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ABSTRACT Condition monitoring of wind turbines is critical for increasing the reliability of the turbines and
reducing their operation and maintenance costs. Supervisory control and data acquisition (SCADA) systems
have been widely regarded as a promising technique to monitor the health status of turbines due to their
abundance and cost-effective operation data. However, SCADA data are fundamentally multivariate time
series with inherent spatio-temporal correlations. Therefore, it is still difficult to extract such correlations and
then accurately identify the health status. This paper proposes a novel multi-view spatio-temporal feature
fusion approach (MVSTCNN) based on convolutional neural networks (CNN) for condition monitoring of
wind turbines. Specifically, multiple CNN modules with convolutional kernels of varying sizes are designed
to extract correlations among several sensor variables and the temporal dependency concealed in each
variable in parallel. A main advantage of the proposed method is its capacity to capture multiscale local
information and global information simultaneously in both temporal and spatial dimensions, which improves
the performance of condition monitoring. Real SCADA data from a wind farm is utilized to evaluate the
effectiveness and superiority of the proposed approach. The SCADA data experiments demonstrate that the
proposed approach is effective for early fault detection in wind turbines.

INDEX TERMS Condition monitoring, convolutional neural network, multi-view spatio-temporal feature
fusion, SCADA data, wind turbine.

I. INTRODUCTION

As a clean, pollution-free, and environmentally friendly
renewable energy source, wind energy has become a major
source of sustainable energy production and the reduction
of greenhouse gas emissions. Wind energy has attracted
worldwide attention and has enormous development poten-
tial. As a result, a massive number of wind turbines have
been deployed both onshore and offshore. However, the
majority of wind turbines are installed in distant locations
and subjected to extreme weather and complex operating
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conditions. Therefore, it is easy to cause frequent failures,
eventually resulting in high downtime detection and operation
and maintenance costs. Hence, advanced condition monitor-
ing methods are in high demand to detect impending faults in
wind turbines so as to prevent economic losses and accelerate
the growth of the wind industry [1].

Numerous condition monitoring technologies for wind tur-
bines have been developed to date, with the most common
being vibration analysis [2], acoustic analysis [3], lubrication
oil analysis [4], and others. However, these methods are
limited in practical wind farm applications due to the require-
ment for additional measurement sensors and data acquisition
equipment. Alternately, without more hardware investments,
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supervisory control and data acquisition (SCADA) is con-
sidered a feasible and economical method for wind turbine
condition monitoring and has received extensive attention in
recent years. SCADA systems are now popularly equipped
on most large-scale commercial wind turbines. A typical
SCADA system contains fundamental state information and
provides a large number of monitoring parameters connected
with the operation condition of wind turbines, such as power,
wind speed, current, and voltage, among others [5]. There-
fore, the running status of wind turbines can be recognized
and incipient failures can be detected by fully utilizing
the plentiful SCADA data and extracting the useful hidden
characteristics.

In previous studies, various machine learning and sta-
tistical algorithms, including artificial neural networks [6],
[7], support vector machines [8], [9], cointegration anal-
ysis [10], performance curve-based methods [11], [12],
Gaussian processes [13], [14], and nonlinear state estimation
technology [15], have been proposed for condition moni-
toring of wind turbines using SCADA data. Obviously, due
to the large amount of SCADA data and the typical shal-
low network structure, these traditional methods are difficult
to handle and learn the complicated nonlinear relationships
among complex monitoring information, resulting in limited
detection performance. In recent years, deep learning, as a
new emerging technology, has received increased attention
in the domain of wind turbine condition monitoring because
of its powerful ability to process large amounts of data and
capture hierarchical and deep feature representation [16].
Deep learning-based approaches aim to stack multiple non-
linear processing layers in hierarchical designs to extract
important and abstract information from data, which is well
suited for analyzing SCADA data with high nonlinearity and
correlations. Some academics have concentrated on using
deep learning networks to monitor the condition of wind
turbines. For instance, Wang et al. [17] developed a deep neu-
ral network-based condition monitoring model and identified
the early faults of wind turbine gearboxes. Encalada-Ddvila
et al. [18] utilized a gated recurrent unit neural network to
monitor the conditions of the wind turbine main bearing
and realized incipient fault detection. Zhao et al. [19] pro-
posed a deep automatic encoder (DAE) network to monitor
wind turbines and implement early warning of fault com-
ponents. Wang et al. [20] used DAEs to identify impending
wind turbine blade breakage faults. Zhu et al. [21] intro-
duced a convolutional neural network (CNN) and a long
short-term memory network into the condition monitoring of
wind turbine gearbox bearings and identified their impending
faults.

The abovementioned deep learning applications have
proven to be quite effective in feature learning and representa-
tion, and have improved anomaly detection results. However,
due to the complicated spatial-temporal correlations that are
inherent in the massive SCADA data, it is still a challenge
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to effectively monitor the conditions of wind turbines.
Specifically, as complicated electromechanical systems, wind
turbines are composed of multiple subsystems and com-
ponents, including gearboxes, generators, blades, principal
shafts, bearings, etc. [22]. There are dependencies and inter-
actions between different subsystems and components [23].
As a result, multiple relevant SCADA condition variables
reflecting the health status of wind turbines are highly corre-
lated, which means that SCADA data exhibit typical spatial
correlation characteristics. Additionally, each condition vari-
able is essentially a time series that will vary over time
because of the influence of external operational environ-
ments. In other words, the measured values of each variable
at different time points have strong temporal dependence,
implying that SCADA data present representative temporal
correlation characteristics. To address this challenge, inspired
by the powerful nonlinear feature learning and representa-
tion capability of CNN, this paper proposes a CNN-based
multi-view spatio-temporal feature fusion method, named
MVSTCNN, to capture the complex spatio-temporal corre-
lations concealed in SCADA multivariate time series from
multiple perspectives. In particular, the innovative network
can extract features on both temporal and spatial scales in par-
allel, and multi-scale local feature learning and global feature
learning are also taken into account concurrently, allowing for
the depth and comprehensive extraction of spatio-temporal
features. The main contributions of this paper are summarized
as follows.

(1) A new MVSTCNN network is presented to mine the
spatio-temporal correlations inherent in SCADA data, and
then a condition monitoring model using healthy data is
developed. The MVSTCNN network does not only perform
parallel spatio-temporal feature extraction but also captures
and integrates local and global features on both temporal
and spatial scales, which can improve condition monitoring
performance.

(2) Multi-scale local temporal and spatial feature learning
models are designed, respectively. The interactive and com-
plementary temporal dependences and spatial correlations of
SCADA data are extracted from multiple scales by setting
multiple one-dimensional temporal and spatial convolution
kernels with different sizes, enhancing the feature extraction
capability of the proposed MVSTCNN network.

(3) Real SCADA datasets are employed to evaluate the
performance of the proposed condition monitoring method,
and contrast experiments are conducted.

The remainder of this article is organized as follows.
Section II goes through the theoretical background of
the MVSTCNN method. Section III presents the pro-
posed SCADA data-based MVSTCNN condition monitoring
framework. In Section IV, the effectiveness of the proposed
monitoring method is demonstrated by a case study with
actual SCADA data. Finally, conclusions are provided in
Section V.
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FIGURE 1. Flowchart of the proposed condition monitoring framework.

Il. OVERVIEW OF CONVOLUTIONAL NEURAL NETWORKS
CNNs are a specialized kind of multi-layer feed-forward
artificial neural networks, which were originally proposed
by LeCun et al. [24] for handwritten digit recognition.
Inspired by biological neurology, CNNs are designed to
imitate the behavior of the mammalian visual cortex. Com-
pared with traditional fully connected neural networks, the
key characteristics of CNNs are shared weights and trans-
lation invariance [25]. Due to their powerful capacity to
automatically extract features, CNNs have been successfully
used in a variety of challenging research domains, including
computer vision, image classification, and natural language
processing. A typical CNN is mainly composed of convo-
lutional layers, pooling layers, and fully connecting layers.
The convolutional layer extracts local features from input
data by performing convolution operations with convolution
kernels. Since only local parameters need to be computed, the
convolution operation can dramatically optimize the number
of parameters and make the learning layer simpler [26]. The
convolution operation is defined as

x = x T ekl + b (1)
i

where x; refers to jth feature map at the I/th layer, xl-l_l
represents the ith input feature map at (! — 1)th layer, kilj is
the convolution kernel connecting ith input feature map with
Jjth feature map, b} is the bias term, * denotes the convolution
operation, and f(-) is a nonlinear activation function that
can improve the expression ability of CNN. In this study,
Rectified Linear Unit (ReLU) is selected as the activation
function, which is expressed as f(x) = max(0, x).

Following that, the characteristics learned from the convo-
lutional layer are fed into the pooling layer, thus preserving
the most important information and enhancing computational
efficiency. In the pooling process, maximum pooling or aver-
age pooling is often applied for pooling operations, and the
maximum pooling is chosen in the paper to obtain the local
maximum value. Next, local information is integrated by the
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fully connecting layer, and each neuron in this layer has
complete connectivity to all neurons in the previous layer.

IIl. PROPOSED MVSTCNN CONDITION MONITORING
FRAMEWORK

Fig. 1 depicts the overall flowchart of the presented frame-
work for wind turbine condition monitoring. In practical
applications, the majority of SCADA monitoring data are
collected when wind turbines are operating normally, while
faulty data are generally rare or even difficult to obtain.
Therefore, the basic idea behind the proposed framework is
that normal historical SCADA data are adopted to construct
the normal behavior monitoring model. To this end, this
section introduces a MVSTCNN method that aims to discover
latent spatio-temporal correlations in normal operation data.
Notably, the proposed condition monitoring scheme is based
on the analysis of multivariate residuals between actual mea-
surements and the predicted outputs from the well-trained
normal behavior model. The changes in residuals can indicate
the health state of wind turbines, indicating normal or poten-
tial anomalies. When wind turbines are in healthy operating
conditions, low residual values are usually yielded because
normal test data can well match the learned normal model.
Conversely, test data with high residual values is identified
as a fault or anomaly. To be specific, the detailed procedures
for MVSTCNN-based wind turbine condition monitoring are
described as follows.

(1) Offline modeling phase: Historical SCADA data from a
healthy period are first obtained. Then, data preprocessing is
required to enhance the condition monitoring performance.
Further, the MVSTCNN method is applied to capture the
normal behaviors of wind turbines and obtain sophisticated
feature representations. At last, based on residuals, the mon-
itoring indicator is determined and the alarm threshold is
calculated for the early fault warning of wind turbines.

(2) Online monitoring phase: First, the newly collected
measurements are preprocessed in the same manner as in
the offline phase. The data are then sent to the well-trained
MVSTCNN model to automatically capture spatio-temporal
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FIGURE 2. Architecture of the proposed MVSTCNN method.

characteristics and obtain corresponding residuals. After
that, the residuals are further processed and compared with
the defined threshold to identify the health status of wind
turbines.

A. VARIABLE SELECTION

In the wind turbine SCADA system, there are over one hun-
dred sensor monitoring variables, include not only parameters
that describe the operating conditions of wind turbines, like
generator speed and power, but also parameters that represent
the states of subsystems or components, such as temperature,
voltage, current, etc. But not all of the variables are favorable
for the establishment of the condition monitoring model.
If all of these variables are input to the model at the same
time, it will increase the computational complexity while
decreasing the prediction accuracy. Hence, the selection of
input variables should be carefully considered to screen out
some important and valuable variables. In order to compress
the amount of data and promote detection performance, the
Pearson correlation coefficient is employed to assess the cor-
relation between various monitoring variables in this paper.
Variables with a strong correlation will be retained, whereas
variables with a low or even no correlation will be discarded.
The operation is represented as

NYXY—-3X3Y

== 2
SN/ S5 ey 35 RN Jpeaery 3 o

where N denotes the variable sample size, X and Y are sensor
variables.

In view of the fact that multiple monitoring variables in
SCADA data have different units and value ranges, it makes
sense to execute a data normalization step prior to input
variable selection. The purpose is to rescale all variables to
a specific range such that each variable contributes equally to
the correlation coefficient calculation. According to [27], the
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formula is as follows
X;j — min(x;)

3

i = max(x;) — min(x;)

where x;; denotes the ith measured value of variable j, min(x;)
and max(x;) denote the minimum and maximum values of
variable j, respectively. y;; is the normalized value with a
range of [0, 1].

B. PROPOSED MVSTCNN METHOD

The overall architecture of the proposed MVSTCNN method
is presented in Fig. 2. A key property of this approach is that
it automatically mines the spatial and temporal correlation
information implied in complex SCADA data from different
perspectives. Generally, the proposed architecture is mainly
divided into three parts: temporal multi-view feature learning,
spatial multi-view feature learning, and feature fusion and
output prediction. The details of the proposed method are
presented below.

1) TEMPORAL MULTI-VIEW FEATURE LEARNING

To facilitate understanding, let matrix X € RS*T be input
samples, with S representing the number of sensor vari-
ables and 7' denoting sampling points. It is well known that
SCADA data itself is a time series, with each sensor variable
changing over time. In order to better explore the temporal
correlation inherent in each sensor variable, a temporal multi-
view feature learning module based on the one-dimensional
CNN is designed. This module is inspired by the inception
structure [28] and consists of temporal multiscale local fea-
ture learning and temporal global feature learning. On the one
hand, multiple one-dimensional temporal convolution kernels
with different sizes are set in parallel to capture complemen-
tary and interactive local characteristics at different scales.
In this subsection, according to the complexity of the model
and experimental results, there are three scale channels,
which are named CNN1, CNN2, and CNN3, respectively. As
shown in Fig. 3, these CNN channels have three convolutional
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layers followed by a pooling layer. In particular, CNNI,
CNN2, and CNN3 each have convolution kernel sizes of 1 x2,
1 x 3, and 1 x 4, which are designed to extract data fea-
tures between two, three, and four time points, respectively.
Notably, it is challenging for a common CNN to capture the
relationship between two data points that are far apart in
the lower layers when the size of the convolution kernel is
relatively small [29]. On the other hand, in order to overcome
this shortcoming, the size of the temporal convolution kernel
is set equal to the sampling points in terms of each sensor
variable, i.e., 1 x T, to mine the features between time points
1 and T'. This can also be viewed as global feature learning in
the temporal dimension and is named CNN4. Note that batch
normalization (BN) layers are added to the four modules
to decrease the number of parameters and prevent over-
fitting [30]. The characteristics yielded by these modules are
then cascaded along the time axis. In this case, temporal
multi-view information can be learned and obtained.
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FIGURE 3. The structure of the temporal multi-view feature learning
network.

2) SPATIAL MULTI-VIEW FEATURE LEARNING

In order to deeply mine the spatial correlations between
various sensor variables, a spatial multi-view feature learning
network is constructed in this subsection. Similar to tem-
poral multi-view feature learning, one-dimensional CNN is
adopted in this network, which includes two parts: spatial
multiscale local feature learning and spatial global feature
learning. However, the difference is that several CNNs with
spatial convolution kernels are designed. In other words,
convolution operations only slide along the spatial dimension
of multivariate SCADA time series. In the aspect of spatial
multiscale local feature learning, three different scale chan-
nels, including CNNS5, CNN6, and CNN7, are used to capture
interactive and rich characteristics between multiple sensor
variables in parallel. The convolution kernel sizes of the three
channels are 2 x 1,3 x 1, and 4 x 1, respectively, with the
intention of extracting correlations between two variables,
three variables, and four variables. Likewise, each channel is
composed of three convolutional layers in series and a sub-
sequent pooling layer. Additionally, to execute spatial global
feature extraction, the length of the one-dimensional spatial
convolution kernel is set to the number of sensor variables.
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This implies that the convolution kernel with a size of
S x 1 fuses variable 1 to variable S at each point in time
to learn the characteristics between all variables. And this
learning phase is represented by the CNN8 module. During
the feature extraction process, the BN layer is also applied
after each convolutional layer. Finally, the spatial correla-
tions generated by each CNN module are cascaded along the
variable axis for further condition monitoring. The schematic
diagram of the spatial multi-view feature learning network is
displayed in Fig. 4.
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FIGURE 4. Schematic diagram of the spatial multi-view feature learning
network.

3) FEATURE FUSION AND OUTPUT PREDICTION

Because the temporal and spatial multi-view characteristics
learned in the first two stages have inconsistent dimensions,
they are separately fed into the flatten layer to produce
the consistent dimension. The transformed features are then
cascaded, and the resulting multi-view spatio-temporal infor-
mation is taken as the input of the next fully connecting layer.
A regression output layer that has neurons with the same
number of sensor variables follows immediately behind the
fully connecting layer and is used for prediction. In particular,
similar to multilayer perceptron networks, all neurons in the
fully connecting layer and its adjacent layers are globally
connected. For the training of the proposed model, the mean
squared error between the predicted values and the actual
values is employed as the loss function, which is optimized
by the stochastic gradient descent with momentum algorithm.
Given N training samples, the loss function is described as

1 N
H=223 00 =Yy )
i=1

where H represents the loss function, Y’ and Y denote the
predicted values and actual values, respectively.

C. FAULT DETECTION APPROACH

The establishment of the MVSTCNN normal behavior model
is intended to constantly monitor the running state of wind
turbines and identify forthcoming early breakdowns. This is
important for preventing major failures and improving the
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reliability of wind turbines. As mentioned above, the anal-
ysis of the residual between the actual measurements and
the estimated values underlies the fault detection method in
the study. The MVSTCNN approach takes the multivariate
SCADA data from ¢ to t7 as input X, and the target output
Y is the values at the next data point f74 of the time series.
Setting the input and output in such a way will aid the model
in discovering more implicit information, thus enhancing its
generalization ability and prediction performance [31]. The
input and output can be defined as

1 1 1 1 /

2 R Xtr i1
2
x121 ‘xlzz N xZZT xtTH
X = , Y= ) )
s s .5 s
X A X1y Xtr1

where x{i is the data of jth sensor variable at ith point in time.

To identify the anomalies in wind turbines effectively, it is
essential to select an advanced statistical method to deter-
mine the monitoring indicator. As a unit-less distance metric
method, Mahalanobis distance (MD) has the advantage of
considering the correlation of variables and transforming
multivariate data into a univariate distance value. MD has
been successfully applied to identify wind turbine anoma-
lies [6], [32]. Hence, the MD measure is adopted in this study
to derive the monitoring indicator for anomaly detection. The
monitoring value MD; of the ith sample data is expressed as
follows

MD; = /(B — w)C~1(B; — )T (©)

where E; denotes the residual vector of the ith sample, u
and C~! are the mean value and inverse covariance matrix
of residuals of all samples, respectively.

The threshold for anomaly detection is calculated based on
the MD values for residuals obtained in the validation phase.
At this stage, wind turbines are operating normally, and there
is no abnormal behavior. The MD; of the jth sample for the
validation data is defined as follows

MDyey =\ B — e )Cf (Brp — )T (D)

where E,.; represents the residual vector of the jth sample
of the validation data. p,, and C;} are the mean value
and the inverse covariance matrix of validation residuals,
respectively.

According to equation (7), the monitoring indicator val-
ues of all validation data can be achieved. Next, kernel
density estimation (KDE) is used to evaluate the probabil-
ity density distribution of these indicator values to deter-
mine the anomaly detection threshold. KDE is a common
nonparametric estimation technique that has been widely
used in the domains of anomaly detection and process
monitoring [33], [34].

VOLUME 12, 2024

Assuming x is a random variable, the estimated probability
density function is given as

x—xi)

R 1 &
fh(x)=E§K( - )

where x; is the given data sample, 7 is the number of samples,
h is the bandwidth parameter, and K (-) is the kernel function.

The Gaussian kernel function is adopted in this paper and
is described as

Ku) =

1
e 2" ©)
T

The known probability density function can then be used to
calculate the fault detection threshold 7, at a given confidence
level o by

Ta A
ix <To)= [ fu)dx =« (10)
—00

In the process of condition monitoring, if the monitoring
indicator value MD; passes the threshold 7,, an alert signal
will be generated. This can push operators to pay attention to
the operating status of wind turbines and take the necessary

precautions to prevent serious failures.

IV. CASE STUDY
In this section, the proposed approach is applied to the
actual generator condition monitoring, and the implementa-
tion results and comparative experiments are displayed and
analyzed in detail.

A. DATA DESCRIPTION

The SCADA data for this study came from an actual wind
farm in Inner Mongolia, China. This wind farm comprises
over 100 identical wind turbines with a nominal power of
1.5 MW. SCADA systems have been installed on all wind
turbines, and SCADA data is sampled at 30-s intervals. These
SCADA data log a variety of sensor measurements related
to the operation condition of wind turbines, such as active
power, generator speed, the temperature of components, etc.
For the majority of the turbines, the SCADA dataset was
available from July 1 to September 23, 2014.

In order to accurately identify potential faults, the training
data for normal behavior modeling should cover all normal
operation zones of turbines as much as possible. According to
SCADA system records, there was no abnormal behavior of
generators in turbines 6, 17, 24, 33, 34, 49, and 53 from July
to September. Therefore, the healthy SCADA data collected
from these turbines are considered for modeling. Whereas
turbine 28 suffered a generator speed anomaly failure on
August 8, and the data prior to the failure are taken as the
testing data to verify the detection performance of the model.

B. MODEL DEVELOPMENT

In order to capture the normal behavior of the generator,
several valuable input variables should be carefully chosen.
Due to the close relationship between generator speed and the
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health of the generator, the variables most relevant to gener-
ator speed are determined as the input for modeling in this
paper. The Pearson correlation coefficients are calculated,
and all data are linearly normalized to the range of [0, 1] prior
to the calculation. Table 1 provides the selected variables.

TABLE 1. Selected modeling variables.

No.  Sensor Variable Unit Correlation Coefficient

1 Generator speed r/min 1

2 Gearbox speed r/min 1

3 Converter side speed r/min 0.9954
Gearbox front bearing

4 C 0.7695
temperature

5 Gearbox rear bearing oC 07389
temperature

6 Wind speed m/s 0.7078

7 Current phase C A 0.7010

8 Current phase B A 0.6982

9 Converter side torque ~ Nm 0.6961

10 Current phase A A 0.6923

11 Active power kW 0.6804

12 Gearbox oil oC 06563
temperature

13 Generator torque Nm 0.6284

It should be noted that moving window processing is used
to generate the multivariate time series input matrix combin-
ing temporal and spatial information. The historical healthy
operating data is separated into a group of fragments with
a moving time window of 1 hour without overlap, which
indicates that there are 120 data points included in the moving
window. A total of 1868 samples are obtained by preprocess-
ing, and each one is continuous in time. Then, 1400 samples
are chosen at random as the training data, with the remainder
serving as the validation data. As mentioned in Section I1I-B,
several different CNN modules are designed in the proposed
approach to effectively extract the spatio-temporal character-
istics of normal behavior. In addition, there are a series of
other parameters that also need to be set in the model train-
ing process. Table 2 presents the detailed network structure
settings.

The monitoring indicator values for the validation data are
derived based on the established MVSTCNN model. Fig. 5
presents the histogram and estimated probability density
function of the monitoring values using the KDE technique.

0.4 T T T T

I Histogram
0.35 Estimated PDF | -
0.3 4
2
z 0.25 1
3
£ o2 .
z
g
2 0.15 1
-
0.1 q
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0 . . .
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Monitoring indicator MD

FIGURE 5. Histogram and estimated PDF with KDE for monitoring values
obtained from the validation data.
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TABLE 2. Details of the MVSTCNN framework.

Describe Parameter Setting
Input 13x120
Mini-batch size 5

Initial learning rate 0.0001

Max epochs 20

[1x2, filter 16, conv]x3, stride 1x1
[1x2, maxpool], stride 1x2

[1x3, filter 16, conv]x 3, stride 1x1
Temporal multi-view

1x2. 1], stride 1x2
feature learning (12, maxpool], stride 1x

[1x4, filter 16, conv]x 3, stride 1x1
1x 2, maxpool], stride 1x2
1x120, filter 16, conv], stride 1x1

2x1, filter 16, conv]x3, stride 1x1
2 x1, maxpool], stride 2x1

[
[
[
[
[3x1, filter 16, conv]x 3, stride 1x1
Spatial multi-view [
[
[
[

2x1, maxpool], stride 2x 1
feature learning pol]

4x1, filter 16, conv]x3, stride 1x1

2x1, maxpool], stride 2x1

13x1, filter 16, conv], stride 1x1
Output 13

14 T T T T

Monitoring indicator MD
— — — Threshold T,

12

Monitoring indicator MD

0 100 200 300 400
Validation data points

FIGURE 6. The monitoring values of validation data and corresponding
threshold.

As can be seen, the estimated probability density function
fits the actual distribution well, making it appropriate for fur-
ther determination of the fault detection threshold according
to (10). The monitoring indicator values for the validation
data and the corresponding threshold are shown in Fig. 6.
In this paper, the confidence level is set at 99%.

C. ABNORMAL DETECTION RESULT

According to the event logs of the wind turbine, Turbine
28 suffered a generator speed abnormal fault on August 8,
2014. The data from August 4 to 8 before this event are set
as testing data for abnormal detection. The already-identified
modeling variables are first selected from the test samples.
As with the preprocessing of the healthy data, the selected
data are then rescaled and split into matrices with temporal
and spatial dimensions to construct corresponding test inputs
and outputs. The residuals are derived based on the predicted
values of the testing data with the trained MVSTCNN model.
The monitoring indicator values are further computed to mon-
itor the condition of the generator. In order to continuously
reflect the trend of the monitoring values and eliminate the
impact of random interference, a moving average calculation
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FIGURE 7. Condition monitoring results of different models (a) MVSTCNN (b) MSTCNN (c) MTCNN (d) MSCNN (e) STCNN

(f) SSCNN.

is used for statistical analysis. In this paper, a moving
window with a size of 5 is adopted through experiments.
Fig. 7(a) presents the monitoring result with the MVSTCNN
model.

As illustrated in Fig. 7(a), the monitoring indicator value
surpasses the fault threshold 7, in the 91st data point and
continues to fluctuate above the threshold for a period.
Considering the moving window size is 5, the threshold
is actually exceeded in the 96th data point. According to
analysis, an abnormality is detected 19 hours ahead of the
speed anomaly failure of the generator.

To verify the ability of the MVSTCNN approach, compara-
tive experiments are conducted on multiple CNN models with
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different structures, including spatio-temporal multiscale
CNN (MSTCNN), temporal multiscale CNN (MTCNN), spa-
tial multiscale CNN (MSCNN), temporal single-scale CNN
(STCNN), and spatial single-scale CNN (SSCNN). All of
these models have the same structure and settings as the
proposed method, except that certain specific modules are
discarded. In terms of the MSTCNN, it takes into account
the local temporal and spatial correlations on multiple scales
simultaneously. Whereas the MTCNN and MSCNN only
extract multiscale local features from temporal and spatial
dimensions, respectively. For the latter two methods, local
dependencies on a single scale are considered. The results are
displayed in Figs. 7(b)—(f).
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As can be seen from Figs. 7(c) and (e), compared to the
MD value of the STCNN model, which first continuously
crosses the T, in the 110th data point, the MTCNN exceeds
the T, in the 108th data point, and both are maintained for a
period. We can conclude that the MTCNN is able to detect
the upcoming failure two hours before the STCNN. It can
be seen from Fig. 7(d) that the MD value crosses the T, in
the 36-39th data points, whereas after the 39th point, the MD
value drops below the T, and continues for a period. Until
the 94th point, the MD exceeds the T, again and remains.
From Fig. 7(f), we can observe that similar to the monitoring
result of the MSCNN, the MD of the SSCNN model comes
across the T, at points 36-38 and 96-98, respectively. Nev-
ertheless, the starting point that consistently exceeds the 7,
appears at the 106th data point. Combining Figs. 7(d) and (f),
we can consider that the noise and disturbance interfere with
the monitoring results and lead to false alarms before the
anomaly is actually detected. Whereas from the perspective
of truly identifying the potential faults, the MSCNN model
can be 12 hours ahead of the SSCNN model. From the result
of Fig. 7(b), we can observe that the MD fluctuates below the
T, before the 94th data point and then continuously passes
the T,,. It shows that the MSTCNN is capable of detecting the
fault 16 hours in advance, but 3 hours behind the proposed
MVSTCNN shown in Fig. 7(a). The comparative monitoring
results of different models are summarized in Table 3.

TABLE 3. Monitoring performance of different models.

Model Early warning time (h) Times of false alarm
STCNN 0 0
SSCNN 4 6
MTCNN 2 0
MSCNN 16 4
MSTCNN 16 0
Proposed 19 0

From the comparative experiment, we can observe that
the performance of the multiscale feature extraction models
MTCNN and MSCNN outperforms the STCNN and SSCNN
that only consider a single scale because of their capability
to learn interactive and complementary temporal and spa-
tial features. For the MSTCNN model, it incorporates both
temporal and spatial information at different scales, so it can
detect anomalies earlier than the MTCNN and avoid false
alarms compared with the MSCNN. In particular, compared
with the MSTCNN model, the proposed MVSTCNN further
integrates global information that takes into account the cor-
relations of all time points and all sensor variables, it thus can
extract more valuable features and provide earlier warning for
impending faults. In this case, there is more time available
for operators to take appropriate measures to prevent major
failures.

V. CONCLUSION

This paper presents an innovative multi-view spatio-temporal
feature fusion approach called MVSTCNN for monitoring
the operating status of wind turbines. This model is based on
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convolutional neural networks and extracts the inherent tem-
poral and spatial information from SCADA multivariate time
series in a parallel manner. One main advantage of the pro-
posed method is the design of the multiscale local temporal
and spatial feature learning modules to extract rich and com-
plementary spatio-temporal features. The other important
contribution is the inclusion of the global feature extraction
modules, which capture the correlations of all time points
and all sensor variables. The proposed model can enhance
feature extraction ability and improve condition monitoring
performance. In order to effectively identify impending faults
in wind turbines, the MD of the residuals is computed as the
monitoring indicator. And the fault threshold is determined
using the monitoring indicator during normal operation.

The performance of the proposed approach is verified
using SCADA data from a real wind farm. Compared with
other CNN-based models, the proposed method has the abil-
ity to capture more valuable information, and it is more
effective to detect anomalies without generating false alarms
and achieve earlier warning. This means that the MVSTCNN
model has considerable potential in practical wind tur-
bine condition monitoring applications, which can guarantee
the reliable operation of wind turbines and lessen eco-
nomic losses. However, the current work has its limitations.
To continuously reflect the operating state of wind turbines,
extensive and long-term SCADA data needs to be acquired.
In the next work, massive amounts of available SCADA data
will be collected for long-term health monitoring. Moreover,
it makes sense to focus on fault isolation methods to dis-
cover the underlying cause of the defect, thereby offering
decision-making for wind turbine maintenance.
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