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ABSTRACT Neurological and brain-related cancers are one of the main causes of death worldwide.
A commonly used tool in diagnosing these conditions isMagnetic Resonance Imaging (MRI), yet the manual
evaluation of MRI images by medical experts presents difficulties due to time constraints and variability.
This research introduces a novel, two-module computerized method aimed at increasing the speed and
accuracy of brain tumor detection. The first module, termed the Image Enhancement Technique, utilizes a trio
of machine learning and imaging strategies—adaptive Wiener filtering, neural networks, and independent
component analysis—to normalize images and combat issues such as noise and varying low region contrast.
The second module uses Support Vector Machines to validate the output of the first module and perform
tumor segmentation and classification. Applied to various types of brain tumors, including meningiomas and
pituitary tumors, our method exhibited significant improvements in contrast and classification efficiency.
It achieved an average sensitivity and specificity of 0.991, accuracy of 0.989, and a Dice score (DSC) of
0.981. Furthermore, the processing time of our method, averaging at 0.43 seconds, was markedly lower
compared to existing methods. These results underscore the superior performance of our approach over
current state-of-the-art methods in terms of sensitivity, specificity, precision, and DSC. Future enhancements
will seek to increase the robustness of the tumor classification method by employing a standardized approach
across a suite of classifiers.

INDEX TERMS Magnetic resonance imaging (MRI), image enhancement technique, brain tumor
segmentation, neural networks, brain tumor classification.

I. INTRODUCTION
Brain abnormalities, commonly referred to as tumors in
medical terminology, are classified as malignant or benign.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

There are approximately 200 different types of brain tumors
that can occur in various regions of the human brain. These
tumors can have a significant and often life-changing impact
on individuals’ lives. Numerous studies provide strong
scientific evidence of increasing brain tumor incidence and
its association with human mortality [1]. According to the
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American Cancer Society, brain tumor is one of the serious
diseases in which the brain tissues are increased irregularly
and affects the brain function. The research was conducted
by the National Brain Tumor Foundation, and they reported
that the number of people who have lost their lives to brain
tumors has increased by 300% over the past three decades.
Treatment is necessary, otherwise brain tumors could lead to
death if left untreated [2]. The physical appearance of the
brain and the complexity of brain tumors pose challenges
for health care to diagnose and recommend early treatment
to the patient. Early detection of brain tumors and proper
treatment play an important role in improving the survival
rate of patients. Because biopsy of a brain tumor is not such
a simple task as biopsy of other parts of the body, as it must
necessarily be performed with surgical intervention. SO. This
requires the most effective methods to diagnose brain tumor
without surgery and many imaging modalities are used, but
magnetic resonance imaging (MRI) is the best option and it
is commonly used to diagnose brain tumors [3], [4].

Brain MRI imaging utilizes a range of techniques to
acquire data, which is subsequently processed to form input
vectors for classification purposes, and MRI imaging filters
are used to identify brain tumors and help the radiologist rec-
ommend treatment. The radiologist has two types of choices
for identifying brain tumors. First, they distinguish between
typical or normal brainMRI images, and second, they classify
brainMRI images into different brain tumor types. BrainMRI
images are the most important symptomatic neuroimaging
testing device that identifies baseline variations from norms
in the brain. This is particularly crucial for the diagnosis and
monitoring of brain tumors, as MRI scans can accurately
detect and characterize tumors, assess their growth over time,
and aid in treatment planning [5], [6]. Brain MRI images
are used to diagnose brain abnormalities, including those that
may indicate the presence of a brain tumor [9]. MRI provides
detailed images of the brain and is one of the most common
tests used to identify brain tumors. MR images provide the
soft tissues of the human body, and these images are mainly
used to detect brain structure and function [7], [8]. In this
research work, we have proposed enhancement method to
solve the contrast problem of brain MRI images, and this
leads to give accurate identification of brain tumor.

The main objective of this research work is to understand
brain MRI images and to solve the problem of low contrast
variation of these images which leads to segmenting the
tumor and classifying normal and abnormal images. Brain
MRI image analysis is challenging due to issues like
noise, resolution, contrast, motion artifacts, variability, and
complex brain structures. Our proposed method is based on
new implementations of contrast enhancement techniques
and its impact on segmentation and classification. Image
enhancement techniques solve the three problems of brain
MRI images, and the first problem is noise suppression, and
the second problem is the resolution of low contrast and
varying contrast and the last step is based on coherence of the
image contrast.We used the adaptiveWiener filter with neural

networks to normalize the image contrast. Then, we used an
independent component analysis to even out the contrast and
obtain a well-contrasted image. This enhancement technique
is validated on the CE-MRI database and its impact on
the classification of brain tumors has also been observed.
The novelty of the proposed method lies in its innovative
application of contrast enhancement techniques, including
the use of the adaptive Wiener filter, neural networks,
and independent component analysis,it aims to produce
clearer, more consistent, and well-contrasted MRI images,
thereby improving the accuracy of tumor segmentation and
classification. The proposed method contributes to the field
of brain MRI image analysis in several significant ways:

1) Contrast Enhancement Techniques: The method
introduces innovative implementations of contrast
enhancement techniques, including the use of the
adaptive Wiener filter, neural networks, and indepen-
dent component analysis, to address the challenge of
low-contrast MRI images.

2) Validation on CE-MRI Image Database: The
method’s effectiveness is validated on the CE-MRI
image database, providing evidence of its practical
application and impact on the accurate classification
of brain tumors.

3) Innovation in MRI Enhancement: The proposed
method’s novelty lies in its innovative application
of contrast enhancement techniques, offering a fresh
approach to addressing the specific challenges of MRI
images.

4) Improved Accuracy: By producing clearer, more con-
sistent, and well-contrasted MRI images, the method
ultimately aims to enhance the accuracy of tumor
segmentation and classification, contributing to more
reliable clinical diagnoses.

The proposed method’s contributions include addressing the
challenges of low-contrast MRI images, noise suppression,
resolution enhancement, coherence improvement, and valida-
tion on a relevant database. These contributions collectively
improve the accuracy of brain tumor segmentation and
classification, which is valuable in clinical and medical
imaging contexts.

II. RELATED WORK
The early detection of brain tumors is crucial for effec-
tive treatment, and various methods have been explored
by researchers [10] to achieve this goal. Selvapandian
and Manivannan [11] used the non-subsampled contourlet
transform (NSCT) to enhance brain images and extract
surface features, followed by adaptive neural techniques for
classification and glioma brain tumor area segmentation.
While their approach addressed important aspects of the
problem, specific performance metrics for their methodology
were not provided, leaving room for further evaluation.

In a different approach, Sharif et al. [12] introduced
a technique for skull section removal from brain images
using brain surface extraction (BSE) and particle swarm
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optimization (PSO) for segmentation. This method achieved
an impressive maximum accuracy of 99% when evaluated on
complex brain datasets, indicating its potential for accurate
brain tumor detection. However, it’s important to note that
this method may not have addressed other types of brain
tumors or potential performance issues in different scenarios.
Kumar et al. [13] proposed the Weighted Correlation Feature
Selection Based Iterative Bayesian Multivariate Deep Neu-
ral Learning (WCFS-IBMDNL) method, which combines
feature selection with Iterative Bayesian Multivariate Deep
Neural Network (IBMDNN) classification to identify brain
tumors. While this method offers an integrated approach,
it exhibited high False Alarm Rates (FARs), suggesting that
there is room for improvement in terms of accuracy and
reducing false positives.

Ozyurt et al. [14] took a mixed approach, combining
eutrosophy and Convolutional Neural Network (CNN) with
Neutrosophy to categorize malignant and benign tumor
regions in brain images. Their method achieved an impressive
average success rate of 95.62% through the use of CNN
features and SVM for classification. However, the choice
of CNN features may not be universally optimal for all
types of brain tumors, and further exploration of feature
selection could enhance the method’s versatility. In another
study, Raju et al. [15] utilized a computerized method
based on a multi-class Support Vector Neural Network
(SVNN) trained with the Harmony-Crow Search (HCS)
optimization technique for tumor identification in MRI
images. However, this method solely relied on the BRATS
dataset for evaluation, potentially limiting its generalizability
to a broader range of cases. Researchers and practitioners
should carefully consider the specific requirements of their
brain tumor detection tasks when choosing among these
methods, considering factors such as the type of tumor,
available datasets, and the desired balance between accuracy
and computational complexity.

Yin et al. [16] explored background elimination, fea-
ture extraction, and classification phases using multilayer
perceptron networks, incorporating techniques like the
Whale Optimization Algorithm and chaos theory for feature
selection and classification. However, their algorithm did
not significantly enhance accuracy. In contrast, Krol and
Gimi [17] employed deep learning with a substantial MRI
image dataset, using dual neural networks (fully connected
and CNNs) to classify brain images with tumors, achieving
an impressive 91.43% accuracy via 5-fold cross-validation.
Similarly, Mittal et al. [18] presented an MRI-based brain
tumor identification method that automated segmentation
with a Growing Convolution Neural Network (GCNN)
and Stationary Wavelet Transform (SWT). This approach
outperformed other methods, including CNN, SVM, and
KNN, in terms of accuracy [18], [19].
Rehman et al. [20] used VGGNet, GoogLeNet, and

AlexNet CNNs to distinguish between three types of
brain tumors. They employed data augmentation to prevent

overfitting and boost the sample size, with VGG16 achieving
an outstanding accuracy of 98.69%, the highest among the
compared methods. Another study [21] used a two-stage
strategy to distinguish healthy brains from those with tumors,
employing CNNs for preprocessing and Error-Correcting
Output Codes SVM (ECOCSVM) for classification in the
second stage. Impressively, AlexNet achieved the highest
accuracy at 99.55%. The evaluation was conducted using the
BraTS and RIDER databases.

Abiwinanda [22] utilized a CNN to detect common brain
tumors, achieving high training and validation accuracy rates
of 98.51% and 84.19%, respectively, with a dataset of 3064 T-
1 weighted CE-MRI images. Pashaei et al. [23] proposed
a CNN-based model for identifying meningioma, glioma,
and pituitary tumors, achieving an accuracy of 93.68%
and comparing their method with other models using ten-
fold cross-validation. In Gumaei et al. [24] study, involving
preprocessing, feature extraction, and classification, they
achieved an accuracy of 94.23% with Principle Component
Analysis Normalized GIST (PCA-NGIST) and Regularized
Extreme learning machine (RELM), though they did not
conduct a comparative analysis with previously reported
techniques.

Phaye et al. [25] introduced DCNet++ and DCNet as
techniques for brain tumor classification, attaining accuracy
values of 95.03% and 93.04%, respectively, using MRI
images. However, a drawback was the absence of a dataset
representing healthy individuals for classification, limiting
the context of the results. Badža and Barjaktarovic [26]
presented a CNN-based method with 22 layers designed
for the classification of pituitary, meningioma, and glioma
tumors, achieving an impressive accuracy of 96.56% through
k-fold cross-validation. Sharma et al. [27] adopted a hybrid
approach that combined Artificial Neural Networks (ANN)
and K-means clustering for tumor classification. Their
method featured efficient tumor region identification through
GLCM-based feature extraction and k-means algorithm
integration, which was a notable strength. Rani et al. [28]
employed SVM for brain tumor classification, complemented
by Otsu thresholding. However, comparative studies revealed
the potential for accuracy improvement in their method.
To meet the demand for enhanced brain tumor detection
algorithms, Molina-Torres [29] employed a kernel SVM
approach, specifically the Gaussian Radial Basis (GRB)
kernel, focusing on metrics such as specificity, precision, and
accuracy, which provided valuable insights into algorithm
performance.

In conclusion of analysing the existing work, the body
of research reviewed in this section represents a significant
advancement in the field of brain tumor detection and clas-
sification. These studies have explored various techniques,
ranging from deep learning and CNNs to hybrid approaches
and SVMs, achieving promising results in terms of accuracy
and classification performance. However, it is important to
acknowledge the existing gaps and limitations, including
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the need for more comprehensive datasets, comparative
analyses, and improvements in the consistency of evaluation
metrics. These insights provide a solid foundation for the
proposed methods and approaches that will be discussed
in the subsequent sections, aiming to further refine and
enhance the state-of-the-art in brain tumor detection using
MRI images.

III. PROPOSED METHOD
Brain MRI images are used in our proposed method as
it is a non-invasive process and it provides us with the
multidimensional analysis as compared to other modalities
such as CT scan and X-ray images. The main purpose
of brain MRI images is to identify the brain tumor and
classify its precise region. Before performing segmentation
and classifications of brain MRI images, it is necessary to
improve image contrast as well as reduce noise. In this
research work, we propose image enhancement techniques as
well as the analysis of its impact on the segmentation of the
abnormal region. The proposed methodology is illustrated in
the Figure 1

The main theme of the implementation of the proposed
method to identify the abnormal region as a tumor from
brain MRI images. In the proposed technique as shown
in Figure 1. It is a computerized method of brain tumor
detection, and it depends on the noise-free trained image
of brain MRI images and then it is processed to enhance
the image using independent component analysis. The image
enhancement technique for brainMRI images is implemented
in this research work and its impact is validated on the
post-processing steps that lead to obtaining the brain tumor.
The different steps of image enhancement techniques for
brain tumors as well as brain tumor detection are elaborated
in the following sections.

A. STEP 01: BRAIN MRI IMAGES PROCESSING
Processing imaging data is a crucial step, particularly in han-
dlingmedical images like brainMRI images. Analyzing these
images constitutes a key stage in computerized methods,
especially in the context of brain image analysis. Our work
led to the development of the CE-MRI brain image database,
encompassing the axial, sagittal, and coronal planes. Each
image presents unique challenges and reveals distinct details.
As illustrated in Figure 2, the images displayed therein are
susceptible to noise interference. Consequently, there is a
requirement for a dependable filter to effectively eliminate
this interfering factor. The process for noise suppression is
addressed in the subsequent step.

B. STEP 02: ADAPTIVE WIENER FILTERING TO REDUCE
NOISE
Adaptive Wiener filtering is the type of signal processing
approach that can be used on medical images [30], and we
have used Wiener filtering on brain MRI imaging to improve
overall image quality by reducing the noise and retaining
image detail. Themathematical representation of the adaptive

Wiener filter on brain MRI imaging depends on the three
parameters, the local window of each pixel of brain MRI
images and the noise variance [31]. This is additive noise
and the adaptive Wiener filtering works on the local window
around each pixel in the image to get a denoised brain MRI
image. The step-by-step representation of adaptive Wiener
filtering is defined below.

1) The Adaptive Wiener filter operates on a local window
around each pixel (x,y) in the image. The filtered output
at (x,y) is computed using Equation 1:

g (x, y) = w (x, y) ∗ [f (x, y) − m (x, y)] + m (x, y) .

(1)

where w (x, y) is the Wiener filter, m (x, y) is the local
mean of the input image in the window around (x,y),
and ∗ denotes convolution.

2) The wiener filter is process the images based on the
Equation

w(x, y) =
[σ 2
f (x, y) − σ 2

v (x, y)]

σ 2
f (x, y)

. (2)

where σ 2
f (x, y) is the local variance of the input image

in the window around (x,y), and σ 2
v (x, y) is the variance

of the noise.
The Wiener filter adjusts the strength of the filtering based
on the local signal-to-noise ratio (SNR) of the input image.
When the SNR is high, the Wiener filter is close to 1, and
the filtering is weak, preserving the image features. When the
SNR is low, the Wiener filter is close to 0, and the filtering is
strong, reducing the noise. Overall, the AdaptiveWiener filter
can effectively enhance the quality of brain MRI imaging by
removing noise while preserving important image features as
shown in the Figure 3.

C. STEP 03: TRAINING OF BRAIN MRI IMAGING BY USING
RBF NEURAL NETWORK FILTERING
We employed Radial Basis Function (RBF) neural network
filtering as a means to enhance the quality of medical
images, particularly those of MRI. RBF neural networks
are a type of artificial neural network commonly adopted
for image filtering, classification, and pattern recognition
tasks. In our study, however, this technique was leveraged
to enhance the quality of images and provide pre-classified
depictions of brain tumor anomalies [32]. The training of
RBF neural network filtering for brain MRI imaging involves
the following steps:

1) The first step is data pre-processing and it is an
important step to pre-process brain MRI images to
remove artifacts as well as noise that can affect the
performance of the RBF neural network. This is
achieved in the previous steps because we removed
noise using adaptive Wiener filtering.

2) The next step is an important step in the functionality
of RBF neural networks which is feature extraction.
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FIGURE 1. The proposed model.

FIGURE 2. Brain MRI images of three planes namely axial plane as shown
in Fig(b), sagittal plane as shown in Fig(b) and coronal plane as shown in
Fig(c).

FIGURE 3. Adaptive wiener filtering output of Brain MRI images of three
planes axial plane, sagittal plane and coronal plane.

Features are extracted based on the image intensity and
spatial information of the data in this proposed method.

3) The RBF neural network is trained based on brain MRI
images as well as feature extraction in previous steps.
The training image gives corresponding outputs the
filtered brain MRI image. The training process is based
on learning the mapping of input features to desired
output images.

4) After training the brain MRI images, the validation
of the RBF neural network is performed and the
validation gives the information about the validated
data according to the desired output.

The RBF filtering process, as outlined above, is predicated
on two parameters. These involve the creation of the image
through minimizing its variation and the utilization of RBF
to derive a denoised image by reducing the error function on
its variation minimization. This methodology serves to lower
the noise level and deliver a desirable output image.

1) MINIMIZATION OF THE VARIATION
Variation minimization is mainly used to denoise images and
is one of the most effective methods [33], [34]. In this paper,
we have used the variation minimization method based on the
RBF neural network. The variation minimization variation
was introduced by Rudin and Osher [32], and their algorithm
is based on the equation 3, which is implemented in this
research work for brain MRI images, as well as RBF neural
network.

f (u) =

∫
�

|D| + λ∥µO −µ∥
2ddxy. (3)

Here,
∫
�

|D| represents the variation model of the image

(retinal image or MRI brain image) µ. If the image µ

is regular, then Equation 3 becomes simply
∫
�

|∇µ|dx.

Rudin et al. [32] assumed that noise that corrupts the image
can be distinguished from noiseless images based on the
size of total variation, which is defined as

∫
�

√
µ2
x + µ2

ydxdy,

where � represents the image dimensions ux and uy with
corresponding partial differentiation. The Euler-Lagrange
Equation [33] is used to minimize Equation 3, and Equation 4
is obtained.

∂

∂x

 ux√
µ2

x + µ2
y

+
∂

∂y

 uy√
µ2

x + µ2
y


− λ |µ − µo| = 0. (4)
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FIGURE 4. RBF Model of Proposed Method for MRI Brain Image.

The Lagrangemultiplier, denoted by λ, is given in Equation 5.

λ =
1

2σ 2

∫ √
µx

2 + µ2
y −

1
2σ 2

∫
(µo)xµx√
µx

2 + µ2
y

+
1

2σ 2

∫
(µo)yµy√
µx

2 + µ2
y

. (5)

As mentioned earlier, the denoised image is obtained by
minimizing the error function, which is represented by
Equation 6.

E (x, y) =
∂

∂x

 µx√
µx

2 + µy
2

+
∂

∂x

 µy√
µx

2 + µy
2


− λ |µ − µo| . (6)

Equation 6 represents the main task of obtaining an image
where µ is locally constant, with ux and uy being the
dimensions of the image. To achieve this, it is assumed that
ε > 0 and the expression

√
µ2

x + µ2
y + ε is used.

2) PROPOSED NOISE REDUCTION MODEL USING RBF
NEURAL NETWORK
In addition, the denoising of color retinal fundus images and
MRI brain images is achieved by minimizing Equation 6
using a proposed RBF neural network. The RBF neural
network is composed of three layers: the input layer, the RBF
layer, and the output layer. The RBF layer is made up of unity
value scalar weights and the input vector, with the entire input
vector being fed to each neuron in the RBF network. The
output layer consists of a vector of m outputs that are linearly
combined to form the output image. The RBF model for
MRI brain images is depicted in Figure 4 and mathematically
represented in Equation 22.

y = f (I ) =

h∑
i=1

hiIi (x) . (7)

The output image, denoted by f (I ), is determined by the
radial basis function I (x) of the i-th hidden node and the
corresponding hidden-to-output weight hi. The RBF function
is based on the distance between the input vector and a pre-
defined vector, which is explained in the previous section and
depicted in Figure 4. The total number of hidden nodes is

represented by h. This function is mathematically represented
by Equation 8.

Ii (x) = exp
[
− ∥x − ci∥

2σ 2
i

]
. (8)

The center and spread width of the i-th node are denoted
by ci and σi, respectively. All parameters of the RBF neural
network are initialized before training. The weight can be
initialized with small random values or zero, and the spread
initial value can be selected as the average of the nearest
neighbour distances among the initial centers. After training,
the RBF image can be represented by the equation given
below as Equation 9

µ = N (µo, hi, ci) . (9)

The noisy image is denoted by µ. The gray level output of
each pixel can be calculated using Equation 10 as µO (x, y).

N (x, y) =

(
h∑
i=1

hi exp
[
−∥Mo (x, y) − c∥i

2σ 2
i

])
. (10)

Mo (x, y) represents the grey level values of the neighbor-
ing pixels corresponding to the pixel values of µO (x, y). The
window size of the pixels can be 3 by 3, 5 by 5, etc. and it is
illustrated in Figure 4.

3) TRAINING OF RBF NEURAL NETWORK IMAGE
The aim is to minimize the error during the training of
the image Mo (x, y) using the RBF neural network. The
network is trained for a maximum number of iterations until
the error is less than the convergence error threshold. The
parameters for the RBF neural network are determined using
Equation 11, while the training parameters are dependent on
Equation 12.

hi (s+ 1) = hi (s) − η11hi(s). (11)

ci (s+ 1) = ci (s) − η21ci(s). (12)

The RBF neural network parameters, such as weights
and centers, are updated at each iteration using the update
rules given in Equation 13, where hi (s+ 1) and ci (s+ 1)
represent the updated values of the parameters at the next
iteration, while hi (s) and ci (s) are the current values, and
η1 and η2 are positive learning rates. The update is performed
by minimizing the error function of Equation 6 to obtain the
parameter variations 1hi and 1ci

1hi =

∑
x,y

∂E (x, y)
∂hi

. (13)

1ci =

∑
x,y

∂E (x, y)
∂ci

. (14)

∂E (x, y)
∂hi

=

∂
∂x

[
ux√

µ2
x+µ2

y

]
∂hi

+

∂
∂y

[
uy√

µ2
x+µ2

y

]
∂hi
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FIGURE 5. Illustration of training of rbf neural network for brain MRI
images.

−
∂λ

∂hi
(µ − µo) − λ

∂µ

∂hi
. (15)

∂E (x, y)
∂ci

=

∂
∂x

[
ux√

µ2
x+µ2

y

]
∂ci

+

∂
∂y

[
uy√

µ2
x+µ2

y

]
∂ci

−
∂λ

∂ci
(µ − µo) − λ

∂µ

∂ci
. (16)

The process of training is essential to achieve the desired
outcome of the image. For instance, in order to denoise
brain MRI images, training is conducted and the results are
presented in Figure 5.

D. STEP 04:INDEPENDENT COMPONENT ANALYSIS FOR
BRAIN MRI IMAGES
In the methodology section, we elaborate on our utilization
of Independent Component Analysis (ICA) as the computa-
tional technique chosen to disentangle intricate, multivariate
signals into self-standing, non-Gaussian components. Our
primary application of ICA is within the realm of brain MRI
image analysis, where it serves the purpose of distinguishing
and isolating the autonomous components residing within
these MRI images. Consequently, the outcome comprises a
collection of normalized images that conspicuously exhibit
the extracted independent component brain MRI images,
characterized by their normalized and coherent contrast.
Equation 17 demonstrates how the Independent Component
Analysis (ICA) approach can be further developed from
its mixed model. The equation illustrates that the observed
mixed signals (X) can be decomposed into a matrix of
independent source signals (S) that are linearly combined
through a mixing matrix (A). By utilizing this equation, ICA
can effectively separate and extract the independent source
signals from the observed mixed signals.

X = AS. (17)

The ICA model is represented by Equation 17. It assumes
that the mixture vector X and independent component

vector S are random vectors with zero mean and unit
variance. The unknown matrix A is the mixing matrix of the
independent components, assumed to be in a square pattern.
Additionally, the ICA model assumes that the independent
component vector S has a non-Gaussian distribution. The
estimation of non-Gaussianity is a crucial parameter in the
ICAmodel, as it is required for the calculation of independent
components. The analysis is based on the random vector X ,
and the main goal is to estimate the unknown components
A and S using X . If the unknown mixing matrix A can be
estimated, its inverse can be computed as W , which enables
the calculation of the independent component vector S. This
process is expressed as follows:

S = A−1X = WX . (18)

To estimate W , the FASTICA algorithm [35] can be
utilized, which initializes random vectors and utilizes a
fixed point algorithm to obtain a single independent compo-
nent. For multiple independent components, the FASTICA
algorithm must be iterated n times with weight vectors
w1,w2,w3 . . . . . . . . .wn. However, there is a high probability
of correlation between the vector values, which may result
in different random vectors converging at the same maxima.
To prevent this, it is crucial to de-correlate or orthogonalize
the weight vector outputs wT1 X ,wT2 X ,wT3 X . . . ..wTn X using
the Gram-Schmidt-Orthogonalization method [36] after each
iteration.

ICA comprises two architectures designed for deriving
feature vectors. The chosen architecture, ICA1, is specif-
ically applied to identify components in medical images,
particularly in the context of brain MRI images. Its imple-
mentation involves evaluating ICA’s effectiveness in contrast
enhancement. Notably, ICA1 demonstrates excellent contrast
image quality and performs well in segmenting abnormal
regions, such as brain tumors. The following section offers
a detailed explanation of the application of ICA1 on brain
MRI images, elaborating on its capabilities in enhancing
contrast and accurately delineating abnormal regions within
the images.

1) ICA ARCHITECTURE 1 (ICA1) ON BRAIN MRI IMAGES
The ICA1 model involves preparing the image database in
a matrix format, where each row vector corresponds to an
individual image or ICA independent component. This model
is illustrated in Fig. 6, where images are regarded as random
variables and pixels are treated as trials. As depicted in
the figure, the data matrix X , also known as the mixture
matrix, is a combination of n independent ICA components or
images. The coefficient matrix, denoted by W , is calculated
using the FASTICA algorithm, withW being required to be in
a square pattern. The source matrix, denoted by S, comprises
n independent basis images. In the ICA1 approach, the data
matrix has n training samples with image column vectors of
length m. The dimension of the data matrix is represented
as m × n with column data matrix X = x1, x2, . . . , xn. The
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FIGURE 6. ICA Architecture 1 model.

main idea behind implementing ICA1 is to transpose the data
matrix X into a mixture row data matrix Y = XT . The Y
matrix is represented as Y = y1, y2, . . . . . . ym. The following
steps are followed to implement ICA1.

a: CENTERING PROCESS
In the first step, the mean vector is estimated from the
data matrix as µI =

1
m

∑
j = 1myj. This mean vector is

subtracted from each column vector of the data matrix such
that (yj − µI ) → yj → yv. Here, yv represents the vertically
centered row data matrix, and each column vector of the data
matrix has been subtracted by the mean vector to generate a
zero-mean image row data matrix.

b: WHITENING PROCESS
The subsequent step involves the whitening of the vertically
centered data matrix using Principal Component Analysis
(PCA). To perform this, orthonormal eigenvectors V =

v1, v2, v3 . . . ..vn of the covariance matrix
∑

I =
1
m

m∑
j=1

yjyjT

are computed, with the largest positive eigenvalues (p) as
y1 ≥ y2 ≥ . . . . . . .. ≥ yp. The whitening process can be
expressed mathematically as:

H = VD−
1
2 . (19)

where D is the diagonal matrix of the largest eigenvalues.

c: TRANSFORMATION PROCESS
After performing the whitening process, the centered row
data matrix yv is transformed using the orthonormal eigen-
vectors V as follows:

ỹ = HT yv. (20)

These pre-processing steps play a crucial role in the
application of ICA, as they prepare the data matrix for the
subsequent analysis. Once these steps are performed, ICA is
applied to the whitened data matrix, denoted by H , to obtain
a matrix SI consisting of independent images arranged row-
wise. This is achieved by multiplying the whitened data
matrix ỹ with a coefficient matrix WI , where the row vectors

of SI correspond to the base images of ICA1. The final
independent images are obtained by projecting the vertically
centered data matrix on the independent eigenvectors of
the base images, as given by Z = yṽyTWI . The number
of independent components in Z depends on the user’s
requirements. In the case of brain MRI images, which are
in JPEG format and contain three independent components,
ICA1 yields three independent components. This process is
explained in greater detail below.

The utilization of Independent Component Analysis (ICA)
is a crucial step in our approach, wherein we apply ICA
individually to each component of the brain MRI images
generated by the RBF neural network. This process requires
a deep comprehension of the intrinsic imaging and biological
characteristics of these images before any normalization steps
are taken. It’s noteworthy that the three components of the
brainMRI images are linearly independent. However, a closer
examination reveals distinct attributes: the first component
(ICA1) contains both significant luminance information and
noise, the second component exhibits reduced noise, while
the third component introduces shadows and additional
noise. The primary objective of our study centers on
identifying a suitable component within the brain MRI
images that showcases well-contrasted regions against a
more uniform background. Consequently, we employ ICA
on each non-uniform background output image to enhance
the contrast levels in various regions of the contrast-enhanced
MRI (CE-MRI) brain images when juxtaposed against their
respective backgrounds. It’s essential to bear in mind that the
CE-MRI database encompasses three distinct imaging planes,
each offering unique information. Furthermore, tumors
may manifest in various locations within each imaging
plane.

ICA1 architecture is employed to investigate its efficacy
in enhancing the contrast of various brain MRI regions.
The findings of this study are displayed in Fig. 7, which
demonstrates that the second component of ICA1 ( basis
on measurement of contrast and signal to noise ratio also)
produced superior results in terms of improving the contrast
of different regions against their background compared to
the first and third components. The primary contribution of
this research is the validation and implementation of ICA1
architecture to produce a normalised and enhanced contrast
brain MRI image, taking into account imaging properties
such as biological, structural, and imaging properties. This
implementation could aid in accurately segmenting brain
tumors.

IV. POST-PROCESSING:BRAIN TUMOR CLASSIFICATION
Our proposed method focuses on the impact of enhancement
techniques based on ICA1 analysis on the classification
process. The postprocessing step involves classifying brain
tumors using Support Vector Machine (SVM), a supervised
learning method that utilizes statistical learning theory to
classify data [37]. The first essential step in this process is
data labeling, which entails representing the training dataset
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FIGURE 7. Comparsion of Enhancement techniques with ICA1 enhanced
image. Fig(a) is first component of ICA1. Fig(b) is second component of
ICA1 Fig (c) is third component of ICA1.

as D = {|x, y| , |x → datasample, y → classlabel|}. SVM’s
primary objective is to calculate functions represented by f ,
such as f (x) = y, for all image data or pixels to achieve
accurate brain tumor classification. The mapping function’s
primary goal is to establish a relationship between the
labeled samples and classified data, enabling accurate brain
tumor detection. The decision function is utilized to classify
the tumor and non-tumor regions, and its mathematical
representation is known as the feed-forward process of SVM
classification, as illustrated below:

D (m) =

(∑N

i=1
αiyiK (d imi) + t

)
. (21)

The equation shown in 21 represents the alpha coefficient
(αi) of support vector class labels or feature vectors. The
SVM vector is denoted as yi, and the input vector is denoted
as d i. The kernel function with a bias t is represented by
K (d imi). In SVM-based brain tumor image classification, the
process can be broken down into three steps. The first step
involves selecting the feature vector through feature vector
extraction. The second step involves training the data, and the
third step involves tumor classification and identification of
the tumor region.

The feature vector is created by combining data in an array,
allowing for object classification on a per-feature vector
basis. In brain tumor images, the image is first converted to a
binary image, as seen in Figure 8(b), and then skeletonized,
as shown in Figure 8(a). The image is then divided into
zones and appended areas to form the image matrix. The
generated feature is based on Euler numbers and related
parameters, such as pixel distributionswith the x and y planes.
Approximately 100 feature vectors are generated to classify
the tumor region in the image. For our research, we processed
310 brain tumor images, and SVM training was conducted
by combining the feature vectors in matrix form to classify
tumor regions. The support vectors of the SVM method are
the closest collection of data points to the decision surface,
making it challenging to classify brain tumors. These points
are determined based on a location optimization process to
decide the surface to locate the anomalous region. SVM
maximizes the margin around the hyperplane separation, and
the decision function is based on the training sample subset
to identify the tumor region. The output of the SVM process
is presented in Figure 8.

FIGURE 8. Figure shows the steps involved in the SVM-based
classification process for detecting brain tumors. In Figure (a), the original
brain image is converted to a binary image. Next, in Figure (b), the binary
image is skeletonized. The resulting image is then divided into zones and
appended areas to form an image matrix. The generated feature vector is
based on Euler numbers and related parameters, such as pixel
distributions with x and y planes, resulting in about 100 feature vectors
for each image. The SVM classifier is then trained using these feature
vectors in matrix form, as shown in Figure(c), to classify tumor regions.
Finally, the decision function of the SVM is used to detect the tumor
region, as shown in Figure(d).

V. DATABASE AND PARAMETERS MEASUREMENT
he efficacy of the suggested method is assessed through
three distinct criteria: the enhancement of the brain image,
the segmentation of the tumor region, and the classification
of brain tumors. The enhancement outcomes are evaluated
based on two factors: contrast and peak signal-to-noise
ratio. The segmentation outcomes are appraised using five
metrics: mean, standard deviation, entropy, kurtosis, and
skewness. The performance of the brain tumor classification
is determined using sensitivity, specificity, and accuracy
measures.

A. MEASURING PARAMETERS: ENHANCEMENT OF THE
BRAIN IMAGE
The enhancement results are assessed for performance by
quantifying five parameters: peak signal-to-noise ratio and
contrast. Each of these parameters is further explained below.

1) SIGNAL TO NOISE RATIO OF THE BRAIN MRI IMAGE
The Peak Signal to Noise Ratio (PSNR) is a parameter used
to assess the quality of a brain image compared to a noisy
image. It calculates the ratio between the maximum possible
signal level and the noise level present in the MRI image of
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the brain. The PSNR calculation formula, as introduced by L.
Jong and Sen in 1980, is represented by the Equation 22.

PSNR = 20log10

(
R
σ

)
. (22)

In this equation, the value of the PSNR is obtained by taking
the logarithm in base 10 of the ratio between the maximum
value of the signalR and the standard deviation of the noise σ .
The standard deviation σ represents the variability of the
image intensities produced by the noise. A higher value of
σ represents more noise in the image, while a lower value
represents less noise. The maximum image value (R) related
to the highest possible intensity level that can be represented
in the image. It typically ranges from 0 to 255 in an 8-bit
grayscale image, where 0 represents black and 255 represents
white.

2) IMAGE CONTRAST
From the perspective of brain MRI images, image contrast
(IC) suggests the difference in intensity level between a
particular pixel and its surrounding neighboring pixels in
the image. Mathematically, image contrast (IC) can be
represented by:

Contrast =

m−1∑
i=0

n−1∑
j=0

(i− j)

2

f (i, j) . (23)

B. MEASURING PARAMETERS: SEGMENTATION OF BRAIN
TUMOR
The segmentation results are assessed for performance
by quantifying five parameters: mean, standard deviation,
entropy, kurtosis, and skewness. Each of these parameters is
further explained below.

1) MEAN
The average parameter is calculated by multiplying the pixel
values of the image by the total number of pixels in the image.
The calculation of the average is represented by the following
equation:

Mean =

(
1

m× n

) m−1∑
i=0

n−1∑
j=0

I (i, j). (24)

where ‘m’ and ‘n’ represent the number of pixels correspond-
ing to the dimensions of the image.

2) STANDARD DEVIATION
The standard deviation (STD) is obtained by taking the
square root of the variance or the central mean of the image.
It gives insight into how pixels are distributed relative to the
average and reveals information about non-uniformity in the
image. A higher average value suggests greater saturation and
increased contrast at the edges of the image. Mathematically,

this can be represented in the equation 25.

STD(σ ) =

√√√√√( 1
m× n

) m−1∑
i=0

n−1∑
j=0

(I (i, j) −M)2. (25)

3) ENTROPY
Entropy is a metric that quantifies the level of randomness
or unpredictability in an image’s texture. It provides a
measure of the amount of information needed to describe the
distribution of pixel intensities in the image. Higher entropy
values indicate a more complex and diverse texture, while
lower entropy values indicate a more regular and uniform
texture. Mathematically, entropy can be represented in the
Equation 26.

Entropy = −

m−1∑
i=0

n−1∑
j=0

f (i, j) log2 (i, j) . (26)

4) KURTOSIS
In the context of brain MRI images, kurtosis is a parameter
that provides insight into the probability distribution of
random variables in the image. This helps us understand
the shape of the distribution and the presence of outliers
or outliers. The kurtosis is denoted Kurt(I) for image I,
indicating that it applies specifically to the features of that
particular image.Mathematically, kurtosis can be represented
using Equation 27:

kurt (I ) =

(
1

m× n

) ∑
((f (i, j) −M)4)

STD4 . (27)

By calculating the kurtosis of brain MRI images, we can
better understand the distribution of intensities, which can be
useful in tasks such as identifying abnormalities, detecting
subtle changes, or characterizing specific tissue properties.
It helps in understanding the statistical properties of image
data and can help in various medical image analysis
applications.

C. SKEWNESS
In the context of brain MRI images, skewness is a parameter
that provides information about the similarity or dissimilarity
of pixel distributions in the image. Skewness measures
the asymmetry of the distribution and helps us understand
whether pixel values are more concentrated on one side or
the other.

SK (I ) =
(

1
m× n

) ∑
(f (i, j) −M)3

STD3 . (28)

By calculating the asymmetry of brain MRI images, we can
assess the symmetry or asymmetry of the pixel distribution,
which can be useful in various applications such as tissue
characterization, lesion detection and abnormality identifica-
tion. Skewness helps us understand the statistical properties
of image data and can aid in the analysis and interpretation of
brain MRI images.
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D. MEASURING PARAMETERS: CLASSIFICATION OF
BRAIN TUMOR
To assess the effectiveness of classification, we used a
combination of training and test data. To ensure a compre-
hensive evaluation of the database, we used cross-validation,
a widely adopted technique for validating the performance
of classification models. The evaluation of the classification
model involved the use of the following parameters.

1) SENSITIVITY
In the context of brain MRI, sensitivity refers to the
measurement of precisely identified pixels belonging to
positive classes. It quantifies the ability of a classification
model to correctly detect positive instances. Mathematically,
sensitivity is calculated as the ratio of the total number of
true positive pixels to the total number of pixels identified
as positive, as defined in the equation 29. Sensitivity is also
commonly referred to as True Positive Rate (TPR). The
equation 29 represents the sensitivity calculation:

Sensitivity =
TP

TP + FN
(29)

where as: TP refers to the number of true positive pixels,
indicating the number of correctly identified pixels belonging
to the positive class. FN represents the number of false
negative pixels, indicating the number of pixels belonging to
the positive class that were incorrectly identified as negative.

2) SPECIFICITY
In the context of brain MRI images, specificity refers to
the measurement of precisely identified pixels belonging to
negative proportions or classes. It quantifies the ability of
a classification model to correctly detect negative instances.
Mathematically, specificity is calculated as the ratio of the
total number of true negative pixels to the total number of
pixels identified as negative, as defined in the equation 30.
Specificity is also commonly referred to as true negative rate
(TNR). The equation 30 represents the specificity calculation:

Specificity =
TN

TN + FP
(30)

where as: TN refers to the number of true negative pixels,
indicating the number of correctly identified pixels belonging
to the negative class. FP represents the number of false
positive pixels, indicating the number of pixels belonging to
the negative class that were incorrectly identified as positive.

3) ACCURACY
In the context of brain MRI, accuracy is a parameter
that provides information about the accuracy of predictions
regarding true pixels. The most effective approach to
evaluating the performance of a model’s predictions is to
count the number of pixels detected accurately. Accuracy
measures the proportion of correct predictions of true pixels
and is mathematically defined as equation 31.

Accuracy(AC) =
TP+ TN

TP+ FP+ TN + FN
. (31)

FIGURE 9. CE-MRI images illustrate different types of brain tumors as
follows: Figure (a) depicts a meningioma brain tumor. Figure (b) shows a
glioma brain tumor. Figure (c) shows a pituitary brain tumor.

4) DICE SCORE
In the context of brain MRI, the Dice Score (DSC) is a
parameter that provides information about the overlap ratio
between the predicted output and the actual ground truth
values. It quantifies the similarity between predicted and
ground truth regions of interest. The Dice score is normalized
by considering the true positive values compared to the mean
of the predicted and ground truth values. Mathematically, the
Dice score is represented as equation 32.

DSC =
2 × TP

(2 × TP+ FN + FP)
(32)

By evaluating the Dice score in brain MRI, we can assess
the degree of overlap and similarity between the predicted
output and the ground truth values. The Dice score provides
a valuable measure of model performance and helps assess
the accuracy and quality of segmentation or registration tasks
in MRI analysis of the brain

E. DATABASES
We are making use of the Contrast-Enhanced Magnetic
Resonance Imaging (CE-MRI) image dataset, which was
established by Nanfang Hospital in Guangzhou, China, and
the General Hospital at Tianjin Medical University, China,
during the period spanning from 2005 to 2010. The term
‘‘CE-MRI brain dataset’’ typically refers to a compilation
of images generated through contrast-enhanced magnetic
resonance imaging techniques, which are crucial for exam-
ining biological structures. In CE-MRI procedures, contrast
agents are introduced during scans to enhance the visibility
of specific tissues or detect abnormal conditions within
MRI brain images. This dataset comprises 3064 images
collected from 233 individuals, including 930 pituitary
tumors, 708 meningiomas, and 1426 gliomas. These images
have a resolution of 512 by 512 pixels, with each pixel
measuring 0.49 × 0.49,mm2, and a 1mm gap between
slices. The identification of tumors within these images was
performed manually by three highly skilled radiologists.
Figure 9 showcases several examples from this CE-MRI
image dataset.

Key considerations regarding CE-MRI datasets and their
applications encompass:

1) Different imaging techniques, including contrast-
enhanced T1-weighted sequences, are utilized to
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TABLE 1. Impact of image enhancement technique on ce-mri image.

TABLE 2. The analysis of the performance of different image enhancement methods.

acquire CE-MRI datasets. These enhanced T1-
weighted sequences facilitate the observation and
quantification of the distribution of contrast agents
within tissues.

2) CE-MRI datasets are frequently compiled for research
objectives as part of clinical studies. Notably, public
repositories and research institutions like The Cancer
Imaging Archive (TCIA) and the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) maintain MRI
databases that encompass CE-MRI data, in addition to
other imaging modalities.

3) CE-MRI datasets typically comprise 3D volumetric
image sequences obtained at various time intervals fol-
lowing the injection of a contrast agent. These datasets
may encompass baseline anatomical sequences, sup-
plementary pre-contrast images, and dynamic post-
contrast series.

4) CE-MRI assesses brain tumors and defines their
boundaries in brain tumor imaging. Contrast-enhanced
sequences are instrumental in pinpointing tumor-
afflicted areas within MRI brain images, thereby
assisting in diagnosis, treatment strategy formulation,
and therapy effectiveness evaluation.

5) The provided dataset contains 3064 contrast-enhanced
T1-weighted images collected from 233 individuals,
encompassing three distinct categories of brain can-
cers: meningiomas (comprising 708 slices), gliomas
(comprising 1426 slices), and pituitary tumors (com-
prising 930 slices) [38]. In our approach, we allocated
70% of the images for the training phase, which
includes preprocessing steps such as brain image
processing and enhancement (ICA-1). The remaining
30% of the dataset contains testing the classifier, which
involves post-processing modules utilizing an SVM-
based classifier. It is important to note that images
from the same subjects of each brain tumor type are
included in both the training and testing process of the
method.

VI. RESULTS AND DISCUSSION
A. ANALYSIS ON ENHANCEMENT TECHNIQUE ON BRAIN
MRI IMAGES
The Results and Discussion section of the research paper
presents an analysis of peak signal-to-noise ratio (PSNR)
and contrast in brain MRI images. This section provides a
detailed review of PSNR values and contrast analysis based
on CE-MRI image database and analysis is given below.

1) IMPACT OF ENHANCEMENT TECHNIQUE
The results of the analysis of our proposed method on
the CE-MRI image database, with and without the use
of enhancement techniques, are presented in table 1. The
table shows the results obtained by applying our method to
different types of brain MRI images in the CE-MRI image
database, in particular the Meningiomas Tumor Images,
Gliomas Tumor Images and Pituitary Tumor Image. After
careful analysis, he validated that our method significantly
improves the contrast of every type of brain MRI image
in the CE-MRI image database. The contrast enhancement
amounts to 40 indicating a substantial improvement in the
visibility and distinction of various structures or regions
in the images as well as leading to accurate segmentation
and classification of brain tumors. Additionally, the analysis
reveals a 3dB improvement in the peak signal-to-noise ratio
(PSNR) metric, signifying the improved quality and fidelity
of the processed images. These improvements validate the
capability of our proposed technique for the analysis of
medical images, not only limited to brain abnormalities
observed in the CE-MRI image database, but also extendable
to other types of medical images. For example, our method
has potential applicability to retinal fundus images, allowing
better analysis of eye abnormalities. Therefore, the results
highlight the efficiency and versatility of our technique in
improving and analyzing medical images, especially in the
context of brain abnormalities in the CE-MRI brain MRI
database.

VOLUME 12, 2024 42879



A. A. Asiri et al.: Optimized Brain Tumor Detection: A Dual-Module Approach

TABLE 3. Performance analysis of segmentation model of brain tumor.

FIGURE 10. Brain tumor segmentation results of the proposed method of different position of Axial plane Brain MRI
Image. The first column represents the original images of the database. The second column represents the ground
truth and third column represents the output of the image.

B. COMPARATIVES ANALYSIS OF IMAGE ENHANCEMENT
WITH EXISTING IMAGE ENHANCEMENT TECHNIQUES
The different image enhancement techniques: Histogram
Equalization (HE), Contrast Limiting Adaptive Histogram
Equalization (CLAHE), Brightness Bi-Histogram Equal-
ization (BBHE) are compared to our proposed method.
By analyzing the performance of different image enhance-
ment techniques, it can be observed that the proposed

methods consistently outperform other techniques in terms
of PSNR and contrast. The proposed method achieves the
highest PSNR and contrast values for each type of Brain
MR image, indicating superior enhancement and better
visibility of structures in brainMRI images. This comparative
analysis highlights the effectiveness of the proposed method
in improving image quality, especially in terms of PSNR
and Contrast. This implies that the proposed method has the
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FIGURE 11. Brain tumor segmentation results of the proposed method of different position of Coronal
plane Brain MRI Image. The first column represents the original images of the database. The second
column represents the ground truth and third column represents the output of the image.

TABLE 4. Comparison of performance segmentation model of brain tumor detection.

potential to contribute significantly to the analysis of medical
images, especially those related to brain abnormalities in the
CE-MRI image database.

C. ANALYSIS OF SEGMENTATION MODULE
PERFORMANCE
The performance of the brain tumor segmentation method
on the CE-MRI database is analyzed by analyzing different

parameters. These parameters are analyzed to assess the
effectiveness of the method in the precise identification and
delineation of brain tumors. Statistical measures, as presented
in the table 3, are used to analyze the performance of
the proposed method. These parameters provide valuable
information about the quality of the segmentation by
highlighting the contrast obtained in the brain region and
the normalization of the image, which facilitates an accurate
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FIGURE 12. Brain tumor segmentation results of the proposed method of different position of Sagittal plane
Brain MRI Image. The first column represents the original images of the database. The second column
represents the ground truth and third column represents the output of the image.

TABLE 5. Impact of image enhancement technique on classification model.

segmentation of the tumor. The table 3 shows the capability of
the proposed methods as it leads to an accurate segmentation
of the brain tumor and visualizes the analysis is shown in
Figure 10, Figure 11 and Figure 12. Visualizations of tumor
detections clearly show the module’s ability to accurately
identify and locate brain tumors. These results underscore
the competence of the module and its potential to aid in

brain tumor detection, providing valuable evidence of its
capabilities in the field.

D. COMPARISON OF SEGMENTATION MODULE
PERFORMANCE BASED ON DIFFERENT CLASSIFIER
The Mnay researchers used different classifiers to segment
the brain tumors and analyze the corresponding images
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TABLE 6. Comparison of performance classification model of brain tumor detection with different classifier.

FIGURE 13. Confusion Matrix of random selected Images sets of brain different brain tumor types.

through statistical analysis. Most of these researchers have
validated their method based on statistical measures such as
mean, standard deviation (STD), intensity correlation (IC),
and peak signal-to-noise ratio (PSNR) to assess the brain
tumor in brain MRI images. Performance comparison of the
most used classifiers including K-Nearest Neighbor (KNN),
Self-organizing Map (SOM), Genetic Algorithm (GA),
Graph Convolutional Neural Network (GCNN), Kernel-
Based Support Vector Machine (SVM) and our proposed
method which is presented in the Table 4. The results show
that our proposed method outperforms existing techniques,
demonstrating its effectiveness in detecting brain tumors
and accurately classifying tumor regions. Classification
performance will be validated in the next section.

E. IMPACT OF IMAGE ENHANCEMENT TECHNIQUE ON
CLASSIFICATION MODULE PERFORMANCE
The evaluation of image enhancement methods’ impact on
brain MRI image classification using the CE-MRI database
involves assessing key metrics, including sensitivity (Sen),
specificity (Spec), accuracy (Acc), and Dice Similarity
Coefficient (DSC). This section aims to validate image
classification performance with and without enhancement
methods. These performance metrics gauge the effectiveness
of our proposed classification methods, as presented in
Table 5. The analysis reveals that our methods consistently

yield significantly higher sensitivity, specificity, accuracy,
and DSC values when image enhancement techniques are
applied compared towhen they are not. Sensitivity reflects the
model’s ability to scan and detect tumor regions uniformly,
while specificity indicates its accuracy in identifying abnor-
mal region pixels.

Additionally, DSC and accuracy offer insights into the
overall performance of classifying abnormal regions across
all types of tumors. Specifically, the ‘‘Meningiomas Tumor
Images’’ category demonstrates a substantial improvement in
sensitivity (Sen), increasing from 0.67 without enhancement
to 0.99 with enhancement. Similar enhancements in perfor-
mance are observed in the ‘‘Gliomas Tumor Images’’ and
‘‘Pituitary Tumor Image’’ categories. The model consistently
achieves higher sensitivity, specificity, accuracy, and DSC
when applied image enhancement techniques.

These noteworthy improvements in sensitivity, specificity,
accuracy, and DSC strongly indicate that image enhancement
techniques positively impact the classificationmodel’s ability
to detect and categorize tumors in MRI images.

F. COMPARISON OF CLASSIFICATION MODULE
PERFORMANCE
Many researchers use the different classifiers for the detection
of brain tumors and their analysis is based on the statistical
measurements of various parameters. The table 6 shows the
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TABLE 7. Performance of exiting mr imaging segmentation methods.

comparison of different classifiers such as K-Nearest Neigh-
bor (KNN), Self-organizing Map (SOM), Genetic Algorithm
(GA), Graph Convolutional Neural Network (GCNN) and
Kernel-Based SVM, is compared to our proposed method
classifier known as ICA-NN-SVM. It is clearly observed that
our proposed method outperforms the existing methods in
terms of sensitivity, specificity and accuracy as well as we
also compared the computation time, it is also validated that
our proposed method exhibits the faster processing time as
compared to existing methods.The effectiveness of the our
proposed method in accurately detecting abnormal tumor
regions is verified through statistical parameter analysis.
Essential metrics such as sensitivity, specificity, and accuracy
are derived from the confusion matrix. The confusion matrix
of random selected images of our proposed method is shown
in the Figure 13.

G. COMPARATIVE ANALYSIS WITH EXISTING WORK
To assess the effectiveness of our proposed method, we per-
formed an extensive comparison with recent techniques
developed between 2019 and present. The results of the
performance evaluation are presented in table 7. It is analyzed
that despite the numerous methods based on CNN or deep
learning since 2019, their performance remains relatively
low due to lack of data as well as proper training. This
can be attributed to the limited innovation in treatment
methods within these approaches. In contrast, our proposed
method ICA-NN-SVM. This helps improve performance by
improving consistency between different brain MRI image
regions, leading to more accurate classification. Our future
work will mainly focus on designing new methods to

improve training data usingmachine learning techniques. Our
objective is to surpass the performance of current methods
in future implementations. By emphasizing innovation and
leveraging advanced machine learning techniques, we aim to
make significant strides in brain tumor classification.

VII. CONCLUSION
In this study, we introduced a pioneering two-module
methodology for the analysis of brain tumors using MRI
images. Our approach uniquely addresses the challenges
of image quality enhancement and effective classification,
aiming to revolutionize the field of brain tumor analysis. The
initial module termed the ‘Image Enhancement Technique
for Brain MRI Images’, focuses on refining image quality
by employing a combination of machine learning and
imaging techniques. Specifically, adaptive Wiener filter-
ing, neural networks, and independent component analysis
work collaboratively to enhance and normalize images.
This pre-processing step optimally prepares the images for
subsequent segmentation and classification tasks.

The second module of our approach provides robust
validation for the image enhancement technique and performs
two critical functions: segmentation and classification. The
segmentation process effectively isolates and highlights
tumor regions within the brain images, while the classifica-
tion accurately categorizes tumors into specific types using
support vector machines (SVM).

Evaluation of ourmethod using a diverse CE-MRI database
demonstrated considerable advancements in contrast and effi-
ciency for differentiating tumor types. Notably, our approach
achieved outstanding performance metrics, including an
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average sensitivity, specificity, accuracy, and Dice score
(DSC) of 0.99, 0.99, 0.989, and 0.981, respectively. More-
over, the speed of our method sets it apart from existing
approaches, with an average processing time of 0.43 seconds,
highlighting a unique blend of accuracy and computational
efficiency.

It is evident from our results that our method outperforms
contemporary methods in sensitivity, specificity, accuracy,
and DSC. This underscores the potential of our two-module
approach to impact brain tumor analysis through image
enhancement and classification significantly. Looking ahead,
there are promising avenues for further research based on
our groundbreakingmethodology. Integratingmore advanced
artificial intelligence techniques, such as deep learning
models, holds the potential further to improve the accuracy
and efficiency of brain tumor classification. Additionally,
exploring multi-modal imaging data and incorporating a
wider variety of tumor types and demographic ranges in the
dataset could enhance the generalizability of the method.

In conclusion, our study lays the groundwork for a
future where brain tumor detection and classification are
significantly more precise, efficient, and widely applicable.
By continuously refining and innovating our methodology,
we envision contributing to improved global health outcomes
in the field of brain tumor analysis
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