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ABSTRACT Recently, there has been growing interest in utilizing skeleton data for human action
recognition due to its compact size and ability to capture action characteristics effectively. However,
in complex classroom scenarios, student actions encounter challenges such as high inter-class similarity,
differentiation difficulty, and redundancy, which hinder effective differentiation using existing unidirectional
feature splicing multimodal methods. Therefore, we propose a key skeleton points guided classroom action
recognitionmethod based onmultimodal symmetry fusion. This method is primarily characterized by several
innovations. Firstly, we utilize a method called Variable Series Mean to select the most significant key
skeleton points of actions. Then, these points are input into a model to learn the relevant weight values,
guiding the generation of salient regions in RGB images. Finally, in the data fusion stage, we utilize the
Symmetric Multi-Modal optimization function to integrate the three data streams, addressing bias issues
arising from unidirectional feature splicing methods. We conducted comprehensive experiments on two
datasets: NTU 60 and Classroom. Synthesizing results of multiple methods, our method achieves state-
of-the-art performance on the NTU 60 dataset and the second-best performance on the private Classroom
dataset. Despite not attaining the highest recognition accuracy on the Classroom dataset, this approach
offers substantial benefits in terms of time and storage, providing a real-time solution for recognizing
student actions in the classroom. Therefore, our method effectively captures and integrates the representation
information from different modalities, enabling accurate recognition of student actions in the classroom.

INDEX TERMS Action recognition, multimodal, skeleton data, classroom action.

I. INTRODUCTION
Currently, the common skeleton-based action recognition
methods [1] take the 3D coordinates of the skeleton points
as the input to the model and mine the spatial information
carried by the original skeleton data through the values
of the x, y, z three coordinates to characterize the skeleton
topology. However, there are problems when such methods
are applied to recognize students’ actions in real classroom
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scenarios. Firstly, if only the spatial information of skeleton
is considered for action recognition, achieving accurate
recognition for similar action segments that occur within
a specific timeframe is challenging. For instance, Figure 1
illustrates a series of two actions: standing up and sitting
down. As shown in Figure 1, the spatial structures of these
two skeleton points are similar in the third and fourth frames
of the action sequence. Accurately distinguishing between
the two postures based solely on the spatial information
of the skeleton points is impossible. Secondly, suppose the
time dimension is introduced into the action recognition
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of skeleton data by characterizing the action changes on
the consecutive timestamps. In that case, the difficulty
of distinguishing similar actions between classes can be
partially solved. Due to limitations in sensor accuracy, the
acquired skeleton data may exhibit unstable offset of point
coordinates when the observed subjects undergo dynamic
changes. This instability hinders the differentiation between
genuine changes in skeleton coordinates caused by actions
and coordinate instability induced by the device. Lastly,
the multimodal methods for RGB data address the issues
of inaccurate data and poor stability in unimodal mode.
Whereas the conventionalmultimodal approach only involves
simple feature splicing. Additionally, the unidirectional loss
function, causing data bias, fails to capture deep semantic
information. These significantly affect the action recognition
accuracy.

Aiming at the above problems, this paper puts forward
the following solution ideas: firstly, the skeleton data (Xske)
is represented as two parts: skeleton point data (Xjoints) and
skeleton bone data (Xbones), and the temporal and spatial
relationship modeling and feature extraction are carried
out respectively. At the same time, the extraction of the
‘‘key point’’ method, named the Variable Series Mean
(VSM) method, to capture the skeleton points with the
most significant change, to preliminarily locate the region of
interest of the action of the skeleton data. Secondly, image
data is introduced to learn the region of interest of the skeleton
data, and the weights of the key skeleton points are used to
guide the RGB data to enrich further the features of the region
of interest of the action. Finally, the Symmetric Multi-Modal
(SMM) loss function is designed to realize the bi-directional
fusion of the skeleton data and the RGB data to improve
the accuracy of action recognition. The contributions of this
paper are as follows:

(1) We propose a novel data selection method, called the
Variable Series Mean (VSM) method, which aims to analyze
change sequences. Selecting the most representative skeleton
points before inputting them into the network enhances
computing efficiency for recognizing student actions in the
classroom while providing accurate spatiotemporal informa-
tion for the skeleton data.

(2) We propose a classroom action recognition technique
that combines skeleton data and RGB data to enhance
the quality of feature representation for both modalities.
This technique utilizes graph convolution to capture the
key skeleton data points, guiding the generation of the
Action Focused Area (AFA) in the corresponding RGB
image. Additionally, incorporating the RGB modality, which
provides semantic information about the objects surrounding
the action, enables accurate recognition of actions with high
inter-class similarity at a fine-grained level.

(3) We propose a Symmetric Multi-Modal loss function
(SSM). This paper proposes a crossover loss function
considering three modalities: skeleton points stream, skeleton
bones stream, and RGB stream. The technique aims to
address the problem of fusion bias caused by insufficient data

FIGURE 1. Example diagram of students’ continuous action to stand up
and sit down.

in unidirectional fusion to achieve a balanced representation
of multiple modalities in action recognition tasks.

II. RELATED WORK
A. VISION-BASED UNIMODAL ACTION RECOGNITION
In the field of computer vision, approximately 80% of the
data originates from the visual image modality, considered
the most direct and effective way to acquire relevant
features and effectively capture valuable information. For
the recognition of visual information actions, Convolutional
Neural Networks [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]
are currently widely utilized. In 2015 Tran [7] proposes the
Convolutional 3D architecture (C3D).The same year Tran [8]
also combined the residual network with the C3D network
and proposed the Res3D network. The Res3D network further
enhances the performance of the network, running twice as
fast as C3D with half the model size. Wu et al. [9] extends 3D
CNN to depth and pose data beyond RGB data by introducing
spatio-temporal attention in 3D convolution, visualizing
the spatial configuration of the body parts to evaluate its
capability for spatio-temporal multimodal learning for video
action recognition. Davoodikakhki and Yin [11] introduces
a multilayer attention network into a 3D volume framework
with hierarchical classification of source datasets, network
pruning, and skeleton-based preprocessing to improve the
robustness and performance of the model.

With the abundance of vision-based RGB data, near-
human recognition accuracy has been achieved using a
single RGB modality. However, multi-stream convolutional
networks stack convolutional layers repeatedly to obtain
a large temporal sensory field, which introduces a large
number of parameters, leading to a dramatic increase in
memory consumption and computation; at the same time,
convolutional networks usually only consider relatively short
time intervals and are not able to capture the information of a
long span of time.

B. SKELETON-BASED UNIMODAL ACTION RECOGNITION
Graph Convolutional Networks utilize the graph topology
of natural connections between skeleton joints to represent
3D spatial relationships, which allows for the natural preser-
vation of skeleton action information [1], [12], [13], [14].
Yan et al. [13] considers that the dynamic information of the
human skeleton is crucial for action recognition. In response,
he proposed a network model called ST-GCN, which can
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effectively capture the implicit spatial and temporal patterns
in the data.

Shi et al. [1] focused on the network topology and pro-
posed Two-Stream Adaptive Graph Convolutional Networks
(2s-AGCN) in a way that learning can be integrated either
uniformly or individually by backpropagation algorithms that
take into account first-order and second-order features such
as the length and orientation of skeleton. Chen et al. [14]
proposes CTR-GCN, a novel topology-optimized graph
convolutional network for dynamically learning different
topologies and efficiently aggregating joint features across
channels. This is achieved by learning a shared topology as
a common prior for all channels and refining the channel
topology using channel-specific correlations.

The Transformer-based methods [15] do not depend
on the human structure and can model the relationship
between all points compared with the methods mentioned
above. Considering this advantage, Transformer based
method [16], [17], [18], [19] is proposed for skeleton
action recognition tasks. Plizzari et al. [17] introduces
self-attention into graph convolution and uses a spatial
and temporal self-attention module to model the corre-
lation of intra-frame and inter-frame joints respectively.
Qiu et al. [16] proposes a Spatio-Temporal Tuple Transformer
(STTFormer), which can establish the relationship between
different joints in consecutive frames and has a relatively
strong ability to distinguish similar actions to state-of-the-art
results.

However, the existing Transformer-based methods cannot
accurately capture the correlation of different skeleton points
between frames, which the correlation is beneficial since
the extreme similarity of different skeleton points between
adjacent frames in a classroom.

C. MULTIMODAL ACTION RECOGNITION
Multimodal data is extensively employed in action recogni-
tion because it can fuse data from various sources such as
audio, video, and text. This flexibility allows capturing action
characteristics from multiple perspectives, providing more
prosperous and comprehensive information, and accom-
modating diverse action recognition scenarios. By fusing
multimodal data, the uncertainty inherent in individual data
sources can be mitigated, leading to improved accuracy
and robustness in recognition. Das et al. [10] designed the
VPN, whose two key components are spatial embedding
and attention network. The spatial embedding projects 3D
poses and RGB cues into a common semantic space,
and the attention network provides weighted processing
information that enables action recognition frameworks to
learn spatiotemporal features better using both modalities.
In 2021, Bruce designed a novel multimodal fusion network
for indoor scenes called a Teacher-Student Multimodal
Fusion model (TSMF) [20] that fuses the skeleton and RGB
modalities at the model level for action recognition. In the
second year, Bruce proposed a Model-based Multimodal

FIGURE 2. Overall framework of the proposed method.

Network(MMNet) [21], which uses the attentional weight
values in the skeleton domain to guide the later modal fusion,
achieving the best recognition results at that time.

Multimodal approaches are popular because of the comple-
mentary information that multiple-modal data can provide.
However, most of the above multimodal methods are based
on standard datasets for iterative optimization, which dilute
the design module for discriminative features in the face
of the problems of minor class differences, high inter-
class similarity, and single data in the data in complex
real classroom scenarios. Even though methods attempt to
address the incompleteness of information within a single
data domain by incorporating multiple modalities, they often
rely on simple feature-splicing methods. These methods limit
the exploration of multiple modal features’ full potential
and fail to consider the potential bias introduced by the
unidirectional multiplicative fusion.

III. METHOD
A. OVERALL FRAMEWORK
This chapter mainly focuses on the overall framework of
our proposed method in this paper, as shown in Figure 2,
which mainly consists of the following modules: 1) Skeleton
Select Module; 2) Skeleton Points GuidanceModule; 3) Loss
Function Module.

B. MODEL INPUTS
The input training sample data of this model, starting from
t = 1 and ending at time T . The primary purpose is to
model and characterize the temporal and spatial relationship
between the skeleton frame data acquired during this time
interval. The initial input sequence of the model skeleton
data is: Xske =

{
x1ske, x

2
ske, . . . , x

N
ske

}
∈ RN×C×V×T , where

N denotes the batch size, C is the number of channels, V is
the number of skeleton points in each frame, and the skeleton
data acquired on the Kinect sensors [22] V = 25, and T is
the number of time frames.

Specifically, the input to the temporal skeleton point is in
the form of:Xjoints=

{
X i (t)|i=1, 2, . . . ,V ;t=1, 2, . . . ,T

}
,

the value of i is the index value corresponding to the
skeleton point, t is the selected time frame. At time t , the
ith skeleton point representation is obtained from the Kinect
sensor capturing the three-dimensional coordinates of the
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FIGURE 3. Visualization of the largest nodes for different actions and
their variations.

classroom student’s actions, i.e., X i (t) =
(
x it , y

i
t , z

i
t
)

∈

R3. As for the spatial skeleton bone, the bone sequence
is obtained from the skeleton joint points transforma-
tion, so the input formula for the bone is: Xbones ={
X i (t) − X j (t) |i, j = 1, 2, . . . ,V ; t = 1, 2, . . . ,T

}
. Simi-

larly, the i, j refer to the ith and the jth skeleton point,
respectively, and t is the selected time frame.
For the visual modality, the RGB data is collected by

Kinect at the same time as the sampling of skeleton data.
This sampling strategy facilitates the alignment and fusion
of feature information extracted from both skeleton and RGB
data, allowing key skeleton points to guide RGB generation
of action focus areas at any time in the classroom. The
specific input data sequence of visual RGB is: Ximg ={
x1img, x

2
img, . . . , x

N
img

}
∈ RN×C×H×W , where N indicates

the batch size, C is the number of channels, the RGB data
acquired on the Kinect sensor C = 3, H indicates the height
of each image,W is the width of the image.

C. DEFINITION OF KEY SKELETON POINTS DATA
Relying on the statistical generalization study and analysis
of the skeleton data of students’ actions in the classroom,
it is found that the categories of students’ actions occurrences
are generally concentrated in seven categories, such as
raising hands, sitting squarely, sleeping on the table, writing,
standing up, sitting down, and playing with cell phones.
Further digging deeper into the semantic information carried
by actions in the classroom context, this paper finds that
the key areas of these action occurrences are focused
on the localized position of the students’ upper body,
as shown in Figure 3. By observing the results of the action
visualization and comparing the different action categories
to the baseline action (sitting down), We observed that
the skeleton points exhibiting the highest rate of change
varied among different actions. This indicates that certain
important skeleton points contain semantics that influence
and determine the characteristics of the discriminative
action.

This paper proposes a Variable Series Mean (VSM)
method for selecting the key skeleton points. By appling
the VSM method, the 25 skeleton points can be further
subdivided, and the input data can be localized to the points
with the most significant changes in the skeleton data points
of the actions, as shown on the right side of Figure 3
(highlighted with a red circle on the far right side ).

In Skeleton Select Module, the aim is to use the
VSM method to capture the skeleton points in the
upper body with the largest variation. Specifically, for
the input points data Xjoints and bone data Xbones,
lightweight processing of the data is carried out while
ensuring accuracy. The output of the skeleton point
branch is X ′

joints = {X i(t)|i = 1, 2, . . . ,K ; t = 1, 2, . . . ,T },
and the output of the bone branch is X ′

bones =

{X i(t) − X j(t)|i, j = 1, 2, . . . ,K ; t = 1, 2, . . . ,T }. Where K
is a hyperparameter is the agent task according to the skeleton
data input judgment, pick out the amplitude of the action
of the largest change in the first points, the experiment to
select the first five points, that is K = 5. The output
X ′
joints, X

′
bones is compared with the original input data Xjoints,

Xbones, the spatial structure of the skeleton point information
and skeleton information after the output selection will not
change. The only change is the number of skeleton sampling
points, which can remove a large amount of redundant
information contained in the original information and, at the
same time, can maintain the temporal and spatial information
contained in the original skeleton data to a great extent.

D. DEFINITION OF ACTION FOCUS AREAS FOR RGB
GENERATION GUIDED BY SKELETON DATA
As shown in Figure 3, after experiencing the data selection,
in the Skeleton Points Guidance Module, for the skele-
ton data stream, this paper adopts the Spatial Temporal
Graph Convolution Neural Network framework (ST-GCN)
to encode the skeleton data information features. Using a
spatial graph structure to represent the skeleton data topology
allows for better adaptation to the action. Moreover, the
graph’s strong ability to handle non-Euclidean data enables
the practical mining of spatial and temporal relationships
between skeletons. Therefore, applying this approach to
classroom student actions recognition aligns well with the
data’s inherent characteristics. However, the input skeleton
point is processed indiscriminately for the existing graph
convolution methods, so the model introduces a large amount
of redundancy. Meanwhile, no direct operation is available
for the existing ST-GCN network to select the key features of
the skeleton points. Based on this, we improve the data input
style by selecting the most representative skeleton data as the
initial region of interest for the ST-GCN network to provide
the key information. Unlike the previous work on introducing
attentional weights in graph convolutional networks, this
paper addresses the problem of graph convolutional networks
that cannot ‘‘focus on action focused area’’ and are prone to
extracting redundant features.
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FIGURE 4. RGB image action focus area generation map.

The specific skeleton modality processing mechanism is as
follows: the data output X ′

joints, X
′
bones from the VSM module

will be input into the ST-GCN, and the graph convolution
compiler will be used to extract the feature representation
information Zfea, the detailed operation can be divided into
two steps, for the skeleton point branch, the input X ′

joints will
generate the feature representation information Zjoint , which
can be formulated in Equation 1:

Zjoint = fjoint (X ′
joint ) (1)

fjoint is the encoder for the skeleton point branch in the
model of the spatio-temporal graph convolutional network,
and Zjoint is the feature representation. Similarly, the pro-
cessing of the skeleton bone branch can be computed using
Equation 2:

Zbone = fbone(X ′
bone) (2)

In order to efficiently capture key action recognition
information and reduce redundant computations, this paper
proposes the construction of an Action Focus Area (AFA).
The AFA is generated based on the weight guidance of
skeleton points data to locate the occurrence area students’
actions in images quickly. Figure 4 illustrates the AFA
process for generating image guided by skeleton point
weights. This method can significantly reduce the data
volume of RGB images input by mapping the action
occurrence skeleton points information to the corresponding
image information, while retaining the semantic information
of the action in the image. In other words, the AFA will
accurately screen the data as the input to the neural network.

The computational process of AFA is represented by
Equation 3. The design concept involves combining the
joint weights Wjoints (calculated as shown in Equation 4,
where the magnitude indicates the degree of relevance of
a specific skeleton region to the action) learned from the
skeleton joint branch using the ST-GCN model with the
RGB input data Ximgs (i.e., X ′

imgs obtained through dot-
multiplication operation). The weight information obtained
from the skeleton points drives the RGB data to construct
AFA regions, enabling feature fusion between the skeleton
model and the visual RGB modality.

X
′

imgs
= X

imgs
·W (3)

Wjoints =
1
c · t

c∑
1

t∑
1

√(
X ′

joints

)2
(4)

Then X
′

imgs
is input into the backbone network by the

ResNet-50 convolutional neural network encoder fimage
to generate the feature representation information based
on the visual image Zimage, which is calculated by the
Equation 5:

Zimage = fimage(X
′

imgs) (5)

The Zjoint , Zbone and Zimage obtained from the skeleton
point branch, the bone branch, and the visual RGB branch
in the encoding stage are fed into the decoding stage.
Finally, the decoding results are fed into the design loss
function module and the real labeling information in the
dataset.

E. SYMMETRIC MULTIMODAL FUSION LOSS FUNCTION
This paper is an improvement strategy tailored to the
classroom for the common Cross-Entropy loss (CE) in the
field of deep learning. CE is a measure of the distance
between the true value of the data y and the model predicts
the value of the two probability distributions of ŷ, which is
calculated in the form of A•B, i.e. A•(b1, b2, b3, . . . bn). The
specific calculation steps are as follows: first, the tensor B is
disaggregated and then projected onto the space of tensor A
to determine the similarity relationship between tensor B and
tensor A. The linear transformation from tensor B to tensor
A is achieved by considering the changes in coordinate data.
This transformation preserves all the feature information in
tensor A while discarding the information from tensor B.
Consequently, the outcome of model fusion heavily relies on
the feature space of tensor A, which may result in insufficient
data fusion.

To address the issues above, this paper proposes a novel
loss function that incorporates a linear overlap between the
product of tensor A and B and the product of B and A.
By leveraging symmetric product, this approach aims to
mitigate the fusion bias problem that arises from conventional
loss functions.

In summary, symmetric multimodal fusion is specified as
follows: after the encoder-decoder in obtaining the feature
representations Zjoint , Zbone and Zimage of the skeleton point
data, skeleton bone data, and RGB data, the cross-point prod-
uct operation is performed on the representations to compute
the similarity representations, and two intermodal cross-loss
functions based on the Lcrossjoint⇔image and the Lcrossbone⇔image are
designed. Specifically, the cross-loss function representation
for skeleton points with RGB is shown in Equation 6:

Lcrossjoint⇔image

= α1 · exp(Zjoint · Zimage) + β1 · exp(Zimage · Zjoint ) (6)

where Lcrossjoint⇔image represents the extracted features on the
skeleton point branch and the RGB branch, after going
through the compiler to compute the cross-modal feature
representation cross-similarity computation. α1,β1 ∈ [0, 1)
is the correlation coefficient, reflecting the effect of Zjoint ,
Zimage and Zimage, Zjoint on Lcrossjoint⇔image taken from the
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skeleton point branch and the RGB branch, respectively.
In subsequent experiment, α1 and β1 were set to 0.5.
For the similar multimodal information fusion operation

done on the bone branch and the RGB branch, the cross-loss
function performance is shown in Equation 7:

Lcrossbone⇔image

= α2 · exp(Zbone · Zimage) + β2 · exp(Zimage · Zbone) (7)

where Lcrossbone⇔image represents the information extracted from
the bone branch and the RGB branch after compilation
and decoding for cross-modal feature characterization cross-
similarity calculation. α2,β2 ∈ [0, 1) is the correlation
coefficient, reflecting the influence of Zbone,Zimage and
Zimage,Zbone on L

cross
bone⇔image taken from the bone branch and

the RGB branch respectively. In subsequent experiment, α2
and β2 were set to 0.5.
Up to this point, the final cross-modal loss function

of the model Lfin consists of a linear combination of the
two cross-modal loss functions described above, which is
calculated as shown in Equation 8:

Lfin = φ · Lcrossjoint⇔image + ϕ · Lcrossbone⇔image (8)

In order to balance the relationship between different
levels of magnitude, we add a weight coefficient for
each stage. Where φ, ϕ ∈ (0, 1) is a model parameter
indicating the correlation coefficient of each type of loss,
reflecting the influence of the two cross-comparison loss
functions Lcrossjoint⇔image and L

cross
bone⇔image on the final objective

loss function Lfin. In subsequent experiment, φ, and ϕ

were set to 0.5. The final design objective loss function
is back-propagated iteratively optimized under the overall
framework of the model.

IV. EXPERIMENTS
In this paper, we utilize a graph convolutional network to
capture the skeleton points weight information to guide the
RGB generation of the action focused regions (AFA) and
compute symmetric multimodal fusion loss function Lfin,
which is validated on the NTU 60 dataset to verify the
scientific validity of the two design solutions proposed in
the method. Then, the proposed method is compared with
the current method in terms of performance and theoretical
analysis on the NTU 60 dataset and Classroom Dataset
captured in a real classroom environment.

The experimental sequence is organized as follows: in
section A, a brief description of the NTU 60 Dataset and
the Classroom Dataset, which mainly includes the collection
of student movements, data processing, and movement
category archiving. The following section B describes the
experimental environment and the related parameter settings.
In section C, the proposed method is compared and analyzed
with other state-of-the-art methods on the above two datasets.
Finally, in section D, the implementation details of the
ablation experiment are described in detail, and the results are
analyzed and demonstrated scientifically and theoretically.

A. INTRODUCTION TO THE DATASET
1) NTU 60
The dataset is the largest human action recognition dataset
proposed by the Rose Lab at Nanyang Technological
University (NTU). The dataset contains 60 categories of
actions, with a total of 56,880 samples, of which 40 are daily
behavioral actions, 9 are health-related actions, and 11 are
two-person interaction actions. These actions were performed
by 40 subjects aged 10 to 35 by Microsoft Kinect V2 sensors
from three different angles, and the data collected were in the
form of depth information, 3D skeleton information, RGB
frames, and infrared IR sequences. The NTU dataset has two
standard evaluation metrics: cross-subject (CS) and cross-
view (CV). In the CS experimental setup, the samples will
be divided into a training dataset and a test dataset based on
the person’s ID; in the CV experimental setup, the training
dataset and the test dataset will be divided based on the data
captured by the camera in different viewpoints.

2) CLASSROOM DATASET
The private Classroom dataset, a Kinect V2 depth camera
sensor device developed byMicrosoft, was used to record stu-
dent movement data occurring in the classroom environment
to obtain the final output constituting the dataset used in the
experiment. The Kinect V2 sensor can acquire RGB images,
depth maps, depth maps, skeleton data, and infrared data; this
experiment only utilizes skeleton data and RGB data. For the
skeleton data collected by the device, 25 frames per second
were set, and the collected data were categorized according
to the NTU 60 standard. The Classroom dataset collects
7 action categories, namely: raising hands, writing, playing
with phones, sitting, sleeping, standing up, and sitting down,
based on students’ actions in a real classroom environment,
as shown in Figure 5. Based on the RGB information and
the visualization of skeleton information from the Classroom
dataset, it is evident that students primarily engage in upper
body action in the classroom. When analyzing the data,
inputting all the skeleton information into the network leads
to two issues. Firstly, it results in information redundancy.
Secondly, the presence of tables and chairs in the classroom
affects the action data of the students. Specifically, the
posture estimation of the leg skeleton points may exhibit
significant deviation, resulting in low experimental result
accuracy. To better capture the students’ action information
in the classroom, this experiment simplifies the 25 skeleton
points obtained from Kinect. Unlike NTU 60 dataset, which
considers whole body data,it focuses solely on analyzing the
skeleton data about the upper body.

B. EXPERIMENTAL SETTINGS
The ST-GCN and C3D networks are used as backbone
networks to implement the proposed method using the
PyTorch deep learning framework. All experiments are
deployed on a devicewith aGPU ofNVIDIAGTX4090, 32G
of graphics memory, and 32G of RAM. Stochastic Gradient
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FIGURE 5. Visualization of the seven action categories on the classroom
dataset.

TABLE 1. Comparison of recognition accuracy of existing methods on
NTU 60 and Classroom dataset.

Descent (SGD) is used to optimize the parameter settings, and
the learning rate is initially set with a weight of 0.0004 to train
the model. We use 80 epochs to train all the models and select
and save the best model parameter values for subsequent
inference.

C. COMPARISONS WITH STATE-OF-THE-ART METHODS
PERFORMANCE
In order to verify the validity of our proposed method,
we made a comparison experiment between our method and
the contemporary unimodal and multimodal methods on the
NTU dataset and Classroom dataset; in the table 1, S stands
for the input information is skeleton data, R is the input
data RGB data, N_XSub and N_XView are the two kinds
of evaluation indexes on the NTU dataset, and C_XSub and
C_XView are the model’s evaluation indexes in the dataset of
Classroom. The specific results of the experiments are shown
in the Table 1:

Table 1 compares our proposed method with the state-
of-the-art methods on the NTU 60 and private Classroom
datasets. Comparing multimodal and unimodal results show
that the multimodal approach is superior to most of the uni-
modal approaches. We believe that the input of multimodal
data, on the one hand, provides rich semantic information
for the model and, simultaneously, provides a complementary
role for the information under the single domain. The above
experiments can effectively prove the validity of the choice
of multimodality for action recognition, thus verifying the
correctness of solving students’ classroom action recognition
from the perspective of a multimodal approach.

We can see that we are still competitive by further
validating the method’s effectiveness and comparing our
proposed method with existing multimodal methods. Our
method outperforms VPN by 0.79% and 0.91% in the X-Sub
and X-View evaluation schemes on the NTU 60 dataset,
respectively, and outperforms our baseline method MMNet
by 1.58% and 0.38%, respectively. For the best-performing
multimodal method TSMF, our method is 0.21% lower in
the X-Sub evaluation metric but 0.66% higher in the X-View
metric. Combining the performance of recognition accuracy
of all the methods on the NTU dataset, our proposed method
achieves the SOTA action recognition accuracy. For our
private Classroom dataset, our method outperforms most
of the SOTA methods only in the unimodal STTFormer
comparisons in the X-Sub and X-View evaluation scenarios,
which outperform them by l.43% and 3.29%, respectively.
We analyze that the Transform-based STTFormer method
uses powerful contextual relationships to build models that
can learn the temporal action sequences of skeleton data,
coupled with the fact that our private Classroom dataset has
a single class of actions and is acquired in a single time
segment. Therefore, STTFormer has a better performance
under these conditions. Besides that, our proposed model has
better result enhancement than other methods.

D. ABLATION EXPERIMENT
1) MULTIMODAL FEATURE JOINT REPRESENTATION
The experiment consists of two parts, and the specific
setup of the experiment operates as follows: the experiment
is deployed on two datasets, NTU 60 and Classroom.
In Experiment 1, the skeleton data was feature-extracted
using a graph convolutional network, while the image
information was extracted using a convolutional neural
network in a separate branch. Subsequently, the extracted
features were concatenated to create the final feature
information that was input into the classification network.
In Experiment 2, the process begins with the skeleton input
information. The skeleton information is then split into
skeleton point data and bone data, incorporating temporal
and spatial information. Subsequently, both the skeleton point
data and bone data undergo feature extraction using graph
convolutional networks separately. The skeleton point weight
matrix is obtained during the skeleton point data processing.
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FIGURE 6. W/O AFA recognition accuracy for NTU dataset.

FIGURE 7. W/O AFA recognition accuracy for classroom dataset.

This weight matrix is used to process the complete visual
input, integrating the weight information that describes the
skeleton point data’s importance into the image data’s layout.
Finally, the AFA, which represents the RGB domain’s spatial
region that captures the student’s movement, is determined.
The specific experimental results are shown in Figures 6
and 7.

In Figure 6, XSub and XView are the two accuracy
evaluation metrics for the NTU dataset. At the same time,
*XSub and *XView are the model accuracy evaluation
metrics for the NTU dataset after skeleton guided RGB
selection region. Similarly, in Figure 7, CSub and CView are
two accuracy evaluationmetrics for Classroom dataset. At the
same time, *CSub and *CView aremodel accuracy evaluation
metrics for Classroom dataset after skeleton guided RGB
selection region.

From the experimental results shown in Figure 6 and
Figure 7, we can observe the following findings. In Exper-
iment 1, the multimodal features are fused after extracting
information from the respective networks. On the NTU
60 dataset, the accuracy of XSub is 89.64% and XView is
94.34%. However, on the Classroom dataset, the accuracy
of CSub is 53.17% and CView is 59.78%. In contrast,
Experiment 2 utilizes the learned weighting information from
skeleton points to guide the generation of AFAs for RGB
images. On the NTU dataset, the accuracy of *XSub is
92.29% and *XView is 97.16%. On the Classroom dataset,
the accuracy of *CSub is 60.94% and *CView is 65.22%.
Comparing Experiment 1 and Experiment 2, the main

TABLE 2. Experimental accuracy of inter-modal loss functions.

TABLE 3. Recognition accuracy in NTU dataset with complete skeleton
and VSM operation.

difference lies in whether the weight matrix information of
the skeleton points is used to guide the selection of the action
focus areas in RGB images. Experiment 2 demonstrates
improved recognition accuracy on both XSub and XView
evaluation metrics, indicating the effectiveness of using
skeleton point weights to guide the selection of action focus
regions in RGB images.

2) LOSS FUNCTION BASED ON INTER-MODAL
In this module, the validation is carried out on the NTU
and Classroom datasets, respectively. In Experiment 1,
RGB and Skeleton are input into the model together, and
feature extraction is carried out on RGB and Skeleton to
form a multimodal information representation. However, the
cross-entropy objective loss function(CE) is simply used
for function iteration in the final objective function design
stage. In Experiment 2, while maintaining the multimodal
design concept of Experiment 1, model optimization using
Symmetric Multi-Modal loss function (SMM)at the three
basins of Joints, Bone, and RGB was also introduced. The
specific experimental results are shown in Table 2, where
N_XSub and N_XView are the two evaluation metrics on the
NTU dataset, and C_XSub and C_XView are the evaluation
metrics of the model on the Classroom dataset.

According to Table 2, the introduction of the Symmetric
Multi-Modal loss function on the NTU dataset gives the
method an improvement of 2.32% and 1.88% on N_XSub
and N_XView metrics, respectively. Moreover, there is an
improvement of 3.49% and 2.63% on the two evaluation
metrics C_XSub and C_XView for Classroom dataset.
We analyze that the performance on the NTU dataset is
because the NTU dataset is large and complete. The model
can achieve the desired effect through multiple iterations at
the cost of consuming a large amount of computational space
and spending a large amount of time and cost. At the same
time, this method has higher requirements on the dataset size
and labels. For better performance on the Classroom dataset,
we analyze the introduction of the Symmetric Multi-Modal
loss function to make up for the lack of a private dataset
in scale and accuracy. Comparing the difference in the
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TABLE 4. Time and storage after complete skeleton and VSM operation
on NTU dataset.

objective function between two times, the enhancement of the
experimental results side by side verifies that the inter-modal
cross entropy function has significant advantages.

3) SELECTION OF KEY SKELETON POINTS IN CHANGING
SEQUENCE
Experiment 1: In the unimodal method, ST-GCN was used
as the main network framework, and its inputs were all
the skeleton data and the key skeleton points data selected
based on the Variable Series Mean (VSM), respectively. The
recognition accuracies for the two experimental setups are
shown in Table 3, and the time and storage are shown in
Table 4.
In Tables 3 and 4, we utilize the ST-GCN network as the

backbone network and employ two different strategies for
skeleton input. One strategy, ‘‘ALL’’ in the table, involves
directly inputting the complete skeleton data information.
With this approach, we do not perform any skeleton quantity
processing. We input all 75 3D coordinate data points
obtained from the sensors, corresponding to the 25 skeleton
points, into the ST-GCNmodel. Subsequently, we conduct the
superposition of RGB and skeleton modal information finally
output the recognition accuracy. The second strategy involves
using the VSM strategy. We preprocess the 75 original skele-
ton point coordinates obtained from the sensors. By applying
the principle of mean change, we identify the skeleton point
that exhibits the most significant variation during a specific
action among the 5 skeleton points. Subsequently, we proceed
with the subsequent operations following the same procedure
as the first strategy. As can be seen from Table 3, after
adding the VSMmodule, the model reaches the optimal state
at the 70th epoch, which is five iterations faster than that
of the other methods. There is also a 1.23% improvement
in accuracy, which indicates that our method can recognize
the movements efficiently and can achieve a high recognition
accuracy with a low number of iterations. In this regard,
we believe that these selected skeleton points contain key
information about the occurrence of this type of action, and
such processing, on the one hand, acts as a kind of purification
for the skeleton data, eliminating a large amount of redundant
information and ensuring a high degree of accuracy of the
information input into the model framework. For Table 4,
our method has a significant advantage over the original
method in terms of time spent and logistics storage, which
is almost 20%–25% of the original method, significantly
optimizing the time and space complexity of the initial
method. We analyze that the VSM reduces the amount of
data for input bone points, simplifies the model to process the
input bones, and reduces the model’s expenditure on time and

TABLE 5. Recognition accuracy after complete data and VSM operation
under NTU dataset.

TABLE 6. Time, storage after complete data and VSM operation under
NTU dataset.

TABLE 7. Recognition accuracy, time, and storage for different k values
under NTU dataset.

physical storage. Such a deployment implementation allows
subsequent real-time detection and recognition of actions.
Experiment 2: In the multimodal method, the proposed

method is used with inputs consisting of all the skeleton
data and the key skeleton point data selected based on the
Variable Series Mean. Recognition accuracies for the two
experimental setups are shown in Table 5, and the time and
storage are shown in Table 6.
As shown in Table 5, our method achieves a best action

recognition accuracy of 90.71% on the NTU dataset. After
adding the designed VSM module, the model achieves
a higher accuracy of 92.29%. This experimental result
demonstrates that the VSM module can effectively improve
action recognition accuracy, validating its scientific and
practical nature. Considering the storage parameter (Table 6),
the original network processes all the 3D coordinates of the
25 skeleton points acquired by Kinect as input during
the model learning process. This approach consumes a
significant amount of computer storage space, occupying
additional physical space during the model iteration process.
However, our proposed VSM module effectively addresses
this issue by selecting the most representative action skeleton
points based on the mathematical arguments discussed in
the previous chapter. This approach retains the original
and accurate action features while minimizing the waste of
physical space caused by redundant data input.

4) SELECTION OF SKELETON POINT K_VALUE FOR MEAN
SELECTION OF VARIABLE SEQUENCE
In the experiment, we determine the selection of k = 5
skeleton points input to the network in order to verify that
the selection of 5 skeleton points can best improve the high
efficiency of the information at the same time, minimize

VOLUME 12, 2024 42929



Z. Chen et al.: Key Skeleton Points Guided Classroom Action Recognition Method

FIGURE 8. Plot of recognition accuracy, time, and storage results for
different k_value of NTU dataset.

the skeleton redundant information to improve the speed
of computation. The paper in the NTU dataset to take the
other values of the case of the accuracy, time, and storage
experiments, the specific results of the experiment are shown
in Table 7:

According to Table 7 and Figure 8, as the value of k
increases, our proposed model slightly increases in action
recognition accuracy on the NTU 60 dataset and then
shows a decreasing trend. However, it significantly increases
overhead time and memory storage costs. For the analysis
of the above experimental results, in the process of k_value
growth, the model can extract more changes in the amount
of skeleton, RGB features and can get a more accurate
distinction between the semantic information of the action,
which brings a wealth of characterization information to the
fine-grained action recognition. However, it is undeniable
that as the k_value keeps rising, the clever design of our
proposed VSM module loses its effect, which is equivalent
to inputting a large amount of skeleton data into the model,
bringing redundant information to the model and increasing
the amount of computation, which will lead to a decrease
in the accuracy of the model. In summary, under the
combination of model recognition accuracy, model time
overhead, and memory storage share of three considerations,
we choose the number of skeleton points selection k = 5,
under the premise of ensuring the accuracy of the experiment,
the most likely choice of the most valuable settings.

V. CONCLUSION
This paper addresses the challenges of accurately identifying
student behavior in real classroom environments. In order to
overcome the difficulties of distinguishing specific actions
and processing redundant information, a key skeleton point
guided classroom action recognition method based on
multimode symmetric fusion is proposed. This method starts
with selecting ‘‘key points’’ skeleton points based on VSM.
These key points are representative and provide efficient
spatiotemporal skeleton data information. Additionally, mul-
timodal fusion is employed to guide the RGB data using
the training weights obtained from the skeleton points data.
This fusion process enhances the learning representation of

the action focused area, leading to improved recognition
performance. Furthermore, the symmetric multimodal fusion
loss function is designed to enhance the calculation of a single
loss function within the existing methods and balances the
optimization problem across multiple modalities.

Overall, the method proposed in this article performs
well in improving the accuracy of individual student action
recognition. However, the accuracy of identifying classroom
group actions could be improved. Meanwhile, since it is
difficult to scale up the collection scale of private Classroom
dataset, to better identify classroom student action, future
research will focus on exploring methods in areas such
as multi-view and unsupervised methods. This will help
improve the accuracy of overall classroom actions and solve
the problem of limited private dataset size, thereby further
promoting research and application of classroom student
action recognition.
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