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ABSTRACT Object detection in remote sensing images is crucial for identifying and locating objects in the
field, holding significance in remote sensing. Oriented object detection employs oriented bounding boxes to
locate objects with varying orientations, achieving recent advancements. However, challenges persist due to
vast variations in object scale and orientation. Existing methods use Intersection over Union (IoU) to measure
bounding box quality but often ignore shape information. Unlike horizontal detectors, oriented detectors
always incorporate an angle parameter. Yet, objects with different shapes exhibit varying angle sensitivity.
For objects with the same angle but different shapes, their IoU can differ significantly. We argue that
relying solely on IoU is not comprehensive. To address this, we propose the Shape-aware IoU Score (SalS),
considering shape information and IoU for each bounding box. We use SalS to enhance the dynamic soft
label assignment strategy, resulting in an improved Shape-aware Label Assignment (SaLA). SaL.A aids
the detector in selecting more suitable samples. Leveraging RTMDet-R and S2ANet strengths, we design
an Anchor-free Alignment Network (A2Net) for oriented object detection. A2Net features two detection
heads: the initial head and the refinement head. Utilizing alignment convolution (AlignConv) between these
heads obtains aligned features. We validate the proposed approach’s effectiveness on the DOTA dataset and
DIOR-R dataset.

INDEX TERMS Oriented object detection, shape-aware, remote sensing, deep learning.

I. INTRODUCTION

Object detection in remote sensing images is a crucial
technique for interpreting such images, finding applications
in terrain surveying, intelligence reconnaissance, disaster
rescue, and more, thus attracting increasing attention. Objects
in remote sensing images often exhibit characteristics of
significant scale variations, arbitrary orientations, and dense
arrangements, making object detection in these images
challenging. Unlike horizontal detectors that regress a
four-dimensional vector for object localization, oriented
object detectors additionally predict a parameter representing
the angle of the bounding box. For objects at arbitrary
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angles in remote sensing images, horizontal bounding boxes
include a considerable amount of background information,
while oriented bounding boxes can accurately and effectively
represent the object’s position. In recent years, owing
to the rapid development of horizontal object detectors,
many oriented object detectors have been proposed. Some
methods [1], [2], [3], [4], [5], [6], [7] focus on extracting
better features to alleviate feature misalignment problems,
while others [8], [9], [10], [11] concentrate on designing
new regression loss functions to address issues arising from
angle periodicity and edge swapping, achieving improved
detection performance. However, existing methods often use
intersection over union (IoU) between the bounding box and
the ground truth as the metric for measuring the quality of
the bounding box, often overlooking the shape information
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(e.g., aspect ratio) of the objects. As shown in Fig. 1,
objects with different shapes, even with the same angle, can
have significantly different IoU values. Given this situation,
we redesigned the metric for bounding boxes based on IoU.
For each bounding box position, we calculate a shape score
based on the shape information of the corresponding ground
truth and the IoU value between the bounding box and the
ground truth. We then combine the shape score and IoU value
to compute the final score, referred to as the Shape-aware loU
Score (SalS). Using SalS, we improve the dynamic soft label
assignment strategy [12], resulting in an enhanced strategy
known as the Shape-aware Label Assignment (SaL.A). This
strategy assists the detector in selecting more suitable
samples. Finally, we propose an anchor-free oriented
object detection network—Anchor-free Alignment Network
(A2Net)—building upon the advancements of the recent
state-of-the-art anchor-free oriented object detection network
RTMDet-R [12] and incorporating alignment of object
features inspired by anchor-based oriented object detection
network S2ANet [5]. A2Net comprises two detection heads:
the initial detection head and the refinement detection head.
The initial detection head outputs initial bounding boxes for
each position. Using the information from these bounding
boxes, alignment convolution is applied to the feature map
from the feature pyramid network to obtain aligned object
features. The refinement detection head then utilizes these
improved features to output a set of scale factors refining
the initial bounding boxes at each position. The refined
bounding boxes serve as the final prediction results. We val-
idate the effectiveness of the proposed approach through
extensive experiments on the DOTA [13] and DIOR-R [14]
datasets. Our main contributions are summarized as
follows:

o We propose a novel method for measuring the quality of
bounding boxes, termed Shape-aware IoU Score (SalS).
SalS combines the shape information of the object and
the IoU value.

« Based on SalS, we propose the Shape-aware Label
Assignment (SalLA), representing an improvement over
the existing dynamic soft label assignment strategy.
SalLA enhances the detector’s ability to select more
suitable samples.

o« We design an anchor-free oriented object detector,
A2Net, which employs AlignConv [5] for aligning
features and incorporates a refinement detection head
to enhance the results from the initial detection head.
In comparison with other state-of-the-art methods, our
A2Net achieves competitive performance.

o We conduct extensive experiments on the DOTA and
DIOR-R datasets to verify the effectiveness of our
method.

Il. RELATED WORK

In this part, we will initially provide an overview of
the iconic object detection algorithms in Section II-A,
specifically focusing on horizontal object detectors.
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Subsequently, in Section II-B, we will introduce the existing
oriented object detection algorithms. These methods typically
utilize an oriented bounding box with an angle parameter to
determine the object’s position. Finally, Section II-C outlines
various label assignment strategies currently employed in
oriented object detectors.

A. HORIZONTAL OBJECT DETECTION

Currently, horizontal object detection has achieved sig-
nificant advancements, and numerous sophisticated object
detectors are widely employed. These detectors are primarily
categorized into two types: one-stage object detectors and
two-stage object detectors. The two-stage object detector,
exemplified by the R-CNN series [16], [17], [18], [19], [20],
generates high-quality proposal regions in the initial stage,
which are then refined in the subsequent stage. In contrast,
single-stage object detectors like SSD [21] and YOLO
series [22], [23], [24], [25], [26], prioritize the real-time
performance of the network. These detectors directly regress
the target’s location and predict its class. Typically, the
performance of one-stage object detectors is lower than that
of two-stage detectors. To mitigate the computational load
associated with anchors, anchor-free object detectors [27],
[28], [29], [30] have emerged. CornerNet [27] predicts the
top-left and bottom-right key points of the target, while
CenterNet [28] treats the object as a point, predicting key
points through a heatmap. FCOS [29], similar to the original
YOLO [22], assigns a category label and regresses bounding
box coordinates at each spatial location of the feature map.
However, FCOS regresses the distance from the current
location to the four edges of the bounding box for object
localization. RepPoints [30] employs sets of points to rep-
resent objects. Moreover, some works [31], [32], [33] based
on the Transformer [34] structure, rather than the traditional
CNN structure, eliminate certain additional computations
such as anchors and post-processing to achieve a true end-
to-end approach.

B. ORIENTED OBJECT DETECTION

Benefiting from the remarkable advancements in horizontal
object detection technology, oriented object detection has
progressed rapidly. Similar to horizontal detectors, existing
oriented object detectors are categorized into one-stage and
two-stage detectors. In the realm of two-stage oriented object
detection, Rol Transformer [1] utilizes the RRol learner
to supervise the learning of transformation parameters,
converting horizontal Rols to oriented Rols. This approach
avoids the need for numerous anchors. Simultaneously,
it utilizes RRolI Align to extract enhanced features, mitigating
the issue of feature misalignment. GlidingVertex [6] employs
regression of four length ratios to represent relative sliding
offsets corresponding to each edge, facilitating the learning
of offsets. ReDet [4] introduces a rotation-equivariant
network (ReCNN) into the detector to extract rotation-
equivariant features. It proposes rotation-invariant Rol Align
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FIGURE 1. Rotated loU. (a) The red box denotes the prediction box, the green box denotes the ground truth, the
gray area denotes the intersection of these two boxes, and ¢ denotes the rotation angle of the ground truth.

(b) The Rotated loU varies with the rotation angle of the boxes with different aspect ratios. Bounding boxes with
smaller aspect ratios are more significantly influenced by the angle. At around a 20-degree rotation, the loU
value of the bounding box with an aspect ratio of 0.25 and the initial horizontal box is already close to 0.5.
Typically, 0.5 serves as a threshold to evaluate the bounding box’s quality, as represented by a dashed line in the
graph. The figure clearly shows that after a 20-degree rotation, bounding boxes with an aspect ratio of

0.5 remain of high quality, while those with an aspect ratio of 0.25 have dropped below the “high-quality

boundary.’ For details of Rotated loU, please refer to [15].

(RiRol Align), which adaptively extracts rotation-invariant
features from equivariant features based on the orientation of
the ROIs. Oriented R-CNN [2] designs a lightweight rotation
region proposal network (RPN) that uses the center offset
to encode the oriented box, directly generating high-quality
oriented region proposals at minimal computational cost.
DODet [35] proposes an oriented proposal network (OPN),
which generates high-quality oriented proposals via a novel
representation scheme of oriented objects, and designed
a localization-guided detection head (LDH) that aims at
alleviating the feature misalignment between classification
and localization. QPDet [36] uses quadrant points in
a polar coordinate system to represent bounding boxes,
which naturally circumvents the boundary discontinuity
problem and enables the production of regular boxes without
postprocessing. SFRNet [37] designs two transformer-based
branches to perform function-specific feature refinement
for fine-grained classification and oriented localization,
separately. For single-stage oriented object detectors, BiFA-
YOLO [38] proposes a novel bi-directional feature fusion
module (Bi-DFFM) to efficiently aggregate features at
different resolutions for ship detection. R3Det [3] achieves
feature reconstruction and alignment by recording the
position information of the current refined bounding box
to the corresponding feature points via pixel-wise fea-
ture interpolation. S2ANet employs a lightweight anchor
refinement network (ARN) to generate high-quality oriented
anchors. It then adaptively aligns convolutional features
based on the coordinate offsets encoded by these oriented
anchors. TCD [39] proposes task collaboration assign-
ment (TCA) and task collaboration header (TCH) to enhance
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the consistency between classification and localization
predictions. Moreover, CP-FCOS [40] designs a category-
position (CP) module to optimize the position regression
branch features in the FCOS network, which can improve
target positioning performance in complex scenes by gener-
ating guidance vectors from classification branch features.
Mask OBB [41] treats oriented bounding box regression
as a pixel-level classification problem, which uses the
predicted masks to subsequently generate oriented bounding
boxes.

C. LABEL ASSIGNMENT

The label assignment process aims to allocate positive
and negative samples for training. In many anchor-based
oriented object detectors, such as S2ANet, the MaxIloU
matching strategy is commonly employed. This strategy
utilizes the IoU value between the anchor box and the
ground truth as the matching metric, selecting positive and
negative samples based on a predefined IoU threshold.
SASM [42] introduces Shape Adaptive Selection (SA-S),
which adjusts the IoU threshold according to the shape
of the sample. FCOSR [43] enhances the central sampling
approach of FCOS by introducing elliptic center sampling.
It further addresses the issue of insufficient sampling through
a fuzzy sample allocation strategy and a multi-level sampling
module. Oriented RepPoints [44] innovates with an adaptive
point quality metric and an assignment strategy to allocate
high-quality samples. RTMDet-R proposes a dynamic soft
label assignment strategy inspired by SimOTA [45]. This
strategy utilizes softened classification cost, regression cost,
and region cost as matching metrics.
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FIGURE 2. The theoretical maximum shape scores for different values

of ». With the increase of v, Smax gradually decreases, and the influence
of different loU values on the upper limit of the theoretical maximum
shape score also tends to be “flat.”

lll. METHOD

This section provides a detailed description of our proposed
method. In Section III-A, we define and present the
calculation formula for SalS. The improved shape-aware
label assignment strategy is discussed in Section III-B.
Section III-C outlines the network structure of A2Net.
Finally, an overview of the loss function utilized by the
network is presented in Section III-D.

A. SHAPE-AWARE IoU SCORE

The classic IoU-based quality assessment strategy generally
performs well for most objects but overlooks those with
distinct shapes. As depicted in Fig. 1, for objects with
smaller aspect ratios, the IoU values between their bounding
boxes and ground truth boxes are more influenced by
angles. Relying solely on IoU values is insufficient for a
comprehensive evaluation of a bounding box. Consequently,
we introduce SalS, consisting of two components: the shape
score and the IoU value. The shape score of a bounding box
is computed based on its IoU value with the ground truth and
the shape information of the ground truth. The formula for
the shape score § is as follows:

Sij = Smax;; x (1 —y))* (1

where S; ; represents the shape score of the i-th bounding box
relative to the j-th ground truth. y; denotes the aspect ratio
of the j-th ground truth, with the longer side defined as the
height, thus y; € (0, 1]. Smax; ; represents the theoretical
maximum shape score of the i-th bounding box relative to
the j-th ground truth. Smax; ; is defined as follows:

Lij

_lij 1,
Smax; j = e o —e v ifl;;>0, )
0 otherwise.

I; j represents the IoU value between the i-th bounding box
and the j-th ground truth. Since I;; € [0, 1], we use e
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to constrain the theoretical maximum shape score to be non-
negative.  is a hyperparameter that controls the upper limit
of the theoretical maximum shape score and the rate at which
this limit increases as IoU decreases. We set the default value
of w to 2. As shown in Fig. 2, for bounding boxes with
relatively low IoU values, we assign a higher theoretical
maximum shape score, assuming that the low IoU values
result from a large aspect ratio and arbitrary orientation.
This is also the reason why we refer to it as the theoretical
maximum shape score. However, boxes with an IoU of 0 are
not considered.

Based on (1) and (2), we get the calculation method of
SalS, which actually simply adds the shape score and the
IoU value. We chose not to introduce additional parameters
to assign weights to S;; and /;;, as we have already used
hyperparameters in (2) to achieve satisfactory results. The
calculation of SalS is as follows:

SalS;;=Sij+1; 3)

where SalS; ; represents the SalS of the i-th bounding box
relative to the j-th ground truth, while S; ; and /; ; represent,
respectively, the shape score and IoU between the i-th
bounding box and the j-th ground truth. We can see that
SalS is jointly influenced by shape information and IoU
value. The theoretical maximum shape score and aspect ratio
determine the shape score, while the IoU value determines
the theoretical maximum shape score.

B. SHAPE-AWARE LABEL ASSIGNMENT

We improve the dynamic soft label assignment strategy,
as introduced in Section III-A, based on SalS. The enhanced
label assignment strategy is referred to as the Shape-aware
Label Assignment. For convenience, we abbreviate the
dynamic soft label assignment strategy as DSLA, while
our shape-aware label assignment strategy is abbreviated as
SalLA. Similar to DSLA, SalLA utilizes a cost function to
compute a cost matrix as the matching criterion. The cost
function C is defined as follows:

C=MCys + )\ZCreg + A3Ccenter @

where Cjs, Creg, and Ceenrer correspond to the classification
cost, regression cost, and region cost, respectively. The
weights for these three costs are denoted as A1, Az, and A3.
By default, following RTMDet-R, we set \| = 1, \» = 3,
and \3 = 1.

Inspired by GFL [46], DSLA utilizes IoU as a soft label
to reweight the classification cost for different regression
qualities, avoiding noise and unstable matching caused by
binary labels. In SalLA, we employ our SalS instead of IoU
as the soft label. The calculation formula for the classification
cost C,yg is as follows:

C.is = CE(P, SalS) x (SalS — P)* 4)

where CE denotes cross-entropy loss, P represents the
estimated probability.
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FIGURE 3. A2Net network structure. It is composed of backbone network, feature pyramid network and detection head corresponding to feature map of
different layers. By default, we use CSPNeXt series as the backbone network and CSPNeXt-PAFPN as the feature pyramid network. Each detection head
comprises an initial detection head and a refinement detection head. AlignConv uses the initial bounding box information output by the initial detection
head to apply deformable convolution to the feature map from the feature pyramid network, obtaining axis-aligned features. The refinement detection
head utilizes these aligned features to predict category and a set of scaling coefficients at each position on the feature map. After mapping the scaling
coefficients through a mapping function, they are multiplied by the initial bounding box to obtain the refined bounding box as the final prediction.

We have omitted the classification branch in the initial detection head as it is only used during the training phase. During testing, we only require the
results from the regression branch. The detection heads across feature pyramid layers share weights.

Similarly, we apply SalS for calculating the regression
cost. We take the logarithm of SalS to amplify the maximum
difference between the best and worst matches, better dis-
tinguishing high-quality matches from low-quality matches.
The calculation formula for the regression cost Cyeq is as
follows:

Creg = —log(SalS). 6)

The region cost Ceenser, like DSLA, utilizes central priors
to assign lower matching costs to bounding boxes closer to
the center of the ground truth. The calculation formula is as
follows:

Xpred —Xot | —
Ceenter = al pred g | =P @)

where x,.¢ and xg denote the center coordinates of the
predicted bounding box and ground truth, respectively.
o and B are hyperparameters, and by default, we set « = 10
and g = 3.

Based on the cost C, we assign the samples through a
dynamic top-k strategy at different iterations. Please refer to
Dynamic k Estimation strategy in OTA [47] for more details.
By default, we set k = 13.

C. A2Net

We have developed an anchor-free alignment network,
A2Net, for oriented object detection in remote sensing
images, building upon the anchor-free oriented object
detection network RTMDet-R and drawing inspiration from
the alignment of features in the anchor-based oriented
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object detection network S2ANet. The network structure is
illustrated in Fig. 3. A2Net’s head consists of two parts:
the initial detection head and the refinement detection
head. Each detection head comprises a classification branch
and a regression branch. The regression branch of the
initial detection head outputs a five-dimensional vector
(I,t,r,b,0) at each spatial position, representing the initial
oriented bounding box. AlignConv uses these initial oriented
bounding boxes to apply deformable convolution to align
features from the feature pyramid network. The classification
branch of the refinement detection head outputs a vector of N
elements at each spatial position (where N is the total number
of classes), while the regression branch at each position
outputs a set of scaling coefficients (Al, Az, Ar, Ab, AB).
The final oriented bounding box (I, ¢, ¥/, b’, 8’) is calculated
using the following formula:

@'t b, 0) =, 1,r,b,0) x As ®)

where As represents the scaling factor output by the
refinement detection head, and we adjust the initial box
within the scaling range of [0.5,1.5]. The formula for
calculating As is as follows:

2 x sigmoid(A-) — 1
2
here, A- represents (Al, At, Ar, Ab, AO), and sigmoid

is a linear mapping function that maps its input to the
range [0, 1].

As=1+ )
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TABLE 1. Ablation experiments of SaLA. The base detector is A2Net, using CSPNeXt-s as the backbone network. \;, \,, and )5 denote the weight of the

classification cost, the regression cost, and the region cost, respectively.

A1 1 0 0 1 1 0 1 1 1 1

A2 0 1 0 1 0 1 1 2 3 4

A3 0 0 1 0 1 1 1 1 1 1
mAP (%) 66.19 67.71 6582 5755 69.28 6880 70.05 69.55 69.27

D. LOSS FUNCTION

Each detection head in A2Net assigns a category label at
each position in its feature map and regresses the object’s
position. The total loss is composed of two parts: the loss
from the initial detection head and the loss from the refine-
ment detection head. The total loss function is defined as
follows:

Liotai = Linir + Lreﬁne- (10)

The loss for each detection head includes both classification
loss and regression loss. As their calculation formulas are the
same, we use L- to represent the loss for any detection head,
specifically defined as follows:

(11)

where the classification loss L. is calculated using Quality
Focal Loss (QFL) [46], and the regression loss Ly, is
computed using Rotated IoU Loss [15]. The parameter
A is a hyperparameter used to balance the classifica-
tion and regression losses, and we set A 2 by
default.

L-= Lcls + /\Lreg

IV. EXPERIMENT

A. DATASET

DOTA is a challenging dataset for large-scale aerial image
object detection. It consists of 2,806 aerial images of 188,282
objects of different scales, orientations, and shapes, each
of which ranges in size from 800 x 800 to 20,000 x
20,000 pixels. The dataset is divided into 15 categories:
plane (PL), baseball diamond (BD), bridge (BR), ground
track field (GTF), small vehicle (SV), large vehicle (LV),
ship (SH), tennis court (TC), basketball court (BC), storage
tank (ST), soccer ball field (SBF), roundabout (RA),
harbor (HA), swimming pool (SP), and helicopter (HC). The
proportions of the training set, validation set, and testing set
in DOTA are 1/2, 1/6, and 1/3, respectively.

DIOR-R is a large-scale benchmark dataset for object
detection in optical remote sensing images, which con-
sists of 23,463 images and 192,518 object instances
annotated with oriented bounding boxes. The dataset is
an extended version of DIOR [48] annotated with ori-
ented bounding boxes, which shares the same images
with DIOR. It is categorized into 20 classes, including
bridge (BR), ship (SH), airplane (APL), stadium (STA), ten-
nis court (TC), chimney(CH), overpass (OP), vehicle (VE),
baseball field (BF), airport (APO), basketball court (BC),
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ground track field (GTF), expressway service area (ESA),
train station (TS), golf field (GF), dam (DAM), expressway
toll station (ETS), storage tank (STO), harbor (HA), and
windmill (WM).

B. IMPLEMENTATION DETAILS

For the DOTA dataset, the training and validation sets are
used for training our model, and the testing set is used
for evaluation. We crop the original images into a set
of 1024 x 1024-sized images with a 200-pixel overlap.
By default, we use CSPNeXt series [12] as the backbone and
CSPNeXt-PAFPN [12] as the neck. We employ the stochastic
gradient descent (SGD) optimizer for training, with weight
decay and momentum set to 0.0001 and 0.9, respectively.
All models are trained for 12 epochs with an initial learning
rate of 0.01, reducing the learning rate by a factor of 10 at
the 8th and 11th epochs. During training, we randomly apply
horizontal, vertical, or diagonal flips to the images with a
probability of 0.75. Our approach was implemented based
on mmrotate [49], and all experiments were performed on a
single NVIDIA A100 PCle with a batch size of § per training
iteration. For the DIOR-R dataset, we simply randomly
flipped the images horizontally, vertically, or diagonally
with a probability of 0.75, otherwise remaining consistent
with DOTA.

C. ABLATION STUDIES

1) SHAPE-AWARE LABEL ASSIGNMENT

The impact of various weights in the cost function on the
experimental results was investigated. Table 1 displays the
outcomes, indicating that the optimal performance was
achieved when A\; = 1, A\, = 2, and A3 = 1. Since the default
settings are close to optimal performance, we are consistent
with RTMDet-R and set Ay = 1, A, = 3, and A3 1.
We used RTMDet-R and our A2Net as the benchmark
network to verify the effectiveness of SalLA. As shown in
Table 2, the performance of RTMDet-R and A2Net using
DSLA on the testing set of DOTA is 70.54% mAP and
72.17% mAP, respectively, and after using SalLA as the
label assigner, they reached 72.73% mAP and 73.75% mAP,
respectively, an increase of 2.19% mAP and 1.58% mAP. This
verifies the effectiveness of SalLA.

2) A2Net
We studied the impact of individual components of
A2Net, and the results are shown in Table 3. The first
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TABLE 2. Comparison of SaLA and DSLA. The base detectors are
RTMDet-R and our A2Net, both using CSPNeXt-I as the backbone network
and CSPNeXt-PAFPN as the feature pyramid network. DSLA represents
the dynamic soft label assignment strategy, while SaLA represents the
shape-aware label assignment strategy as described in Section IlI-B.

Model Label Assigner | mAP (%)
RTMDet-R DSLA 70.54
RTMDet-R SaLA 72.73

A2Net DSLA 72.17

A2Net SaLA 73.75

TABLE 3. Ablation experiments of A2Net. v indicates that the
corresponding module is used. Use CSPNeXt-l as the backbone network
and use CSPNeXt-PAFPN as the feature pyramid network.

SaLA  Refinement Head | mAP(%)
70.54
v 72.73
v 72.17
v v 73.75

TABLE 4. More comparisons of SaLA and DSLA. All these methods utilize
CSPNeXt-PAFPN as the feature pyramid network.

Model Bakebone Label Assigner | DOTA mAP (%) | DIOR-R mAP (%)
RTMDet-R | CSPNeXt-tiny DSLA 64.62 51.82
RTMDet-R | CSPNeXt-tiny SaLA 66.93 (+2.31) 53.82 (+2.00)
RTMDet-R CSPNeXt-s DSLA 68.27 54.23
RTMDet-R CSPNeXt-s SaLA 68.95 (+0.68) 56.89 (+2.66)
RTMDet-R CSPNeXt-m DSLA 68.81 58.68
RTMDet-R CSPNeXt-m SaLA 71.01 (+2.20) 59.81 (+1.13)
RTMDet-R CSPNeXt-1 DSLA 70.54 60.90
RTMDet-R CSPNeXt-1 SaLA 72.73 (+2.19) 62.64 (+1.74)

A2Net CSPNeXt-tiny DSLA 65.94 55.08

A2Net CSPNeXt-tiny SaLA 67.14 (+1.20) 56.42 (+1.34)

A2Net CSPNeXt-s DSLA 68.20 58.50

A2Net CSPNeXt-s SaLA 69.55 (+1.35) 58.21 (-0.29)

A2Net CSPNeXt-m DSLA 71.88 60.90

A2Net CSPNeXt-m SaLA 72.68 (+0.80) 61.83 (+0.93)

A2Net CSPNeXt-1 DSLA 72.17 62.63

A2Net CSPNeXt-1 SaLA 73.75 (+1.58) 63.77 (+1.14)

row shows the performance of our baseline method
RTMDet-R, which has the same network structure as
A2Net without the refinement detection head and achieves
70.54% mAP. After replacing DSLA with our SalA,
there is an improvement of 2.19% mAP, reaching 72.73%
mAP. Adding the refinement detection head increases
the performance further improves to 73.75% mAP. With
these components, our A2Net achieves a 3.21% mAP
performance improvement at a small cost compared
to RTMDet-R.
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TABLE 5. Parameters versus accuracy on the testing set of DOTA.
RTMDet-R uses the default DSLA for label assignment, while A2Net uses
our SaLA. All models use CSPNeXt-PAFPN as the feature pyramid network.

Model Bakebone Params | GFLOPs mAP (%)
RTMDet-R | CSPNeXt-tiny | 4.87 M 20.45 64.62
A2Net CSPNeXt-tiny 529 M 27.63 67.14 (+2.52)
RTMDet-R CSPNeXt-s 8.85M 37.62 68.27
A2Net CSPNeXt-s 9.60 M 50.36 69.55 (+1.28)
RTMDet-R CSPNeXt-m 24.66 M 99.76 68.81
A2Net CSPNeXt-m 26.33 M 128.39 72.68 (+3.87)
RTMDet-R CSPNeXt-1 5225M 204.21 70.54
A2Net CSPNeXt-1 5521 M 255.06 73.75 (+3.21)
—#— Rotated RetinaNet
74 —A— R3Det
—&— S2ANet
—&— Rotated FCOS
RTMDet-R
72 X RTMDet-R+SaLA
* A2Net
— —*— A2Net+SaLA
70 N
-9
< *
= ]
68 [ ]
A
66
64
5 10 15 20 25 30 35

FPS (Tesla V100 PCle)

FIGURE 4. Speed versus accuracy on the testing set of DOTA.
All experiments were performed on a single Tesla V100 PCle.

3) MORE BACKBONES AND DATASETS

We conducted additional experiments using different back-
bone networks on the DOTA and DIOR-R datasets. The
results, shown in Table 4, indicate that all models, except
for A2Net, which uses CSPNeXt-s as the backbone and
drops by 0.29% mAP on the DIOR-R dataset, have
more or less performance improvement on both datasets,
with the maximum improvement obtained on the DOTA
dataset being 2.31% mAP and on the DIOR-R dataset
being 2.66% mAP.

4) PARAMETERS VERSUS ACCURACY

We analyze the complexity of our algorithm in Table 5.
Compared to RTMDet-R, the extra computation comes from
the refinement head we added, and SalLA is cost-free.
The refinement head is lightweight, and it is worthwhile
that we obtain a performance improvement of at least
1.28% mAP at a small cost, with a maximum improvement
of 3.87% mAP.
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FIGURE 5. Some comparison results between A2Net and the baseline method on the testing of DOTA. The baseline
model is RTMDet-R, and the confidence threshold for visualization results is set to 0.3.

FIGURE 6. Some typical failure predictions of our method on the testing set of DOTA.

5) SPEED VERSUS ACCURACY

Fig. 4 illustrates the trade-off between speed and accuracy.
All methods use ResNet-50 [50] and FPN [51] except
RTMDet-R and our A2Net which uses CSPNeXt and
CSPNeXt-PAFPN. The hardware platform for testing is
a single Tesla V100 PCle. The batch size for testing
is 1 and the input size is 1024 x 1024. We iterated
2000 times to get more accurate results. From Fig. 4,
we can find that our SaLA enables RTMDet-R to out-
perform the single-stage detectors in both speed and
accuracy, with accuracy up to 72.73% mAP and speed
up to 33 FPS. A2Net is a compromise that guarantees
faster speed than the single-stage detectors while obtain-
ing higher accuracy than RTMDet-R. The method has
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an accuracy of up to 73.75% mAP and a speed of
up to 24.2 FPS.

D. COMPARISONS WITH STATE-OF-THE-ART

We conducted a performance comparison of our proposed
A2Net with other state-of-the-art methods on DOTA.
To ensure a fair comparison, we retrained all methods using
the same training strategy on our machine. All experiments
were conducted based on mmrotate. As shown in Table 6,
our approach achieved a mAP of 73.75%, exhibiting
a 3.21% mAP improvement compared to the baseline
method (RTMDet-R). Simultaneously, A2Net demonstrated
competitive performance compared to other anchor-based
methods. We visualize some high-quality results with
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TABLE 6. Comparisons with state-of-the-art methods on the testing set of DOTA. R50 denotes ResNet-50. ReR50, similar to R50, employs a
rotation-equivariant convolutional network as utilized in ReDet. By default, RTMDet-R and A2Net use CSPNeXt-PAFPN, while other methods adopt FPN.
All methods use single-scale training and testing. = indicates that the results are from the original paper. { represents our SaLA as the label assignment

strategy.
Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP (%)
Anchor-base (two-stage):
Rotated Faster-RCNN [18] R50 88.49 79.10 51.27 6890 7846 7462 8637 90.68 79.96 8478 5511 6534 6682 69.65 51.63 72.75
Rol Transformer R50 88.59 8332 5515 69.57 7893 8320 83.08 90.82 86.60 8554 63.12 6098 7676 72.13  50.32 75.54
ReDet ReR50 8822 8391 5441 7326 7921 8355 8836 90.65 8732 8590 64.03 60.77 76.69 7105 62.71 76.67
AOPG™ [14] R50 89.27 8349 5250 69.97 7351 8231 8795 90.89 87.64 8471 60.01 66.12 7419 6830 57.80 75.24
DODet* R50 89.34 8431 5139 71.04 79.04 8286 83.15 9090 86.88 8491 62.69 67.63 7547 7222 4554 75.49
Oriented R-CNN R50 88.80 80.83 5428 7296 7879 8257 8794 90.74 85.85 85.57 6444 6278 7325 68.80 50.87 75.23
QPDet* R50 89.55 83.66 5406 7393 7893 83.08 8329 90.89 86.60 84.80 62.03 6555 74.16 70.09 58.16 76.25
Anchor-base (one-stage):
Rotated RetinaNet [52] R50 87.54 7897 3398 6287 78.01 60.53 76.85 90.88  82.26 81.61 58.00 61.10 54.09 64.81 48.08 67.97
R3Det R50 89.04 73.00 3482 58.13 77.84 73.80 83.62 90.88 73.51 83.23 5199 60.25 5741 57.16  35.55 66.68
S2ANet R50 88.26 74.14 4752 6746 7924 7925 8756 9090 81.21 85.18 5442 62.08 6634 6571 4125 71.37
TCD* R50 70.89 65775 5691 89.27 70.67 7654 7676 60.16 8379 7195 90.88 72.13 7121 86.95 83.81 75.18
Anchor-free:

Rotated FCOS [29] R50 88.44 67.64 4335 59.11 7998 78.02 8732 90.88 77.65 8341 51.07 59.65 63.64 64.63 41.23 69.07
RTMDet-R CSPNeXt-tiny | 88.20 61.70 3398 5391 7774 7494 8575 90.86 76.17 8434 37.13 5397 5395 6140 3526 64.62
RTMDet-R CSPNeXt-s 88.76  69.80 37.16 57.63 7873 78.09 8735 90.85 8148 85.03 4650 5539 60.83 6398 42.54 68.27
RTMDet-R CSPNeXt-m 89.43 60.88 39.87 60.76 79.58 7879 8828 90.90 79.58 8470 50.81 57.54 64.09 6725 39.69 68.81
RTMDet-R CSPNeXt-1 89.17 7338 4130 6229 79.54 80.63 8825 90.89 80.68 8639 4957 5744 6590 63.61 49.04 70.54

A2Net’ CSPNeXt-tiny | 88.26 66.75 3643 5839 7823 77.66 8691 90.87 7831 8428 4538 5253 6445 61.63 37.05 67.14
A2Net’ CSPNeXt-s 88.46 68.82 39.13 62.01 7858 79.61 8747 90.87 77.85 8639 4879 56.69 6569 67.02 4588 69.55
A2Net’ CSPNeXt-m 89.40 76.07 4141 69.75 7993 8121 83.04 9091 8432 85.00 5657 5741 6855 69.69 51.92 72.68
A2Net" CSPNeXt-1 89.46 7479 4496 68.18 79.84 81.16 8839 90.89 8298 84.84 6198 60.04 70.18 69.52 59.07 73.75

better localization of our method compared to the baseline
in Fig. 5.

V. CONCLUSION
In this paper, we propose the Shape-aware IoU Score (SalS),
which integrates IoU and object shape information to
alleviate differences caused by the varying sensitivity to
angles in objects with different shapes. Building upon
SalS, we enhance the dynamic soft label assignment
strategy and introduce the Shape-aware Label Assignment
strategy (SalLA), which incorporates classification cost,
regression cost, and region priors to allocate more appropriate
samples for the training process. Additionally, we devise an
anchor-free alignment network, A2Net, for object detection
in remote sensing images. A2Net is an improvement over
RTMDet-R, utilizing AlignConv and introducing a refined
detection head to address the feature misalignment issue
arising from the arbitrary orientation of objects. We con-
ducted extensive experiments on large-scale aerial image
datasets, DOTA and DIOR-R, to validate the effectiveness
of our approach. A2Net with SalLA achieved competitive
performance in the DOTA OBB task. Furthermore, compared
to anchor-free methods, our approach demonstrated state-of-
the-art performance.

Future work: As shown in Fig. 6, our method fails for
some small and dense objects. It also performs poorly for
some ring-shaped objects (e.g., storage tanks), and for long
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and narrow objects, it also appears to detect parts of them as
objects. The inability to accurately predict large objects, such
as ground track fields, also occurs. Therefore, in our future
work, we plan to explore the following aspects:

o« We will learn from and enhance ERF-RTMDet [53],
which focuses on high-precision detection of small
objects, to improve accuracy of small objects in aerial
images.

o Localization based on rotated bounding boxes often
lacks precision due to objects having arbitrary ori-
entations and dense arrangements. Some works [41],
[54], [55] have demonstrated the effectiveness of
generating bounding boxes by predicting masks. We will
conduct further research in this direction.

« Objects in aerial images exhibit significant scale varia-
tions. In the future, we will focus on high-performance
multi-scale rotated object detection.
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