
Received 5 January 2024, accepted 8 March 2024, date of publication 19 March 2024, date of current version 26 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3379277

Video-Based Analysis of Cattle Behaviors:
Improved Classification Using
FlowEQ Transform
JUNG-WOO CHAE 1, HYEON-SEOK SIM 1, CHANG-WOO LEE2, CHANG-SIK CHOI2,
AND HYUN-CHONG CHO 1,3, (Member, IEEE)
1Department Graduate Program for BIT Medical Convergence, Kangwon National University, Chuncheon-si 24341, Republic of Korea
2Gangwon State Livestock Research Institute, Hoengseong-gun 25266, Republic of Korea
3Department of Electronics Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea

Corresponding author: Hyun-Chong Cho (hyuncho@kangwon.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (MOE) under Grant 2022R1I1A3053872; in part by the Regional Innovation Strategy (RIS) through
NRF funded by MOE under Grant 2022RIS-005; and in part by the Rural Development Administration, Republic of Korea, under Grant
00260110.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Institutional Animal Care and Use Committee (IACUC) of Rural Development Administration.

ABSTRACT Cattle management plays a crucial role in determining the productivity of livestock farms.
With the expansion of large-scale livestock operations, it has become increasingly impractical for livestock
managers to rely on traditional visual observations for comprehensivemonitoring of cattle behaviors, encom-
passing health and overall welfare. Consequently, the incorporation of automation technology in livestock
management is emphasized. The objective of this study is the video-based identification of cattle behavior
that can be utilized in automated cattle management systems. With a specific focus on behaviors closely
associated with their management, the study employs deep learning-based action classification methods
over the commonly used object detection. This approach enables the classification of intricate, repetitive, and
slow behaviors that were challenging to detect. Furthermore, a novel method named FlowEQ transform was
introduced, incorporating temporal information into the input data. This enhancement proved instrumental
in providing valuable insights for inferring cattle behavior, resulting in an impressive 8% improvement
in classification performance and achieving a high accuracy rate of 91.5%. The utilization of action
classification and the introduction of the innovative FlowEQ transform mark a significant advancement in
automated cattle management. This approach is poised to enhance the efficiency of behavior monitoring on
livestock farms.

INDEX TERMS Action classification, automation technology, cattle behavior, cattle management, deep
learning, FlowEQ transform.

I. INTRODUCTION
Cattle stand as one of the foremost livestock species glob-
ally, wielding a significant impact on agriculture and related
industries [1]. Their well-being, productivity, and health carry
substantial implications for human livelihood, given their
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pivotal role as a primary source of food. This significance
is underscored by the escalating global population and its
consequential rise in food requirements. Over recent decades,
the production of beef and dairy from cattle has consistently
surged worldwide. As per the Food and Agriculture Orga-
nization of the United Nations (FAO), the combined meat
yield from beef and buffalo has exhibited a steady upward
trajectory [2]. Starting at 47.2 million tonnes in 1980, this
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production escalated to 59.6 million tonnes in 2000, further
reaching 75.9 million tonnes by 2020. This sustained 25%
increase every two decades indicates a continuous and grad-
ual rise in output.

Effective cattle management and health serve as pivotal
factors directly impacting the productivity of livestock farms.
Traditionally, monitoring cattle behavior for health assess-
ment has relied on direct observation by farm workers [3].
However, technological advancements have revolutionized
livestock farming. Driven by efficiency, smaller cattle oper-
ations are dwindling in favor of expanding automated facili-
ties in large-scale farms. Consequently, managing numerous
cattle with fewer workers makes direct observation of their
behavior and health an increasingly impractical endeavor.
Even when feasible, this method can be time-consuming,
labor-intensive, and susceptible to subjective interpretations,
leading to incomplete assessments.

Automated systems for livestock management emerge as
a potential remedy for these challenges [4]. Modern farms
leverage automation for heightened productivity and compet-
itiveness, integrating automated systems for feed distribution,
watering, and environmental control [5], [6]. Notably, most
of these advancements are based on the technologies that
enable real-time monitoring of cattle behavior. Such systems
predominantly rely on sensors and cameras to collect data [7],
[8], employing analytical algorithms to decipher cattle behav-
ior patterns. This proves especially beneficial in large-scale
farms where direct oversight of numerous cattle by workers
poses logistical hurdles. Additionally, the adoption of these
automated systems facilitates the rapid and objective identi-
fication of potential risks, such as diseases, while being non-
intrusive, thereby significantly contributing to cattle welfare
by minimizing stress.

A. RELATED WORKS
Several studies have delved into identifying cattle behavior,
serving as the groundwork for automated cattle manage-
ment technology. Fuentes et al. employed Faster R-CNN and
YOLOv3 object detection algorithms, successfully detect-
ing 15 behaviors in cows by integrating frame-level and
spatio-temporal data [9], [10], [11]. Additionally, their explo-
ration extends to monitoring and recognizing individual
cattle behavior in enclosed barn environments, utilizing
YOLOv5 as an action detector [12], [13]. This comprehensive
approach involves analyzing video data frommultiple camera
angles to ensure thorough monitoring and accurate behavior
recognition.

Zheng and Qin utilized the YOLOv5 object detection
algorithm for cow behavior detection, incorporating the
Cascaded-Buffered IoU (C-BIoU) for Multi-Object Tracking
(MOT) [14], [15]. Meanwhile, Wang et al. focused specif-
ically on detecting cow estrus behavior in natural settings,
employing an enhanced YOLOv5 algorithm [16]. Wu et al.
applied CNNmodels with Bi-LSTM networks to classify five
specific behaviors in individual dairy cows within complex
environments [17], [18].

Moreover, Nguyen et al. introduced a deep learning
approach for cow welfare monitoring. Their method uti-
lizes Cascade R-CNN for cow identification and Temporal
Segment Networks (TSN) for action recognition, achiev-
ing high accuracies in detecting behaviors like drinking
and grazing [19], [20], [21]. These diverse studies collec-
tively underscore the significance of identifying cattle behav-
ior. Furthermore, ongoing research continues to explore the
potential for automating cattle management.

B. NOVELTY AND CONTRIBUTIONS
Automating cattle management relies on monitoring specific
behavior frequencies and abnormalities. Hence, the accu-
racy of behavior identification methods remains crucial in
previous technologies. The proposed study was conducted
with a focus on using video-based methods to identify
cattle behaviors closely associated with their management.
To achieve this, we utilize action classificationmethods based
on deep learning, departing from traditional object detec-
tion, to identify cattle behaviors [22]. Action classification,
by analyzing multiple video frames, adeptly detects intricate
or repetitive behaviors challenging for frame-based object
detection. Additionally, the study introduces the FlowEQ
transform method tailored for action classification, enhanc-
ing cattle behavior classification performance without sig-
nificantly inflating computational costs through input data
transformation.

All data used in this research were internally collected
and classified. Collaborating with the Gangwon-do Live-
stock Research Institute in South Korea, we collected,
refined, and labeled essential cattle behaviors based on
expert guidance and review from the same institute. This
study profoundly acknowledges the significance of auto-
mated livestock management systems. The adoption of
action classification methods for identifying cattle behavior
and the novel FlowEQ transform method stand as promis-
ing endeavors, aiming to bolster accuracy and efficiency
within automated livestock management systems. More-
over, leveraging high-quality validated data, this research is
poised to substantially contribute to the field, ensuring high
reliability.

II. MATERIALS AND METHODS
This study aims to differentiate cattle behavior using action
classification. The research unfolds across three key phases:
First, data collection and dataset creation took place by
installing cameras at the Gangwon-do Livestock Research
Institute research pens. Subsequently, deep learning-based
action classificationwas utilized to identify five distinct cattle
behaviors: normal state, rumination, lactation, calf interac-
tion, and cow interaction. Finally, we introduced the FlowEQ
transform, a novel preprocessingmethod that enhances action
classification performance through input data modification.
The following sections provide comprehensive insights and
explanations into these processes.
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FIGURE 1. Structure of the research pen, and position of the camera.

TABLE 1. Composition of the Constructed Dataset.

A. DATA COLLECTION AND DATASET CONSTRUCTION
Research data collection for the study was a collaborative
effort with the Gangwon-do Livestock Research Institute in
South Korea. Network IP cameras (GB-CDX04, GASI) were
installed in 4.8m x 9.6m research pens accommodating two
pairs of cows and calves. These cameras were positioned 3 m
high, centrally placed along one side of the pen. Adjacent to
the camera-installed pen, the upper left corner of the camera’s
field of view captures the calves’ enclosure, while the lower
left corner contains part of the other cattle’s pens. Fig. 1
illustrates the layout of the pen with the camera location.

Research data was collected in AVI video format using
the installed camera, from December 1 to December 11,
2021. The collected data were then meticulously categorized
into five behaviors crucial to cattle management, guided by
insights from experts at the Gangwon-do Livestock Research
Institute. Under expert supervision, this categorization pro-
cess identified five behaviors: rumination (repeated mouth
movements while sitting or standing), lactation, calf interac-
tion (calf licking or sniffing the mother cow), cow interaction
(mother cow licking or sniffing the calf), and a normal state
(walking around, standing still, or lying without any specific
behavior like rumination). Fig. 2 showcases examples of
these targeted cattle behaviors observed in the collected data,
while detailed specifications of the dataset are outlined in
Table 1.

B. VIDEO-BASED CLASSIFICATION OF CATTLE BEHAVIOR
The aim of this study was to identify five distinct cattle
behaviors: rumination, lactation, calf interaction, cow inter-
action, and the normal state. However, these behaviors lack
specific, conspicuous postures, such as mounting [23]. Some
involve actions that cannot be assessed from a single image,
such as rumination observable through mouth movement
while standing or lying [24]. Consequently, defining these
behaviors necessitates observing the situation over a dura-
tion, a task impossible with frame-by-frame object detection.
To address this, we proposed employing action classification.
Unlike frame-based analysis, action classification operates
on a video-level basis, examining multiple frames within
a defined range to draw inferences. This approach offers
advantages in deciphering sequential or repetitive behaviors
challenging to discern in a single scene.

For this study, TimeSformer, a deep learning-based action
classification, served as the baseline algorithm [25]. Notably,
it is the first model to employ the transformer architecture for
video analysis, a pivotal advancement in video comprehen-
sion that has spurred diverse model explorations. Utilizing
the same input as (1), TimeSformer processes F 3-channel
(RGB) frames of size H×W for video analysis.

X ∈ RH×W×3×F (1)

Next, the frame is decomposed intoP×P patches, resulting
in N patches covering the entire frame (N = HW/P2). These
patches are then flattened into vectors x(p,t) ∈ R3P2 , where
p = 1 . . .N denotes spatial locations and t = 1 . . .F signifies
an index across frames. Following this step, linear embedding
operations are conducted, yielding the embedding vector z(0)(p,t)
as depicted in (2).

z(0)(p,t) = Ex(p,t) + epos(p,t) (2)

Each patch x(p,t) undergoes linear mapping into an embed-

ding vector z(0)(p,t) ∈ RD using a learnable matrix E ∈

RD×3P2 , while epos(p,t) ∈ RD represents a learnable posi-
tional embedding. This positional embedding encodes the
spatiotemporal position of each patch. TimeSformer oper-
ates on self-attention by computing queries, keys, and values
from the sequence of embedding vectors z(0)(p,t). This mech-
anism enables TimeSformer to handle temporal dependen-
cies in videos, integrating time-based self-attention within
the transformer architecture. This capability allows the
model to process sequences of frames over time, enhanc-
ing precision in distinguishing various actions. Moreover,
TimeSformer incorporates specialized positional encoding
to capture temporal ordering information critical for under-
standing action sequences in videos. Furthermore, it employs
Divided Space-Time Attention (divST), a split attention
design that independently processes spatial and temporal
information. This design significantly enhances the model’s
ability to discern subtle motion details within video frames.
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FIGURE 2. Five cattle behaviors utilized in the study.

FIGURE 3. Examples and characteristics of the FlowEQ transform application.

C. FlowEQ TRANSFORM FOR IMPROVED ACTION
CLASSIFICATION
Images inherently contain spatial information. In the context
of videos, incorporating a temporal axis introduces both spa-
tial and temporal data. Dynamic vision algorithms, like action
classification, rely on discerning these differences between
spatial and temporal information to infer targets effectively.
However, temporal cues are not discernible within a sin-
gle image. Hence, dynamic vision algorithms predominantly
operate on video sequences, extracting and leveraging tem-
poral information by analyzing consecutive frames alongside
individual frame features. However, if temporal information
could be integrated into a single image, it would significantly
augment dynamic vision algorithms.

In this study, a novel method called the FlowEQ trans-
form has been introduced to elevate action classification per-
formance while simultaneously identifying cattle behavior.
The FlowEQ transform is a preprocessing technique that
modifies input data for action classification, transforming
conventional 3-channel RGB images into data with distinct

channels. In this process, the first channel encapsulates tem-
poral information corresponding to rapid movements, while
the second channel captures temporal details of slower or
typical movements. The last channel preserves the spatial
information from the original image, encompassing its shape
and contours.

To extract temporal information for the first and second
channels, optical flow was applied to consecutive frames
along the same time axis [26]. Optical flow tracks bright-
ness changes based on object movement, creating a motion
field that describes object motions. At this point, the motion
field can be considered to include the temporal informa-
tion, which changes over time. Optical flow is divided into
local and global methods, with techniques from traditional
computational approaches to utilizing deep learning [27].
In this study, the focus is on real-time applicability while
minimizing computational costs [28]. Consequently, optical
flow methods that are based on deep learning or require high
processing costs were excluded, and the Dual TV-L1 optical
flowwas used [29]. In the current landscape, when even basic
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entry-level graphic hardware can perform computations of
approximately 1,000 GFLOPs, and servers are capable of
up to 50,000 GFLOPs, the Dual TV-L1 optical flow algo-
rithm, which utilizes approximately 9.22 GFLOPs for pro-
cessing 640 × 480 images at 30 fps, along with the FlowEQ
transform that is based on it, does not present a challenge
for real-time processing. This method demonstrated superior
accuracy and lower noise among various traditional methods
such as Lucas-Kanade, Horn-Schunck, Farneback, Brox and
EpicFlow [30], [31], [32].
The first channel captures rapid movements by applying

optical flow between the current frame and one taken three
frames earlier, while the second channel portrays slower
movements by comparing the current frame with one taken
fifteen frames earlier. For the final channel, the information
was derived from the value channel after converting RGB
to HSV and applying histogram equalization. Transformer-
based deep learning models exhibit significantly less texture
bias compared with CNNs [33]. This decreases the reliance
on image texture, pattern, or color to identify subjects,
instead showing increased sensitivity to higher-dimensional
features such as shape and contours. Therefore, after con-
verting to the HSV channel, hue and saturation information
were discarded, focusing solely on the value information
that highlights shape and contours. Additionally, histogram
equalization was employed to intensify the distinctiveness
of shapes and contours. This alteration from the original
input data is demonstrated in Fig. 3, showcasing examples of
applying the FlowEQ transform to rumination and calf inter-
action. In the highlighted area, the first channel captures rapid
movement details of a calf licking a cow in the calf interaction
video, while the second channel captures repetitive and slow
movement details in the rumination video.

III. RESULTS AND DISCUSSION
All training and performance evaluations were conducted
on a system using Windows 10, CUDA 11.3 with cuDNN,
Python 3.9.6, and PyTorch 1.12, with the following configu-
ration: Intel® Core™ i9-12900KS Processor, NVIDIA RTX
A6000, and 64GB RAM. For evaluation, the study employed
a confusion matrix to assess the classification performance of
five cattle behaviors, with Table 2 outlining the dataset con-
figurations. The classification results, including TP, TN, FP,
and FN,were utilized to derive evaluationmetrics such as pre-
cision, recall, specificity, f1-score, and accuracy. Finally, all
assessments were conducted using a 3-fold cross-validation
approach.

Table 3 presents a performance comparison according to
the proposed application method, alongside the classification
performance of two original action classification models,
TimeSformer and I3D. First, using a simple TimeSformer
model, the classification performance appeared relatively
low. Confusion primarily arose between the normal state and
rumination, attributed to the challenge in distinguishing their
subtle and non-drastic movements. Also, confusion occurred
between calf interaction and cow interaction, differentiation

TABLE 2. Datasets Configuration used for Performance Evaluation.

being reliant on the subject of the action. In this case, distin-
guishing these behaviors posed a challenge due to the visual
similarity between adjacent calves and cows. Despite the
simplicity of the process, converting from RGB to HSV and
applying histogram equalization resulted in an overall perfor-
mance enhancement. However, similar to employing solely
a simple TimeSformer, confusion between the normal state
and rumination, as well as between calf and cow interactions,
persisted. The utilization of the proposed FlowEQ trans-
form yielded the most significant improvements. It notably
succeeded in differentiating between the normal state and
rumination previously challenging to discern and accurately
classified calf interaction and cow interaction with high effi-
ciency. This enhancement stems from the FlowEQ trans-
form’s integration of temporal data about subtle and repetitive
rumination movements, enhancing differentiation from the
normal state. Additionally, for interactions, it incorporated
information that distinctly identified the subject of the action,
aiding in more accurate classification. These observations
confirm that the proposed FlowEQ transform significantly
enhances action classification performance.

An investigation into whether the type of optical flow,
crucial to the FlowEQ transform, impacts performance was
conducted. For comparison, Farneback, a local optical flow,
was applied instead of Dual TV-L1, a previously utilized
global optical flow. The ‘TimeSformer (divST) & FlowEQ
transform (based on Farneback)’ section of Table 3 depicts
performance with the Farneback-applied FlowEQ transform.
Farneback exhibited relatively more noise compared to Dual
TV-L1 and lacked a clear motion field for small actions. Con-
sequently, even when integrated into the FlowEQ method,
it only marginally improved performance over the original
due to the absence of precise temporal information. However,
the FlowEQ transform’s performance, similar to the HSV
application in Table 3 but without the H and S channels, sug-
gests that transformer-based action classification can effec-
tively infer subjects using solely the value component, devoid
of the H and S channels.
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TABLE 3. Classification Performance of Cattle Behaviors Video Data.

Subsequently, an assessment was conducted to evaluate
the proposed FlowEQ transform’s efficacy in other action
classificationmodels. For this purpose, Inflated 3DConvNets
(I3D), a representative 3D CNN model, was utilized [34].
Unlike TimeSformer, I3D adopts a CNN architecture for
action classification. It transforms a 2D CNN into 3D,
enhancing its capability to capture temporal information in
video data. The ‘I3D’ and ‘I3D & FlowEQ transform (Ours)’
sections in Table 3 represent the performance of the orig-
inal I3D and the I3D integrated with the FlowEQ trans-
form. While the original I3D displayed some classification
capability, it performed less effectively than TimeSformer.

It encountered challenges distinguishing between the normal
state and lactation and struggled notably with differentiating
calf and cow interactions, impacting its overall performance.
However, incorporating the FlowEQ transform with I3D
enhanced the classification performance by approximately
8%. Although the FlowEQ transform did not significantly
improve the classification of the normal state and lactation,
it notably reduced confusion between the two interactions,
emphasizing its effectiveness in action classification.

An additional experiment was conducted to assess the
FlowEQ transform’s efficacy in encapsulating temporal
information within each frame. Hypothesizing that frames
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TABLE 4. Classification performance of extracted frame data.

processed through FlowEQ, containing temporal data, could
enable action analysis even without explicitly learning the
temporal axis, 10 frames were regularly extracted from the
videos, forming the extracted frame data in Table 2. Table 4
showcases the classification results for this extracted frame
data across different methods. ViT-B/16, the classification
algorithm underlying TimeSformer, was utilized for sim-
ple image classification without leveraging action classifi-
cation that learns temporal axis information [35]. However,
when solely trained through ViT-B/16, proper classification
was not achieved overall. Particularly, behaviors like rumi-
nation, indistinct in a single frame, remained unidentified.
In conclusion, the failure to differentiate between classes led
to an overall classification failure. However, classification
with the applied FlowEQ transform remarkably improved
behavior differentiation, almost doubling the classification
performance.

Notably, it successfully identified rumination, a behavior
previously undetected. Moreover, behaviors like lactation,
calf interaction, and cow interaction where visual cuesmerely
depict a calf and cow in proximity exhibited notably reduced
confusion owing to the incorporation of temporal informa-
tion. This underscores the diverse potential of the FlowEQ
transform method and its significance in dynamic vision
analysis.

IV. CONCLUSION
The primary objective of this study was to identify cat-
tle behaviors using action classification while concurrently
enhancing performance with the introduction of the FlowEQ
transform. The application of action classification effec-
tively discerned cattle behaviors that proved challenging
or indistinct at the frame level. Moreover, the newly pro-
posed FlowEQ transform modified the input data of the
classification model, introducing a motion field represent-
ing movement. This allowed the incorporation of temporal
information into the frames constituting the video, enabling
the action classification to learn from more informative
data and achieve heightened inferential performance with-
out significant increases in computational costs, owing to

its straightforward procedures. Furthermore, the inclusion of
temporal information in the images was confirmed through
verification using a simple image classification algorithm.
We anticipate that these advancements in development tech-
niques could be utilized in a wide range of applications,
where enhanced understanding and classification of complex
behaviors are crucial, such as in automated monitoring and
management systems for livestock, wildlife observation, and
even in enhancing surveillance and security measures.

While the application of action classification successfully
classified cattle behavior and improved performance through
the FlowEQ transform, there are areas that warrant further
experimentation. First, despite collecting 400 videos per class
for cattle behavior, this number, when divided into train,
validation, and test sets, may not be considered extensive.
Therefore, we are continuing to collect data and plan to
conduct further research with an expanded dataset. Second,
the proposed FlowEQ transform will be applied to various
action classification models to assess its effectiveness. Con-
currently, the performance in action classification based on
architectures other than the transformer will be evaluated
to confirm broader applicability. Finally, building on the
observed potential of the FlowEQ transform in frame-level
analysis, we plan to develop new deep learning models that
incorporate this method.
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