100 Hz in
the spectrum were observed. Additionally, there was a lack
of frequencies at 50 Hz. This indicates that the sEMG
signals are filtered between 10-100 Hz, with the 50 Hz band
being removed to eliminate power line noise. Furthermore,
it was observed that the signals were normalized between
-1 and 1 before their acquisition. Subsequently, the signals
were rectified and segmented into non-overlapping fixed-
time windows considering the simplicity of the algorithm and
reduced computational cost.

Various functions for feature extraction, including Root
Mean Square (RMS), Mean Absolute Value (MAV), Variance
of the sEMG (VAR), Simple Square Integral (SSI), Willson
amplitude (WAMP, in this work 0.01), Slope sign changes

FIGURE 2. Entry process from the data acquisition to the classification.

(SSC), andWaveform length (WL), have been utilized. These
functions are employed to extract relevant features from the
sEMG signals. The length of the signal segments (window)
was set to 300 ms. According to the segment length (300 ms)
and the acquisition frequency (200 Hz), we use 60 samples
per time window for feature extraction. This setup is still
considered to operate in real-time, as discussed in [37].
The process, from sEMG acquisition to the classification
of the gesture, is illustrated in Figure 2 and consists of:
the calibration of the Myo Armband (using its software),
signal acquisition, filtering (using Myo Mex), rectification,
segmentation of the sEMG signals, feature extraction, and
gesture classification.

Given the rectification of the sEMG signal, the ZC feature
was omitted from consideration. Additionally, multiple tests
were conducted to optimize the feature selection process.
To select the combination of the most significant features,
classifiers with 5, 4, 3, and 2 input features were built. Each
feature was multiplied by 8 sensors, resulting in a total of
40, 32, 24, and 16 inputs, respectively. These classifiers were
trained and tested offline using different combinations of
features, and the results were analyzed.

C. USER INTERFACE
Six distinct gestures have been proposed for recognition:
relax, fit, open hand, pinch, grip, and thumb up, as illustrated
in Figure 3. The classification method put forth entails the
creation of a personalized dataset for each user, comprising
50 feature samples per gesture (resulting in a total of
300 samples). This dataset personalization is carried out
before the initiation of the rehabilitation therapy. It is impor-
tant to note that the proposed approach involves tailoring
the dataset to each individual user and does not rely on a
dataset containing samples from different subjects. While
this approach enhances the accuracy of gesture recognition,
it does require additional time for data acquisition and
classifier retraining.

To streamline this process, an automated interface has
been developed, as depicted in Figure 4. The figure’s bottom
portion outlines the sequence of essential steps:

1) Begin by placing the Myo Armband over the forearm
and performing the default calibration. In the anatomi-
cal position, the armband is positioned on the thick part
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FIGURE 3. Proposed gestures for recognition.

of the forearm, approximately 5 cm above the elbow,
with the logo over the center of the extensor muscles
and the line sign pointing towards the hand. The default
calibration process involves using the Myo Armband
application, which prompts the user to perform a ‘wave
up’ gesture (hand extension).

2) After the calibration process, the user is prompted to
replicate the target gestures, starting with the relax
gesture and concluding with the thumb up gesture.

3) During this process, each gesture is selected one by
one (via the buttons outlined in the red dotted line in
Figure 4), and 50 samples of each gesture (50 values of
the features for each gesture) are recorded and added to
the dataset.

4) Once the dataset is complete with all six gestures
(resulting in 300 samples), the central button (outlined
in the blue dotted line in Figure 4) allows for classifier
training.

5) The script automatically organizes all the samples and
target data, generating a structured dataset suitable for
the Matlab, learning algorithm.

This approach facilitates personalized gesture recognition,
providing better accuracy, albeit at the expense of additional
data collection and training time.

All processes, from data acquisition to validation for a
new user, can vary in duration, typically taking between
2 to 4 minutes. Following this setup, the user can initiate
the gesture recognition validation by activating the switch
button (encircled by a purple dotted line in Figure 4). When
the switch is turned on, the classifier’s response is visually
represented by LEDs, initially set to yellow. If a gesture is

successfully recognized, the LED color changes to green; if
not, it remains red.

The final section outlined by a brown dotted line in Figure 4
comprises buttons for connecting with the soft exo-glove.
When the gesture verification is active, the first switch labeled
‘‘Connect with the Target’’ can be turned on to establish a
connection with the exo-glove system. Subsequently, if the
second switch is set to ‘‘on,’’ the rehabilitation therapy
commences, tailored to the recognized gesture.

D. PROPOSED CLASSIFIERS
Different architectures of classification have been proposed
and evaluated: feed forward artificial neural networks (ANN)
with one and two hidden layers, K-Nearest-Neighbor (KNN),
SVM and Kernel Naive Bayes Classifier. In the training
process, the data was divided into 70% for training, 15%
for validation, and another 15% for testing, utilizing a five-
fold cross-validation. Different ANN architectures with one
hidden layer have been tested. The architecture has 24 inputs
representing the sEMG characteristics, a different number of
neurons in the hidden layer with tansig activation function
and 6 output neurons representing the 6 gestures. The output
neurons use the purelin activation function.

Also, ANN with two hidden layers was proposed and
evaluated. The proposed architecture in this case was:
24 inputs, tansig activation function on the hidden layers
(varying the number of neurons) and 6 output neurons with
purelin activation function.

The Kernel Naive Bayes (KNB), SVM and the KNN was
proposed and tested in the Classification Learner toolbox
of Matlab 2022b using different k-fold Cross-validation
from 1 to 20.

Finally, the selected classifier algorithm was tested on the
NinaPro DB5 dataset [38]. This choice was made according
with the hardware used in this study, Myo Armband sensor.
The dataset comprises sEMG data from 10 healthy users,
captured by two Myo Armband sensors, totaling 16 channels
synchronized with the finger joint angles recorded using the
CyberGlove, along with the visual stimuli presented to the
patients during signal acquisition. Additionally, the dataset
includes the biomimetic data of the subjects, such as weight,
age, height, gender, and the arm used to perform the test
(left or right). The dataset contains EMG data for three
types of exercises: basic movements of the fingers, isometric
and isotonic hand configurations, basic wrist movements,
and grasping and functional movements. According to the
proposed methodology, the same gesture was selected from
this dataset to test the algorithm: exercise B1 - Thumb up;
exercise B6 - all the fingers flexed together in fist; exercise
B8 - adduction of the extended fingers; exercise C1 - large
diameter grasp; exercise C14 - prismatic pinch grasp; and the
hand rest.

The data of this gesture have been extracted and post-
processed: segmented each 300 seconds and the features
such MAV, RMS and SSC was extracted, and in parallel the
gesture was saved for a post-analysis. The KNN algorithm
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FIGURE 4. Developed interface for gesture recognition and rehabilitation therapy.

was retrainedwith the extracted features for the sEMG signals
for the subjects 1 to 9, splitting the data in training data and
test using the five cross validation.

E. HIGH LEVEL CONTROL ALGORITHM
A high-level algorithm was proposed to transition from
gesture recognition to actuator control. This algorithm takes
the recognized gesture as input and converts it into a position
vector. This vector represents maximum displacement values
for each finger’s actuators and an enable control. For
example, when performing a fist gesture, a 7 × 1 vector is
generated (consisting of an enable control and six flexion
actuators), with each value set to 45, indicating a 45 mm dis-
placement for the position sensor. This actuator displacement
is then doubled through the tendon displacement mechanism,
resulting in a 90 mm tendon movement. In the same time, for
the extension actuators during a fist gesture, all values are set
to 0 mm (control output will be 0) to prevent the opposition
to fingers flexion movement.

The maximum values for the flexion or extension move-
ment (position reference) can be customized based on
user-specific characteristics. Also, for other gestures, like
gripping, the maximum value is configured at 20 mm, and
when amplified by the mechanism, it leads to a 40mm tendon
displacement and so on.

Two particular cases are represented by the open hand
gesture, which is activated when the first vector position is 1,
and the rest of the vector’s elements are 0, and the relax
gesture when all the vector’s elements are set to 0. The limits
for the extension actuators are set individually within the
software.

From this vector and the current actuator positions, which
are directly linked to the tendon’ positions, a reference is
generated using two types of adjustable increments. The first
position vector also serves to initialize or stop the entire
system, as the microcontroller receives a 7-position vector.
For a visual representation of the proposed algorithm, please
refer to Figure 5.

The two increments play a crucial role in generating the
position reference. Specifically, the larger increment is used
to transition the reference signal from the current position to
the actuator’s current position, ensuring a rapid movement.
Meanwhile, the smaller increment is employed to create a
smoother reference. This smaller increment comes into play
when the reference signal closely aligns with the actuator’s
position. Its purpose is to enable the actuator to track the
reference signal more accurately in accordance with the
gesture’s performance.

In the software, the reference limits are determined based
on both the maximum sensor and actuator displacements,
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FIGURE 5. High level control algorithm.

as well as the recognized gesture. For instance, in the case
of a gripping gesture, the maximum reference can be set at
20 mm.

The soft exo-glove was assessed in an assistive rehabilita-
tion mode using a test bench setup. The Myo Armband was
positioned on the user’s forearm, while the soft exo-glove
was placed to a 3D printed prosthetic hand developed
by [39]. Following the calibration of the gesture recognition
algorithm, the soft exo-glove was activated via the user
interface. Several gestures were tested, and data on the
generated reference and tendon positions were recorded.

III. RESULTS
A. FEATURE SELECTION
According to the proposed methodology, models with 5, 4,
3, and 2 input features were tested. A significant decrease in
accuracy for models based on 2 input features was observed,
while models based on 5, 4, and 3 features showed similar
results. Considering computational cost as an important
factor, we chose the model based on 3 features. It was
observed that features such as SSI, WAMP, VAR, and WL
did not yield significant improvements in the classification
process. Interestingly, their removal did not result in a
decrease in precision, aligning with the findings presented
in [40]. The results of the tests, conducted using the proposed
classification algorithm with 3 features, are depicted in
Figure 6, where the y-axis represents the features that were
removed. Based on their contribution to the classification
process, we retained the following features: RMS, MAV, and
SSC. Considering the eight EMG channels available, this
selection results in the extraction of 24 features per segment
window: eight RMS, eight MAV and eight SSC.

B. CLASSIFIERS PERFORMANCE
The results showed that the ANN with one hidden layer,
classifies the gestures well starting from 5 neurons in
the hidden layer and the performance of the network not
increasing substantially if the number of neurons increment.

On the other hand, the results in the case of a two-hidden-
layer ANN demonstrate that the better results start from the
configuration with 2 neurons in the first hidden layer and
4 neurons in the second hidden layer.

In the case of KNN and SVM, the better result was obtained
with k-fold Cross-validation, k = 5. Table 1 presents the

FIGURE 6. Three feature accuracy scores over 1. On the left side, the
three discarded features were represented, and on the right side of each
bar, the accuracy score over 1 was displayed.

most important results of the tested classifiers. As can be
seen, all the classifiers have an accuracy superior to 98%.
This result was obtained using the test data from the same
dataset that was originally divided into training and test sets
for classifier training.The better results are obtained with
the KNN classifier, both in terms of accuracy and response
time. According to these results, although SVM also shows
promising results, the KNN classifier was chosen to be used
with the soft exo-glove.
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TABLE 1. Classifiers results.

While the proposed method requires approximately 2 to
4 minutes for data acquisition and around 2 seconds for
retraining the KNN classifier, it provides commendable
accuracy in gesture classification. The classifier can still be
utilized even if the bracelet is removed and then replaced,
without necessitating the acquisition of a new dataset or
retraining. However, it’s important to note that the accuracy
may diminish under these circumstances.

Furthermore, when transitioning from one user to another
without conducting personalized data acquisition, the accu-
racy may vary. This variation can be attributed to differences
in various user characteristics, such as fat levels, hair
presence, muscle routing, muscle fatigue, and more.

To assess the classifier’s accuracy, several users par-
ticipated in online testing of the application. Each user
was individually prompted to replicate the gestures, and
50 samples of each gesture were recorded, resulting in a total
of 300 samples. Subsequently, a personalized KNN classifier
was retrained for the first user using their dataset. This user
was then asked to repeat the gesture acquisition, and the
responses of the KNN classifier were also recorded. Using
the KNN output and the desired gestures, a confusion matrix
was constructed to evaluate classifier performance.

Figure 7 offers a summary of the KNN classifier’s
performance in online classification across various users. The
specific gestures that experience the most confusion may
differ from one user to another. Nevertheless, a common trend
is the occurrence of confusion between the pinch and open
hand gestures, which can be attributed to the similarity in
muscle groups engaged when performing these gestures.

The confusion matrix corresponding to user 10 can be seen
in Figure 8, where 15 pinch gestures out of a total of 50 were
incorrectly classified as an open hand.

C. CLASSIFIER RESULTS OVER NINAPRO DB5
The confusion matrix results, with this dataset can be seen in
Figure 9.

According to the confusion matrix presented in Figure 9,
the performance of the proposed algorithm shows an
85.2% accuracy. The best identification is associated with
Gesture 1 - rest, while the less accurate identifications are
observed for the open-hand (Gesture 3) and grip (Gesture 5)
gestures.

In addition, Figure 10 depicts the performance of the
classifier on the NinaPro DB5 database using the ROC curve.

FIGURE 7. Classifiers online results with different users.

The area under the ROC curve (AUC) represents the integral
of the ROC curve (TPR values) with respect to FPR, ranging
from FPR = 0 to FPR = 1. According to Figure 10, all six
gestures exhibit good performance, with a minimum AUC of
0.9538 observed for Gesture 3.

Although it is not the primary objective of this work
to directly test the trained algorithm with a new user,
as the interface recommends data acquisition and algorithm
retraining, the algorithm was evaluated with previously
unused data from subject 10. In this case, the algorithm
achieved an accuracy of 62.6%.

D. PRELIMINARY TEST WITH THE EXO-GLOVE
The final device worn on the human hand can be seen
in Figure 11. In this figure, the two sensorized boxes can
be observed, along with the activated actuators and the
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FIGURE 8. Confusion matrix results corresponding to user 10.

FIGURE 9. Confusion matrix results with the NinaPro DB5.

tense tendons for the fist gesture. Additionally, the wrist is
immobilized with the Orliman support.

The proposed soft exo-glove offers three distinct modes of
operation:

• Data acquisition mode. Thanks to its flexibility, the
soft exo-glove allows for unrestricted movement of
the hand and fingers. Simultaneously, sensors gather
data on finger movements (glove tendons) and sEMG
signals. These data serve both diagnostic purposes
for physiotherapists and as a basis for configuring
maximum displacement settings for the passive and
active rehabilitation modes.

• Passive rehabilitation mode. In this mode, the
soft exo-glove adheres to predetermined trajectories,
irrespective of the user’s intended movements. For

FIGURE 10. ROC curve and the performance metrics with the NinaPro
DB5.

instance, each actuator follows a sinusoidal reference
pattern.

• Assistive rehabilitationmode. In this mode, the actuators
are engaged when the user intends to move, based on
gesture recognition. If the user does not express any
movement intention, the actuators remain inactive.

The response of the soft exo-glove on the test bench can
be observed in Figure 12. In thsi figure, the tendon positions
of the five fingers are depicted, following the generated
reference based on gesture recognition. Notably, the thumb
finger exclusively exhibits the flexion-extension movement,
with opposition movement deactivated due to constraints
imposed by the prosthetic hand. Depending on the hand’s
posture, the initial tendon positions differ; for instance, the
little finger starts at 22 mm (as shown in Figure 12).

Referring to Figure 12, three gestures were recognized,
with relaxation gestures interspersed between them:

• From t = 0 to t = 18 seconds: Relax gesture.
• From t = 18 to t = 31 seconds: Fist gesture.
• From t = 31 to t = 60 seconds: Relax gesture.
• From t = 60 to t = 78 seconds: Grip gesture.
• From t = 78 to t = 107 seconds: Relax gesture.
• From t = 107 to t = 122 seconds: Fist gesture.

The maximum reference value for each finger was deter-
mined in accordance with the movement capabilities of the
prosthetic hand: 45 mm for the little, middle, and ring
fingers, 40 mm for the index finger, and 30 mm for the
thumb. Similarly, these maximum reference values can be
customized to suit the user’s needs.

In Figure 12, it is evident that the generated reference
exhibits a steep slope (attributed to a large value increment)
until it aligns with the tendon position. Subsequently, a slower
reference is generated, which the actuator follows. In this
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FIGURE 11. Exo-glove worn on the user’s hand.

FIGURE 12. Exo-glove position response in the test bench.

scenario, only the flexion actuators are activated to replicate
the recognized gesture, as long as the user intends to perform
it. The maximum error, which can be minimized by adjusting
the BPID gains, is approximately 3 mm.

During finger extension movements, the reference for
the flexion actuators is set to 0, indicating that the control
signal is at 0, and the actuators are turned off. Meanwhile,
the extension actuators can be activated. In such cases,
finger movements are constrained by the behavior of the
flexion actuators, particularly their thermal characteristics.
This constraint can lead to higher errors during extension
movements.

The subsequent tests involved placing the proposed
device on a human hand and performing fist and pinch
gestures. In this scenario, themaximum reference points were

determined based on the user’s hand dimensions and tendon
tension (test error method). For instance, for the fist position,
the maximum reference was set to 50 mm for the index,
middle, ring, and thumb opposition fingers, and 45 mm for
the little and thumb flexion fingers. Figure 13 illustrates the
response of the device to the intended movement. Similar to
the tests conducted on the test bench, the response of the
actuator and tendon position can be observed based on the
generated reference.

In both the test bench and when the exo-glove is worn on
a human hand, the position error, defined as the difference
between the desired reference generated by the high-level
algorithm and the actual tendon position, is consistently
within a range of 3 mm at its maximum and averages around
2 mm.
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FIGURE 13. Position response of the exo-glove over the user’s hand.

IV. DISCUSSION
The comparison of the classifier algorithmswith the literature
is not appropriate, considering the differences in the EMG
detection systems and the number and type of gestures. In this
case, informative results can be obtained by considering the
results obtained with Nina Pro DB5.

Considering the actuator type, the proposed exo-glove
exhibits a limitation when two consecutive movements are
antagonistic. For instance, the fist movement, corresponding
to the flexion of the fingers, if preceded by an open-hand
movement (fingers extension). Due to the thermal actuator
behavior, a few seconds are necessary between these two
movements to prevent the SMAwires from breaking, leading
to the position error increasing, and slowing down the
cyclic movements to around 10 seconds which is considered
adequate for the rehabilitation tasks [41].

The proposed device features 11 independent actuators,
each providing a force of 17.5 N. These actuators enable
the independent flexion and extension of the fingers, as well
as opposition of the thumb, allowing the device to achieve
gestures such as pinch. Thanks to the soft exo-glove structure
and the actuator type, the user experiences completely
transparent control without any constraints from the device,
both when the actuators are not activated and when they are
activated based on the user’s intended movement. Although
the device with this algorithm has not yet been tested with
post-stroke patients, which is the next step in this research,
it represents a promising, noiseless, and compact soft-glove
solution for assistive rehabilitation tasks.

V. CONCLUSION
This contribution introduces a soft exo-glove designed for
both passive and assistive rehabilitation tasks, powered by
SMA-based actuators. This innovative device empowers
users to interact with their environment naturally, free
from the constraints of rigid structures. The proposed soft
exo-glove is user-friendly, easy to wear like a glove, and
offers several advantages, including noiseless operation,
a lightweight design, and cost-effective fabrication.

The tendon routing method enables individual finger
flexion-extensionmovements and thumb opposition, utilizing
a total of 11 independent actuators (5 for finger extension and
6 for finger flexion) each one with 17.5 N force.

The implemented classifier demonstrates real-time recog-
nition capabilities for commonly used daily-life gestures,
achieving an accuracy rate of approximately 90%, with
consideration for user-specific variations. Building upon this
gesture recognition, an algorithm for generating references
for the soft exo-glove was developed and successfully imple-
mented. To streamline the process of gesture recognition and
device connectivity for individual users, we have developed
a user-friendly interface. This interface facilitates sEMG data
acquisition, classifier training, testing, and device connection,
enabling the initiation of assistive rehabilitation therapy.
To maintain the simplicity of the algorithm and reduce
computational costs, a non-overlapping window was chosen.
However, in the future, an overlapping window will be
implemented, and the results will be compared.

In future endeavors, our focus will center on enhancing
the soft exo-glove to make it even more accessible and user-
friendly, particularly by improving the existing actuation
system. The multi-wire actuator [42] can be implemented
to improve the speed of the exo-glove. Additionally, the
exo-glove needs to be tested and evaluated with post-stroke
patients.
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